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Abstract. A nearlattice is a join semilattice such that every principal filter is a lattice
with respect to the induced order. Hickman and later Chajda et al independently showed
that nearlattices can be treated as varieties of algebras with a ternary operation satisfying
certain axioms. Our main result is that the variety of nearlattices is 2-based, and we
exhibit an explicit system of two independent identities. We also show that the original
axiom systems of Hickman as well as that of Chajda et al are dependent.

Keywords: nearlattice, equational base

MSC 2010 : 06A12, 06B75

1. Introduction

A nearlattice (L,∨, {∧a}a∈L) is a join semilattice (L,∨) such that for each a ∈ L,

the principal filter (a] = {x ∈ L | a 6 x} is a lattice with respect to the induced

order. Each x, y ∈ (a] have a meet, denoted by x∧a y. Define m : L×L×L → L by

(1.1) m(x, y, z) = (x ∨ z) ∧z (y ∨ z)

for x, y, z ∈ L. Sometimes the literature on nearlattices considers instead the dual

object consisting of a meet semilattice such that each principal ideal is a lattice.

Hickman [4] and, independently, Chajda and Halaš [1] and Chajda and Kolařík [3]

characterized nearlattices in terms of the ternary operation m. Part (1) of the

following proposition gives Hickman’s axioms and part (2) gives the axioms of Chajda

et al as found in, for instance, [2], §2.6.

The first author was partially supported by FCT and FEDER, Project POCTI-ISFL-1-
143 of Centro de Algebra da Universidade de Lisboa, by FCT and PIDDAC through the
project PTDC/MAT/69514/2006, by PTDC/MAT/69514/2006 Semigroups and Lan-
guages, and by PTDC/MAT/101993/2008 Computations in groups and semigroups.
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Proposition 1.1. (1) Let (L,∨, {∧a}a∈L) be a nearlattice. Thenm : L×L×L →

L defined by (1.1) satisfies the following identities:

m(x, x, x) = x,(H1)

m(x, x, y) = m(y, y, x),(H2)

m(m(x, x, y), m(x, x, y), z) = m(x, x, m(y, y, z)),(H3)

m(x, y, z) = m(y, x, z),(H4)

m(m(x, y, z), m(x, y, z), m(x, x, z)) = m(x, x, z),(H5)

m(m(x, x, y), z, y) = m(x, z, y),(H6)

m(x, m(x, x, y), z) = m(x, x, z),(H7)

m(m(x, m(y, z, u), u), m(x, m(y, z, u), u), m(x, z, u)) = m(x, z, u).(H8)

Conversely, let (L, m) be a ternary algebra satisfying the identities (P1)–(P8). Define

x ∨ y = m(x, x, y). Then (L,∨) is a semilattice. For each a ∈ L and all x, y ∈ (a],

define x ∧a y = m(x, y, a). Then (L,∨, {∧a}a∈L) is a nearlattice.

(2) Let (L,∨, {∧a}a∈L) be a nearlattice. Then m : L×L×L → L defined by (1.1)

satisfies the following identities:

m(x, y, x) = x,(P1)

m(x, x, y) = m(y, y, x),(P2)

m(m(x, x, y), m(x, x, y), z) = m(x, x, m(y, y, z)),(P3)

m(x, y, z) = m(y, x, z),(P4)

m(m(x, y, z), w, z) = m(x, m(y, w, z), z),(P5)

m(x, m(y, y, x), z) = m(x, x, z),(P6)

m(x, x, m(x, y, z)) = m(x, x, z),(P7)

m(m(x, x, z), m(y, y, z), z) = m(x, y, z).(P8)

Conversely, let (L, m) be a ternary algebra satisfying the identities (P1)–(P8). Define

x ∨ y = m(x, x, y). Then (L,∨) is a semilattice. For each a ∈ L and all x, y ∈ (a],

define x ∧a y = m(x, y, a). Then (L,∨, {∧a}a∈L) is a nearlattice.

(In fact, Hickman worked with the dual notion of nearlattice, and used a different

convention for ordering the variables. Our m(x, y, z) is Hickman’s j(x, z, y).)

Thus nearlattices can be treated as varieties of algebras, and from now on, we will

refer to the ternary structures (L, m) themselves as nearlattices. The main result of

this paper is that the variety of nearlattices (L, m) is 2-based.
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Theorem 1.2. The following is a basis of identities for nearlattices:

m(x, y, x) = x(N1 ,)

m(m(x, y, z), m(y, m(u, x, z), z), w) = m(w, w, m(y, m(x, u, z), z)).(N2)

Left open in both the investigations of Hickman and of Chajda et al was the

independence of their respective axiom systems. In fact, three of Hickman’s axioms

are dependent upon the others, and one of the axioms of Chajda et al is dependent

upon the rest.

Theorem 1.3. The system H = {(H1), (H2), (H4), (H7), (H8)} is a basis of in-

dependent identities for the variety of nearlattices. In particular, the identities H

imply (H3), (H5) and (H6).

Theorem 1.4. The system C = {(P1), (P2), (P4)–(P8)} is a basis of independent

identities for the variety of nearlattices. In particular, the identities C imply (P3).

In §2, §3 and §4, we prove Theorems 1.3, 1.4 and 1.2, respectively. We conclude

in §5 with some open problems.

2. Hickman’s axioms

In this section we prove Theorem 1.3. Assume now that (A, m) is an algebra

satisfying (H1), (H2), (H4), (H7) and (H8).

The identity (H8) is taken directly from Hickman’s paper [4] after appropriate

change of notation. There is, however, a somewhat more useful equivalent form.

Lemma 2.1. In the presence of (H2) and (H4), the identity (H8) is equivalent to

(H8′) m(m(x, y, z), m(x, y, z), m(x, m(y, u, z), z)) = m(x, y, z).

P r o o f. Starting with the left hand side of (H8′), we have

m(m(x, y, z), m(x, y, z), m(x, m(y, u, z), z))

(H4)
= m(m(x, y, z), m(x, y, z), m(x, m(u, y, z), z))

(H2)
= m(m(x, m(u, y, z), z), m(x, m(u, y, z), z), m(x, y, z)),

which is the left hand side of (H8). Since the right hand sides of (H8) and (H8′)

coincide, this proves the desired equivalence. �

Next, we need a pair of useful identities.
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Lemma 2.2. For all x, y,

m(x, y, x) = x,(2.1)

m(x, y, y) = y.(2.2)

P r o o f. First, we have

m(x, x, m(x, y, x))
(H2)
= m(m(x, y, x), m(x, y, x), x} )

(H1)
= m(m(x, y, x), m(x, y, x), m(x, x, x))

(H7)
= m(m(x, y, x), m(x, y, x), m(x, m(x, x, y), x))

(H2)
= m(m(x, y, x), m(x, y, x), m(x, m(y, y, x), x))

(H8′)
= m(x, y, x),

that is,

(2.3) m(x, x, m(x, y, x)) = m(x, y, x).

Next,

m(x, m(x, y, x), x)
(2.3)
= m( x} , x} , m(x, m(x, y, x), x))

(H1)
= m(m(x, x, x), m(x, x, x), m(x, m(x, y, x), x))

(H8′)
= m(x, x, x)

(H1)
= x,

that is,

(2.4) m(x, m(x, y, x), x) = x.

In (H8′), take z = y and x = m(y, v, y). The left hand side of (H8′) becomes

m(m(m(y, v, y), y, y)
︸ ︷︷ ︸

, m(m(y, v, y), y, y)
︸ ︷︷ ︸

, m(m(y, v, y), m(y, u, y), y))

(H4)
= m(m(y, m(y, v, y), y)

︸ ︷︷ ︸
, m(y, m(y, v, y), y)
︸ ︷︷ ︸

, m(m(y, v, y), m(y, u, y), y))

(2.4)
= m(y, y, m(m(y, v, y), m(y, u, y), y)).
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The right hand side of (H8′) becomes

m(m(y, v, y), y, y)
(H4)
= m(y, m(y, v, y), y)

(2.4)
= y.

Putting this together, replace y with x, v with y and u with z to get

(2.5) m(x, x, m(m(x, y, x), m(x, z, x), x)) = x.

Now we can verify (2.1):

m(x, y, x)
(2.3)
= m(x, x, m(x, y, x)

︸ ︷︷ ︸
)

(2.3)
= m(x, x, m(x, x, m(x, y, x))

︸ ︷︷ ︸
)

(H2)
= m(x, x, m(m(x, y, x), m(x, y, x), x))

(2.5)
= x.

Finally, (2.2) follows easily: m(x, y, y)
(H4)
= m(y, x, y)

(2.1)
= y. �

Next, we work toward (H5). Key to this are the following identities.

Lemma 2.3. For all x, y, z,

m(m(x, y, z), m(x, y, z), z) = m(x, y, z),(2.6)

m(x, m(x, y, z), z) = m(x, y, z)(2.7)

P r o o f. For (2.6), we have

m(m(x, y, z), m(x, y, z), z} )
(2.2)
= m(m(x, y, z), m(x, y, z), m(x, z} , z))

(2.2)
= m(m(x, y, z), m(x, y, z), m(x, m(y, z, z), z))

(H8′)
= m(x, y, z).
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Then we compute

m(x, m(x, y, z), z)

(H4)
= m(m(x, y, z), x, z)

(H8′)
= m(m(m(x, y, z), x, z), m(m(x, y, z), x, z), m(m(x, y, z), m(x, y, z), z))

(2.6)
= m(m(m(x, y, z), x, z), m(m(x, y, z), x, z), m(x, y, z))

(H2)
= m(m(x, y, z), m(x, y, z), m(m(x, y, z), x, z)

︸ ︷︷ ︸
)

(H4)
= m(m(x, y, z), m(x, y, z), m(x, m(x, y, z)

︸ ︷︷ ︸
, z))

(H4)
= m(m(x, y, z), m(x, y, z), m(x, m(y, x, z), z))

(H8′)
= m(x, y, z).

This establishes (2.7). �

Lemma 2.4. If (A, m) is an algebra satisfying (H1), (H2), (H4), (H7) and (H8),

then (H5) holds.

P r o o f. We compute

m(m(x, y, z), m(x, y, z), m(x, x, z))
(H2)
= m(m(x, x, z), m(x, x, z), m(x, y, z)

︸ ︷︷ ︸
)

(2.7)
= m(m(x, x, z), m(x, x, z), m(x, m(x, y, z), z))

(H8′)
= m(x, x, z),

which proves the desired result. �

We continue with the assumptions of this section that we have an algebra (A, m)

satisfying (H1), (H2), (H4), (H7) and (H8). By Lemma 2.4, we may now freely use

(H5). Our next goal is to establish (H6).

Lemma 2.5. For all x, y, z,

(2.8) m(m(x, x, y), m(z, x, y), y) = m(z, x, y).
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P r o o f. We compute

m(m(x, x, y), m(z, x, y), y)
(H4)
= m(m(z, x, y)

︸ ︷︷ ︸
, m(x, x, y), y)

(H4)
= m(m(x, z, y), m(x, x, y)

︸ ︷︷ ︸
, y)

(H5)
= m(m(x, z, y), m(m(x, z, y), m(x, z, y), m(x, x, y)), y)

(H7)
= m(m(x, z, y), m(x, z, y), y)

(H2)
= m(y, y, m(x, z, y))

(2.7)
= m(x, z, y)

(H4)
= m(z, x, y),

which establishes the desired result. �

Lemma 2.6. If (A, m) is an algebra satisfying (H1), (H2), (H4), (H7) and (H8),

then (H6) holds.

P r o o f. We compute

m(m(x, x, y), z, y)

(H8′)
= m(m(m(x, x, y), z, y), m(m(x, x, y), z, y), m(m(x, x, y), m(z, x, y), y)

︸ ︷︷ ︸
)

(2.8)
= m(m(m(x, x, y), z, y), m(m(x, x, y), z, y), m(z, x, y))

(H2)
= m(m(z, x, y), m(z, x, y), m(m(x, x, y), z, y)

︸ ︷︷ ︸
)

(H4)
= m(m(z, x, y), m(z, x, y), m(z, m(x, x, y), y))

(H8′)
= m(z, x, y)

(H4)
= m(x, z, y),

which establishes (H6). �

The next goal is to verify (H3). We may now use (H5) and (H6) freely in calcula-

tions.

Lemma 2.7. For all x, y, z, u,

m(x, m(y, y, z), y) = m(x, z, y),(2.9)

m(x, x, m(x, y, z)) = m(z, z, x),(2.10)

m(x, m(y, z, u), z) = m(x, u, z),(2.11)

m(x, m(y, y, z), m(y, y, u)) = m(x, z, m(y, y, u)).(2.12)
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P r o o f. For (2.9), we have

m(x, m(y, y, z), y)
(H2)
= m(x, m(z, z, y), y)

(H4)
= m(m(z, z, y), x, y)

(H6)
= m(z, x, y)

(H4)
= m(x, z, y).

For (2.10), we compute

m(x, x, m(x, y, z))
(H2)
= m(m(x, y, z), m(x, y, z), x)

(H7)
= m(m(x, y, z), m(m(x, y, z), m(x, y, z), m(x, x, z))

︸ ︷︷ ︸
, x)

(H5)
= m(m(x, y, z), m(x, x, z), x)

(2.9)
= m(m(x, y, z), z, x)

(H4)
= m(z, m(x, y, z)

︸ ︷︷ ︸
, x)

(2.6)
= m(z, m(m(x, y, z), m(x, y, z), z)

︸ ︷︷ ︸
, x)

(H2)
= m(z, m(z, z, m(x, y, z)), x)

(H7)
= m(z, z, x).

For (2.11), we have

m(x, m(y, z, u)
︸ ︷︷ ︸

, z)
(H4)
= m(x, m(z, y, u)

︸ ︷︷ ︸
, z)

(2.9)
= m(x, m(z, z, m(z, y, u))

︸ ︷︷ ︸
, z)

(2.10)
= m(x, m(u, u, z), z)

(H4)
= m(m(u, u, z), x, z)

(H6)
= m(u, x, z)

(H4)
= m(x, u, z).

Finally, for (2.12), we have

m(x, m(y, y, z)
︸ ︷︷ ︸

, m(y, y, u))
(H7)
= m(x, m(y, m(y, y, u), z), m(y, y, u))

(2.11)
= m(x, z, m(y, y, u)).

This completes the proof. �
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Lemma 2.8. If (A, m) is an algebra satisfying (H1), (H2), (H4), (H7) and (H8),

then (H3) holds.

P r o o f. We compute

m(x, x, m(y, y, z))
(2.12)
= m(x, m(y, y, x), m(y, y, z))

(H4)
= m(m(y, y, x), x, m(y, y, z))

(2.12)
= m(m(y, y, x), m(y, y, x), m(y, y, z))

(H2)
= m(m(y, y, z), m(y, y, z), m(y, y, x))

(2.12)
= m(m(y, y, z), z, m(y, y, x))

(H4)
= m(z, m(y, y, z), m(y, y, x))

(2.12)
= m(z, z, m(y, y, x)

︸ ︷︷ ︸
)

(H2)
= m(z, z, m(x, x, y))

(H2)
= m(m(x, x, y), m(x, x, y), z).

This establishes (H3) as claimed. �

Next, we check the independence of the axioms (H1), (H2), (H4), (H7) and (H8).

We found these models using Mace4 [5]. We simply state the models and leave the

verification that each model has its claimed properties to the reader.

Example 2.9. An example of an algebra (S, m) satisfying (H1), (H2), (H4) and

(H7), but not (H8) is given by S = {0, 1, 2} with m : S × S × S → S defined by the

following tables:

m(0, ·, ·) 0 1 2
0 0 2 2
1 0 0 0
2 0 2 2

m(1, ·, ·) 0 1 2
0 0 0 0
1 2 1 2
2 2 1 2

m(2, ·, ·) 0 1 2
0 0 2 2
1 2 1 2
2 2 2 2

Example 2.10. An example of an algebra (S, m) satisfying (H1), (H2), (H4) and

(H8), but not (H7) is given by S = {0, 1, 2} with m : S × S × S → S defined by the

following tables:

m(0, ·, ·) 0 1 2
0 0 1 0
1 0 1 2
2 0 1 2

m(1, ·, ·) 0 1 2
0 0 1 2
1 1 1 1
2 0 1 2

m(2, ·, ·) 0 1 2
0 0 1 2
1 0 1 2
2 0 1 2
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Example 2.11. An example of an algebra (S, m) satisfying (H1), (H2), (H7) and

(H8), but not (H4) is given by S = {0, 1} with m : S × S × S → S defined by the

following tables:
m(0, ·, ·) 0 1

0 0 1
1 0 1

m(1, ·, ·) 0 1
0 1 1
1 1 1

Example 2.12. An example of an algebra (S, m) satisfying (H1), (H4), (H7) and

(H8), but not (H2) is given by S = {0, 1} with m : S × S × S → S defined by the

following tables:
m(0, ·, ·) 0 1

0 0 1
1 0 1

m(1, ·, ·) 0 1
0 0 1
1 0 1

Example 2.13. An example of an algebra (S, m) satisfying (H2), (H4), (H7) and

(H8), but not (H1) is given by S = {0, 1} with m : S × S × S → S defined by the

following tables:
m(0, ·, ·) 0 1

0 1 1
1 1 1

m(1, ·, ·) 0 1
0 1 1
1 1 1

Putting together Lemmas 2.4, 2.6 and 2.8, along with Examples 2.9, 2.10, 2.11,

2.12 and 2.13, we have completed the proof of Theorem 1.3.

3. Axioms of Chajda et al

In this section we prove Theorem 1.4. Assume now that we have an algebra (A, m)

satisfying (P1), (P2) and (P4)–(P8).

Lemma 3.1. For all x, y, z,

(3.1) m(m(x, y, z), m(x, x, z), y) = m(y, y, z).

P r o o f. We compute

m(m(x, y, z), m(x, x, z)
︸ ︷︷ ︸

, y)
(P7)
= m(m(x, y, z), m(x, x, m(x, y, z)), y)

(P6)
= m(m(x, y, z), m(x, y, z), y)

(P2)
= m(y, y, m(x, y, z)

︸ ︷︷ ︸
)

(P4)
= m(y, y, m(y, x, z))

(P7)
= m(y, y, z),

which establishes the claim. �
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Lemma 3.2. Let (A, m) be an algebra satisfying (P1), (P2) and (P4)–(P8). Then

(A, m) satisfies (P3).

P r o o f. First, we have

m(x, x, m(y, y, z))
(P2)
= m(m(y, y, z), m(y, y, z), x)

(P7)
= m(m(y, y, z), m(y, y, z), m(m(y, y, z), m(y, x, z), x)

︸ ︷︷ ︸
)

(P4)
= m(m(y, y, z), m(y, y, z), m(m(y, x, z), m(y, y, z), x)

︸ ︷︷ ︸
)

(3.1)
= m(m(y, y, z), m(y, y, z), m(x, x, y)),

that is,

(3.2) m(x, x, m(y, y, z)) = m(m(y, y, z), m(y, y, z), m(x, x, y)).

Now

m(x, x, m(y, y, z))
(3.2)
= m(m(y, y, z), m(y, y, z), m(x, x, y))

(P2)
= m(m(x, x, y)

︸ ︷︷ ︸
, m(x, x, y)
︸ ︷︷ ︸

, m(y, y, z)
︸ ︷︷ ︸

)

(P2)
= m(m(y, y, x), m(y, y, x), m(z, z, y))

(3.2)
= m(z, z, m(y, y, x)

︸ ︷︷ ︸
)

(P2)
= m(z, z, m(x, x, y))

(P2)
= m(m(x, x, y), m(x, x, y), z),

which establishes (P3). �

Note that we have used only (P2), (P4), (P6) and (P7) in the proof of (P3).

Next, we consider the independence of the axioms (P1), (P2) and (P4)–(P8). As

in the previous section, we simply give the models and leave the verification that

each model has its claimed properties to the reader.

Example 3.3. An example of an algebra (S, m) satisfying (P1), (P2), (P4)–(P7),

but not (P8) is given by S = {0, 1, 2, 3} with m : S × S × S → S defined by the

following tables:

m(0, ·, ·) 0 1 2 3
0 0 1 1 1
1 0 1 1 1
2 0 3 2 1
3 0 1 1 3

m(1, ·, ·) 0 1 2 3
0 0 1 1 1
1 1 1 1 1
2 1 1 2 1
3 1 1 1 3
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m(2, ·, ·) 0 1 2 3
0 0 3 2 1
1 1 1 2 1
2 1 1 2 1
3 1 1 2 3

m(3, ·, ·) 0 1 2 3
0 0 1 1 3
1 1 1 1 3
2 1 1 2 3
3 1 1 1 3

Example 3.4. An example of an algebra (S, m) satisfying (P1), (P2), (P4)–(P6),

(P8), but not (P7) is given by S = {0, 1, 2, 3} with m : S × S × S → S defined by

the following tables:

m(0, ·, ·) 0 1 2 3
0 0 3 0 3
1 0 1 1 3
2 0 1 2 3
3 0 3 0 3

m(1, ·, ·) 0 1 2 3
0 0 1 1 3
1 3 1 1 3
2 0 1 2 3
3 3 1 1 3

m(2, ·, ·) 0 1 2 3
0 0 1 2 3
1 0 1 2 3
2 0 1 2 3
3 0 1 2 3

m(3, ·, ·) 0 1 2 3
0 0 3 0 3
1 3 1 1 3
2 0 1 2 3
3 3 3 3 3

Example 3.5. An example of an algebra (S, m) satisfying (P1), (P2), (P4), (P5),

(P7), (P8), but not (P6) is given by S = {0, 1, 2} with m : S × S × S → S defined

by the following tables:

m(0, ·, ·) 0 1 2
0 0 1 0
1 0 1 2
2 0 1 2

m(1, ·, ·) 0 1 2
0 0 1 2
1 1 1 1
2 0 1 2

m(2, ·, ·) 0 1 2
0 0 1 2
1 0 1 2
2 0 1 2

Example 3.6. An example of an algebra (S, m) satisfying (P1), (P2), (P4), (P6)–

(P8), but not (P5) is given by S = {0, 1, 2, 3, 4} with m : S × S × S → S defined by

the following tables:

m(0, ·, ·) 0 1 2 3 4
0 0 0 3 3 0
1 0 1 2 3 1
2 0 4 2 3 1
3 0 0 3 3 0
4 0 1 2 3 4

m(1, ·, ·) 0 1 2 3 4
0 0 1 2 3 1
1 0 1 2 3 1
2 0 1 2 3 1
3 0 1 2 3 1
4 0 1 2 3 4

m(2, ·, ·) 0 1 2 3 4
0 0 4 2 3 1
1 0 1 2 3 1
2 3 2 2 3 2
3 3 2 2 3 2
4 0 1 2 3 4
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m(3, ·, ·) 0 1 2 3 4
0 0 0 3 3 0
1 0 1 2 3 1
2 3 2 2 3 2
3 3 3 3 3 3
4 0 1 2 3 4

m(4, ·, ·) 0 1 2 3 4
0 0 1 2 3 4
1 0 1 2 3 4
2 0 1 2 3 4
3 0 1 2 3 4
4 0 1 2 3 4

Example 3.7. An example of an algebra (S, m) satisfying (P1), (P2), (P5)–(P8),

but not (P4) is given by S = {0, 1} with m : S ×S ×S → S defined by the following

tables:

m(0, ·, ·) 0 1
0 0 1
1 0 1

m(1, ·, ·) 0 1
0 1 1
1 1 1

Example 3.8. An example of an algebra (S, m) satisfying (P1), (P4)–(P8), but

not (P2) is given by S = {0, 1} with m : S × S × S → S defined by the following

tables:

m(0, ·, ·) 0 1
0 0 1
1 0 1

m(1, ·, ·) 0 1
0 0 1
1 0 1

Example 3.9. An example of an algebra (S, m) satisfying (P2), (P4)–(P8), but

not (P1) is given by S = {0, 1} with m : S × S × S → S defined by the following

tables:

m(0, ·, ·) 0 1
0 1 1
1 1 1

m(1, ·, ·) 0 1
0 1 1
1 1 1

Putting together Lemma 3.2 with Examples 3.3, 3.4, 3.5, 3.6, 3.7, 3.8 and 3.9, we

have completed the proof of Theorem 1.4.

4. A 2-base for nearlattices

In this section we prove Theorem 1.2. We first prove the easy direction.

Lemma 4.1. Every nearlattice satisfies (N1) and (N2).

P r o o f. We are, of course, free to use Hickman’s axioms and the axioms of

Chajda et al, together with any derived properties from the previous two sections.
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The identity (N1) is just (P1), so (N2) is the only identity requiring proof:

m(m(x, y, z), m(y, m(u, x, z)
︸ ︷︷ ︸

, z), w)

(H4)
= m(m(x, y, z)

︸ ︷︷ ︸
, m(y, m(x, u, z), z), w)

(H4)
= m(m(y, x, z), m(y, m(x, u, z), z), w)

(H4)
= m(m(y, m(x, u, z), z), m(y, x, z)

︸ ︷︷ ︸
, w)

(H8′)
= m(m(y, m(x, u, z), z), m(m(y, x, z), m(y, x, z), m(y, m(x, u, z), z))

︸ ︷︷ ︸
, w)

(P6)
= m(m(y, m(x, u, z), z), m(y, m(x, u, z), z), w)

(H2)
= m(w, w, m(y, m(x, u, z), z)).

This completes the proof of the lemma. �

Lemma 4.2. Every algebra (A, m) satisfying (N1) and (N2) satisfies the identities

(H2),

m(m(x, y, y), y, z) = m(z, z, y),(4.1)

m(x, y, y) = y.(4.2)

P r o o f. First, set z = y in (N2). The left hand side becomes

m(m(x, y, y), m(y, m(u, x, y), y)
︸ ︷︷ ︸

, w)
(N1)
= m(m(x, y, y), y, w).

The right hand side becomes

m(w, w, m(y, m(x, u, y), y)
︸ ︷︷ ︸

) = m(w, w, y).

The equality of the two sides proves (4.1).

Now (H2) follows easily: m(x, x, y)
(4.1)
= m(m(y, y, y)

︸ ︷︷ ︸
, y, x)

(N1)
= m(y, y, x).

Next, set z = x and w = m(x, y, x) in (N2). The left hand side becomes

m(m(x, y, x), m(y, m(u, x, x), x), m(x, y, x))
(N1)
= m(x, y, x)

(N1)
= x.
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The right hand side becomes

m(m(x, y, x)
︸ ︷︷ ︸

, m(x, y, x)
︸ ︷︷ ︸

, m(y, m(x, u, x)
︸ ︷︷ ︸

, x))
(N1)
= m(x, x, m(y, x, x))

(H2)
= m(m(y, x, x), m(y, x, x), x)

(4.1)
= m(m(y, x, x), x, m(y, x, x))

(N1)
= m(y, x, x).

The equality of the two sides proves (4.2). �

Lemma 4.3. For all x, y, z, u,

m(x, m(y, z, u), u) = m(x, m(z, y, u), u),(4.3)

m(m(x, y, z), z, u) = m(u, u, z),(4.4)

m(x, x, m(y, z, x)) = m(y, z, x),(4.5)

m(m(x, y, z), m(y, x, z), z) = m(x, y, z),(4.6)

m(m(x, m(y, x, z), z), m(y, x, z), z) = m(y, x, z).(4.7)

P r o o f. We compute

m(x, m(y, z, u), u)
(4.2)
= m(m(z, x, u), m(x, m(y, z, u), u), m(x, m(y, z, u), u))

(N2)
= m(m(x, m(y, z, u), u), m(x, m(y, z, u), u), m(x, m(z, y, u), u))

(H2)
= m(m(x, m(z, y, u), u), m(x, m(z, y, u), u), m(x, m(y, z, u), u))

(N2)
= m(m(y, x, u), m(x, m(z, y, u), u), m(x, m(z, y, u), u))

(4.2)
= m(x, m(z, y, u), u),

which establishes (4.3).

Next, in (N2), set u = z. The left hand side becomes

m(m(x, y, z), m(y, m(z, x, z)
︸ ︷︷ ︸

, z), w)
(N1)
= m(m(x, y, z), m(y, z, z)

︸ ︷︷ ︸
, w)

(4.2)
= m(m(x, y, z), z, w).

The right hand side becomes

m(w, w, m(y, m(x, z, z)
︸ ︷︷ ︸

, z))
(4.2)
= m(w, w, m(y, z, z)

︸ ︷︷ ︸
)

(4.2)
= m(w, w, z).
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The equality of the two sides establishes (4.4).

Now we have

m(x, x, m(y, z, x))
(H2)
= m(m(y, z, x), m(y, z, x), x)

(4.4)
= m(m(y, z, x), x, m(y, z, x))

(N1)
= m(y, z, x),

which gives (4.5).

Next,

m(m(x, y, z), m(y, x, z), z)
(4.3)
= m(m(x, y, z), m(x, y, z), z)

(H2)
= m(z, z, m(x, y, z))

(4.5)
= m(x, y, z),

which yields (4.6).

Now in (N2), set y = m(u, x, z) and w = z. The left hand side of (N2) becomes

m(m(x, m(u, x, z), z), m(m(u, x, z), m(u, x, z), z)
︸ ︷︷ ︸

, z)

(H2)
= m(m(x, m(u, x, z), z), m(z, z, m(u, x, z))

︸ ︷︷ ︸
, z)

(4.5)
= m(m(x, m(u, x, z), z), m(u, x, z), z).

The right hand side becomes

m(z, z, m(m(u, x, z), m(x, u, z), z)
︸ ︷︷ ︸

)
(4.6)
= m(z, z, m(u, x, z))

(4.5)
= m(u, x, z).

The equality of the two sides, along with replacing u with y, gives (4.7). �

Lemma 4.4. Every algebra (A, m) satisfying (N1) and (N2) satisfies (H4).

P r o o f. In (4.7), set x = m(u, v, z) and y = m(v, u, z). The left hand side of

(4.7) becomes

m(m(m(u, v, z), m(m(v, u, z), m(u, v, z), z)
︸ ︷︷ ︸

, z), m(m(v, u, z), m(u, v, z), z)
︸ ︷︷ ︸

, z)

(4.6)
= m(m(m(u, v, z), m(v, u, z), z)

︸ ︷︷ ︸
, m(v, u, z), z)

(4.6)
= m(m(u, v, z), m(v, u, z), z)

(4.6)
= m(u, v, z).
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The right hand side of (4.7) becomes

m(m(v, u, z), m(u, v, z), z)
(4.6)
= m(v, u, z).

The equality of the two sides, along with replacing u with x and v with y, gives

(H4). �

Lemma 4.5. Every algebra (A, m) satisfying (N1) and (N2) satisfies (H7).

P r o o f. We compute

m(x, m(x, x, y), z)
(H4)
= m(m(x, x, y)

︸ ︷︷ ︸
, x, z)

(H2)
= m(m(y, y, x), x, z)

(4.4)
= m(z, z, x)

(H2)
= m(x, x, z),

which establishes (H7). �

Lemma 4.6. Every algebra (A, m) satisfying (N1) and (N2) satisfies (H8′).

P r o o f. In (H8′), set w = m(x, y, z). The left hand side is

m(m(x, y, z), m(y, m(u, x, z), z), m(x, y, z))
(H2)
= m(x, y, z)

(H4)
= m(y, x, z).

The right hand side becomes

m(m(x, y, z)
︸ ︷︷ ︸

, m(x, y, z)
︸ ︷︷ ︸

, m(y, m(x, u, z), z))

(H4)
= m(m(y, x, z), m(y, x, z), m(y, m(x, u, z), z)).

The equality of the two sides, along with exchanging the roles of x and y, gives

(H8′). �

Now we consider the independence of the axioms (N1) and (N2).

Example 4.7. An example of an algebra (S, m) satisfying (N1) but not (N2) is

given by S = {0, 1} with m : S × S × S → S defined by the following tables:

m(0, ·, ·) 0 1
0 0 0
1 0 0

m(1, ·, ·) 0 1
0 0 1
1 1 1
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Example 4.8. An example of an algebra (S, m) satisfying (N2) but not (N1) is

given by S = {0, 1} with m : S × S × S → S defined by the following tables:

m(0, ·, ·) 0 1
0 1 1
1 1 1

m(1, ·, ·) 0 1
0 1 1
1 1 1

Putting together Lemmas 4.1, 4.2, 4.4, 4.5 and 4.6, together with Examples 4.7

and 4.8, we obtain Theorem 1.2.

5. Problems

The following questions arise rather naturally from this investigation.

Problem 5.1.

(1) Is there a 2-base for nearlattices with one axiom no longer than (N1) and the

other shorter than (N2)?

(2) Is there a 2-base for nearlattices involving fewer than five variables?

(3) Is the variety of nearlattices 1-based?
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