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Abstract. In this paper a full totalization is presented of the Kurzweil-Henstock integral
in the multidimensional space. A residual function of the total Kurzweil-Henstock primitive
is defined.
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1. Introduction

Let F be a differentiable function on an interval E in the m-dimensional space

with the derivative f . The problem of recovering F from f is called the problem of

primitives. Cabral and Lee [3] gave an affirmative answer to the question whether

we can describe the Kurzweil-Henstock primitive F without explicitly involving f .

To do this, they first adopted the convention [4, p. 57] that

DcF (x) =







lim
|Ic|→0+

F (Ic)

|Ic|
if the limit exists,

0 if the limit does not exist,

where Ic is a compact cubic subinterval of E, x is a vertex of Ic and |Ic| is the

Lebesgue measure of Ic. Secondly, they showed that if a real-valued point function f

is Kurzweil-Henstock integrable on E with a primitive F , then lim
|Ic|→0+

F (Ic)/|Ic| =

f(x) almost everywhere on E, and after that they answered affirmatively the ques-

tion of whether it is possible to define a point function DcF (x) for a Kurzweil-

Henstock primitive F which is Kurzweil-Henstock integrable on E and such that

(KH)
∫

I
DcF = F (I) for any compact subinterval I of E. One step further in this
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direction is a question whether we can describe F that is not a Kurzweil-Henstock

primitive in the sense that the corresponding point function DexF defined in what

follows is Kurzweil-Henstock integrable on E and (KH)
∫

E
DexF 6= F (E). In this

paper, we give an affirmative answer to this question.

2. Preliminaries

The set E always refers to a fixed, compact interval in the multidimensional space

R
m. The collection I(E) is the family of compact subintervals I of E. A Kurzweil-

Henstock partial division ∆ = {(x, I)} of E is any finite set (collection) of point-

interval pairs (x, I), such that x is a vertex of I, I ∈ I(E) and the subintervals I are

nonoverlapping. The points x are the tags of ∆ [1]. Let Γ be a subset of E. If x ∈ Γ

for each (x, I) ∈ ∆, then ∆ is said to be tagged in Γ. A partial division ∆ = {(x, I)}

of E is called a division of E if the union of the intervals I in ∆ is equal to E. Given

δ : E → (0, 1), named a gauge, a partial division ∆ of E is said to be δ-fine if for

each (x, I) ∈ ∆ the interval I is contained in the open ball B(x, δ(x)) centred at x

and of radius δ(x).

Any real valued function F defined on I(E) is an interval function. For any

collection of nonoverlapping subintervals I1, I2 ∈ I(E), let F (I1 ∪ I2) = F (I1) +

F (I2). This property is called additivity. A function F : I(E) → R is said to be

differentiable at x ∈ E with a derivative f(x) if for every ε > 0 there exists a gauge

δε : E → (0, 1) such that |F (I) − f(x)|I|| < ε|I| whenever (x, I) is a δε-fine point-

interval pair and x is a vertex of I ∈ I(E). The function F is called a primitive.

A function f : E → R is said to be Kurzweil-Henstock integrable to a real number

A on E if for every ε > 0 there exists a gauge δε : E → (0, 1) such that

(2.1)
∣

∣

∣
(∆)

∑

f(x)|I| − A
∣

∣

∣
< ε

whenever ∆ is a δε-fine division of E. In symbols, A = (KH)
∫

E
f . If a function f

is Kurzweil-Henstock integrable on E and F (I) = (KH)
∫

I
f for all compact subin-

tervals I of E, then the additive interval function F is called the Kurzweil-Henstock

primitive of f .

3. A residual function of a primitive

For a given pair of functions F and f let X ⊂ E be the set of points at which the

primitive F is not differentiable and [2]

ΓKH
ε = {(x, I) : x ∈ E \ X is a vertex of I and |F (I) − f(x)|I|| < ε|I|}.
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Then we can define a point function DexF : E → R by extending f from E \ X to

E by DexF (x) = 0 for x ∈ X , so that

(3.1) DexF =

{

f(x) if x ∈ E \ X,

0 if x ∈ X.

From the collection of all δε-fine point-interval pairs (x, I) ∈ ΓKH
ε , the subset E \X

of E may be obtained, as follows.

Definition 3.1. The set {x ∈ E: for every ε > 0 there exists a δε-fine (x, I) ∈

ΓKH
ε } denoted by (vp)E is said to be the set of regular points of F on E.

Given ε > 0, in the set

(3.2) ΩKH
ε = {(x, I) : x ∈ X is a vertex of I and |F (I)| > ε|I|}

we isolate two subsets:

ΩKH
<ε = {(x, I) : x ∈ X is a vertex of I and ε|I| 6 |F (I)| < ε} and

ΩKH
>ε = {(x, I) : x ∈ X is a vertex of I and |F (I)| > ε}.

Now, from the collection of all δε-fine point-interval pairs (x, I) ∈ ΩKH
ε , two subsets

of X may be obtained, as follows.

Definition 3.2. The set {x ∈ E: for every ε > 0 there exists a δε-fine (x, I) ∈

ΩKH
<ε } denoted by (vss)E is said to be the set of seeming singular points of F on E.

Definition 3.3. The set {x ∈ E: for every ε > 0 there exists a δε-fine (x, I) ∈

ΩKH
>ε

} denoted by (vs)E is said to be the set of singular points of F on E.

Accordingly, we are now in a position to define the notion of a residue of the

primitive F at x ∈ E.

Definition 3.4. A function F : I(E) → R is said to have a residue at x ∈ E

with the residual value R(x) if for every ε > 0 there exists a gauge δε : E → (0, 1)

such that

(3.3) |F (I) −R(x)| < ε

whenever (x, I) is a δε-fine point-interval pair and x is a vertex of I ∈ I(E).

A real-valued point function R defined on E is called a residual function of the

primitive F on E.
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Definition 3.5. Let F : I(E) → R and Γ ⊆ E. The residual function R of

F is said to be basically summable (BSδε
) on Γ with the sum S ∈ R, if for every

ε > 0 there exists a gauge δε : E → (0, 1) such that |(∆)
∑

F (I) − S| < ε whenever

∆ = {(x, I)} is a δε-fine partial division tagged in Γ. The residual function R of F

is BSGδε
on Γ if Γ can be written as a countable union of sets on each of which F

is BSδε
. In symbols, S =

∑

x∈Γ

R(x).

Remark 3.1. By Definition 5.11 in [1], if S = 0 in the above definition, then F

has negligible variation on Γ. On the contrary, if there is a subset Γ of E of variation

zero (this means, given ε > 0 there is a gauge δε such that (∆)
∑

|I| < ε whenever

∆ = {(x, I)} is δε-fine partial division tagged in Γ, [2]) on which R of F is BSδε
with

S 6= 0, then F does not satisfy the variational Strong Lusin condition (SLv(E)) on E.

On the other hand, since for every ε > 0 there exists a gauge δε such that |F (I)| < ε

whenever (x, I) is a δε-fine point-interval pair tagged in (vp)E ∪ (vss)E and x is

a vertex of I ∈ I(E), it follows immediately that R(x) ≡ 0 on (vp)E ∪ (vss)E. In

addition, for a given pair of functions F and R, if F is an additive function and R

is BSδε
on E, then, by Definition 3.5, S = F (E), that is

∑

x∈E

R(x) = F (E). So, if

F is the Kurzweil-Henstock primitive, then, in spite of the fact that R(x) vanishes

identically on E, for any compact interval I ∈ I(E) we have

∑

x∈I

R(x) = (KH)

∫

I

DexF .

4. The total Kurzweil-Henstock primitive

If there are compact subintervals I of E such that F (I) 6= (KH)
∫

I
DexF , then

a question that arises is whether we can describe the primitive F , in this emphasized

case, too. The affirmative answer comes from the following definition.

Definition 4.1. If F : I(E) → R is an additive function, then DexF is totally

Kurzweil-Henstock integrable to F (E) on E. In symbols,

(4.1) F (E) = (KH)vt

∫

E

DexF.

By the total Kurzweil-Henstock integral the Kurzweil-Henstock primitive is to-

talized, in the sense that any additive interval function F defined on I(E) is

the total Kurzweil-Henstock primitive of DexF on E. This means that F (I) =

(KH)vt
∫

I
DexF for any compact subinterval I of E. Therefore, if DexF is Kurzweil-

Henstock integrable on E and F (E) 6= (KH)
∫

E
DexF , then there is a real number
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S such that F (E) = (KH)vt
∫

E
DexF = (KH)

∫

E
DexF + S. Clearly, in this case,

the integral equality F (I) = (KH)
∫

I
DexF , which is not valid for all compact

subintervals I of E, must be replaced by F (I) = (KH)vt
∫

I
DexF . If DexF is not

Kurzweil-Henstock integrable on E, then the sum (KH)
∫

E
DexF + S reduces to the

so-called indeterminate expression ∞ − ∞ that, in this particular case, takes the

value F (E). However, in this case, too, F (I) = (KH)vt
∫

I
DexF for any compact

subinterval I of E.

Our main result reads as follows.

Theorem 4.1. Let F : I(E) → R be an additive function such that DexF is

Kurzweil-Henstock integrable on E. Then F is a total Kurzweil-Henstock primitive

if and only if its residual function R is BSδε
on ΩKH

ε .

P r o o f. By the definition of DexF at a point x ∈ (vp)E, given ε > 0 there is

a gauge δ⋆
ε : E → (0, 1) such that |F (I) − DexF (x)|I|| < ε|I| whenever (x, I) ∈ ΓKH

ε

is a δ⋆
ε -fine point-interval pair.

(=⇒) Suppose that F is a total Kurzweil-Henstock primitive. Since DexF (x) is

both totally Kurzweil-Henstock integrable with a primitive F and Kurzweil-Henstock

integrable on E, it is true that there exists a real number S with the following

property: for every ε > 0 there exists a gauge δ∗ε : E → (0, 1) such that |(∆)
∑

[F (I)−

DexF (x)|I|] − S| < ε whenever ∆ is a δ∗ε -fine division of E. A gauge δε may be

chosen such that δε(x) = min(δ⋆
ε(x), δ∗ε (x)) if x ∈ (vp)E and δε(x) = δ∗ε(x) otherwise

on E. Therefore, for any δε-fine division ∆ of E (remember: if x ∈ E \ (vp)E, then

DexF (x) = 0)

∣

∣

∣
(∆ ∩ ΩKH

ε )
∑

F (I) − S
∣

∣

∣
6

∣

∣

∣
(∆)

∑

[F (I) − DexF (x)|I|] − S
∣

∣

∣

+
∣

∣

∣
(∆ \ ΩKH

ε )
∑

[F (I) − DexF (x)|I|]
∣

∣

∣
< ε(1 + |E|).

(⇐=) Let R of F be BSδ∗
ε

on ΩKH
ε . If ∆ = {(x, I)} is a δε-fine division of E such

that δε(x) = δ⋆
ε(x) if x ∈ (vp)E and δε(x) = δ∗ε(x) otherwise, then

∣

∣

∣
(∆)

∑

[F (I) − DexF (x)|I|] − S
∣

∣

∣
6 (∆ \ ΩKH

ε )
∑

|F (I) − DexF (x)|I||

+
∣

∣

∣
(∆ ∩ ΩKH

ε )
∑

F (I) − S
∣

∣

∣
< ε(|E| + 1).

�

Remark 4.1. By the preceding theorem

F (E) = (KH)

∫

E

DexF +
∑

x∈ΩKH
ε

R(x),
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that is

(KH)vt

∫

E

DexF = (KH)

∫

E

DexF +
∑

x∈ΩKH
ε

R(x).

Since, by Hake’s theorem [1], (KH)
∫

E
DexF = (KH)vp

∫

E
DexF , where the so

called principal value of (KH)
∫

E
DexF is denoted by vp, the sum

∑

x∈ΩKH
ε

R(x) may

be conditionally called the singular value of (KH)
∫

E
DexF (KH). In symbols,

∑

x∈ΩKH
ε

R(x) = (KH)vs
∫

E
DexF . Accordingly,

(KH)vt

∫

E

DexF = (KH)vp

∫

E

DexF + (KH)vs

∫

E

DexF .

If F (I) := (KH)
∫

∂I
F , where ∂I is the boundary of I ∈ I(E), and if DexF vanishes

identically on (vp)E, then

(KH)

∫

∂E

F =
∑

x∈ΩKH
ε

R(x),

which is an extension of Cauchy’s residue theorem result in R
m.
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