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1. Introduction

A large number of works is devoted to the study of various convection problems. It

is possible to recognize two important directions of the study of convection phenom-

ena. The first is the experimental and theoretical study of the convective stability.

In detail these questions are considered, for example, in the monograph [7]. The

other important direction is the numerical modeling of convection processes (see,

for example, [7], [6], [5], [16], [2]). It allows to calculate the modes of convection

at various meanings of Rayleigh, Reynolds numbers and at other parameters of the

model. It is known that the main theoretical basis of numerical methods is the proof

of convergence of the approximate solution to the exact one of the corresponding

differential problem. In this connection we point out the monograph [14], where a

thorough research of numerical methods for solving the Navier-Stokes equations is

carried out. The order of the convergence speed of approximate solutions of a non-

linear problem much depends on the kind of the nonlinear terms. It is often difficult

to establish the convergence. In this case the basic information on the convergence

of the computing procedure is found by numerical experiments.
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In the present paper we study the Galerkin method for the approximate solution

of an initial boundary value problem for a non-stationary quasi-linear system which

describes the motion of the non-uniformly heated viscous incompressible fluid. The

convergence of the Galerkin approximations in a strong norm is established, and also

the asymptotic error estimates for the solutions and their derivatives in the uniform

norm are obtained.

2. Statement of the problem and auxiliary assertions

Let Ω be a bounded domain in R
2 with a smooth boundary ∂Ω, Q = Ω × (0, T ),

S = ∂Ω × (0, T ], where T <∞.

The initial boundary value problem for the heat convection in Boussinesq approx-

imation is formulated in the following way ([7], [12], [3]): We seek a vector-function

u(x, t) : Ω × [0, T ] → R
2 and scalar functions p(x, t), θ(x, t) : Ω × [0, T ] → R such

that

∂u

∂t
− ν∆u + ̺−1

0 ∇p+ (u · ∇)u− gβk3θ = f in Q,(1)

∂θ

∂t
− κ∆θ + u · ∇θ = ϕ in Q,(2)

div u = 0 in Q,(3)

u = 0, θ = 0 on S,(4)

u(x, 0) = 0, θ(x, 0) = 0, x ∈ Ω.(5)

These equations model the motion of the non-uniformly heated viscous incom-

pressible fluid, where u is the velocity vector, θ is the temperature, p is the pressure,

ν is the kinematical viscosity, κ is the thermal diffusivity, ̺0 is the constant density,

g is the free fall acceleration, β > 0 is the temperature-expansion coefficient, f is the

apparent density of the external forces, ϕ is the apparent density of the heat source,

k3 is the up-ward vertically directed along the unit vector.

Let Lp(Ω), 1 < p <∞, (L∞(Ω)) be the space of real functions absolutely integrable

on Ω with the power of p according to Lebesgue measure dx = dx1dx2 (respectively,

essentially bounded). These spaces with the norms

‖u‖Lp(Ω) =

(
∫

Ω

|u(x)|p dx

)1/p

and

‖u‖L∞(Ω) = ess sup
Ω

|u(x)|
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are Banach spaces. The space Lp(Q) is defined similarly. The Sobolev spaceWm
p (Ω)

is the space of functions from Lp(Ω) whose all generalized partial derivatives up to

order m inclusively belong to Lp(Ω) (m is a nonnegative integer). It is a Banach

space with the norm

‖u‖W m
p (Ω) =

(

∑

|j|6m

‖Dju‖p
Lp(Ω)

)1/p

.

The space W 2m,m
p (Q) (see [11]) with m being a nonnegative integer is the Banach

space of functions from Lp(Q), which have generalized derivatives Dr
tD

s
x with arbi-

trary nonnegative integers r and s satisfying the inequality 2r + s 6 2m. The norm

in W 2m,m
p (Q) is defined as

‖u‖W 2m,m
p (Q) =

2m
∑

j=0

∑

2r+s=j

‖Dr
tD

s
xu‖Lp(Q).

We put

W 1,0
p (Q) = {u ∈ Lp(Q) : Dxu ∈ Lp(Q)},

◦

W 1
2(Ω) = {u ∈W 1

2 (Ω): u = 0 on ∂Ω in the sense of traces}.

The symbol
◦

W 2,1
2 (Q) denotes the set of functions belonging to W 2,1

2 (Q) satisfying

zero initial conditions and vanishing on S.

We shall deal with two-dimensional vector-functions, each component of which

belongs to one of the above defined spaces. We set [Lp(Ω)]2 = Lp(Ω) × Lp(Ω),

[Lp(Q)]2 = Lp(Q) × Lp(Q), etc. The norm, for example, in [Lp(Ω)]2 (p > 2) is

denoted by [·]Lp(Ω). A similar notation is used for the norms in the spaces [W 2
2 (Ω)]2,

[Lp(Q)]2, [W 2,1
2 (Q)]2.

Let ‖ · ‖ and [·] stand for the norm in L2(Ω) and in [L2(Ω)]2, respectively. The

inner product in L2(Ω) and in [L2(Ω)]2 will be denoted by (·, ·).

The solution of the problem (1)–(5) is a triple of functions (u, p, θ) from

[W 2,1
2 (Q)]2 × W 1

2 (Q) × W 2,1
2 (Q) that satisfy equations (1)–(3) for almost all t

and also the boundary and initial conditions (4)–(5) in the sense of traces.

Let J(Ω) be the space of solenoidal infinitely differentiable and finite on Ω vec-

tors v(x) = (v1(x), v2(x)), let
◦

J(Ω) be the closure with respect to the norm of the

space [W 1
2 (Ω)]2. The elements of

◦

J(Q) are the vectors v(x, t) that belong to
◦

J(Ω)

for almost all t. Let PJ be the orthogonal projection of [L2(Ω)]2 onto
◦

J(Ω).
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It is known (see [10]) that [L2(Ω)]2 =
◦

J(Ω) ⊕ G(Ω), where the subspace G(Ω)

contains the gradients of all single-valued functions in Ω. Acting on (1) by the

operator PJ and taking into account PJ∇p = 0, we come to the problem

∂u

∂t
− νPJ∆u + PJ((u · ∇)u) − gβPJ (k3θ) = PJf in Q,(6)

∂θ

∂t
− κ∆θ + u · ∇θ = ϕ in Q,(7)

u = 0, θ = 0 on S,(8)

u(x, 0) = 0, θ(x, 0) = 0 for a.e. x ∈ Ω.(9)

On the other hand, if functions u ∈
◦

J(Ω) and θ ∈ W 2,1
2 (Q) are solutions of

problem (6)–(9), then equation (6) can be written as

PJ

(∂u

∂t
− ν∆u+ (u · ∇)u − gβk3θ − f

)

= 0

and hence,
∂u

∂t
− ν∆u+ (u · ∇)u− gβk3θ − f = ∇p1

for almost all t, where ∇p1 ∈ [L2(Ω)]2. Thus, problems (1)–(5) and (6)–(9) are

equivalent.

We consider the spectral problems

−νPJ∆e = λe, e ∈
◦

J(Ω),

e(x) = 0, x ∈ ∂Ω

and
−κ∆m = µm,

m(x) = 0, x ∈ ∂Ω.

By λi we denote the eigenvalue corresponding to the eigenvector ei(x), by µi we

denote an eigenvalue, corresponding to the eigenvector mi(x). The existence and

completeness of the eigenfunctions ei(x) ∈ [W 2
2 (Ω)]2∩

◦

J(Ω), mi(x) ∈ W 2
2 (Ω)∩

◦

W 1
2(Ω)

in the spaces [L2(Ω)]2 and L2(Ω) are proved in [10], [1].

Let Pn1 be the orthogonal projection of [L2(Ω)]2 onto the linear span of the vector-

functions {ei(x)}
n
i=1, let Pn2 be the orthogonal projection of L2(Ω) onto the linear

span of the functions {mi(x)}
n
i=1.

The approximate solutions for the problem (6)–(9) are defined as

un(x, t) =

n
∑

i=1

αi(t)ei(x),

θn(x, t) =

n
∑

i=1

γi(t)mi(x),
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where the unknown functions αi(t) and γi(t) (i = 1, 2, . . . , n) are the exact solution

of the following problem:

∂un

∂t
− νPJ∆un + Pn1PJ ((un · ∇)un) − gβPn1PJ(k3θn) = Pn1PJf in Q,(10)

∂θn

∂t
− κ∆θn + Pn2(un · ∇θn) = Pn2ϕ in Q,(11)

un(x, 0) = 0, θn(x, 0) = 0, x ∈ Ω.(12)

Here we have used the facts that Pn1(νPJ∆un) = νPJ∆un and Pn2(κPJ∆θn) =

κPJ∆θn.

From now on, by C we denote the so-called generic positive constant. It is inde-

pendent of n and can have different values at different occurrences.

Later the following multiplicative inequalities will be used very often (see, for

example, [8]). Let v ∈ W l1
p1

(Ω),

ν1 =
κ3 − κ2

κ3 − κ1
, κi =

2

pi
− li, κ1 < κ2 < κ3, l3 6 l2 < l1.

Then

(13) ‖v‖
W

l2
p2

(Ω)
6 C‖v‖1−ν1

W
l3
p3

(Ω)
‖v‖ν1

W
l1
p1

(Ω)
.

This inequality also holds with l2 = l3 = 0 and p2 = ∞.

In addition, we shall use the following well-known fact (see, for example, [13]).

Let u ∈ W 2m,m
p (Q) and p(2m − 2h − s) > 4. Then any derivative Dh

t D
α
xu with

|α| = s belongs to the space Lr(Q) with any r > p including r = ∞ and the inequality

‖Dh
t D

α
xu‖Lr(Q) 6 ε2m−2h−s−4(1/p−1/r)‖u‖W 2m,m

p (Q) + ε−2h−s−4(1/p−1/r)‖u‖Lp(Q)

holds for any ε > 0.

In the multiplicative form this inequality can be written as

(14) ‖Dh
t D

α
xu‖Lr(Q) 6 C‖u‖β

W 2m,m
p (Q)

‖u‖1−β
Lp(Q),

where β = (2h+ s+ 4(1/p− 1/r))/(2m).

Lemma 2.1. Let f(x, t) ∈ [L2(Q)]2, ϕ(x, t) ∈ L2(Q). Then problem (10)–(12)

has a unique solution un(x, t) ∈ [W 2,1
2 (Q)]2 ∩

◦

J(Q), θn(x, t) ∈
◦

W 2,1
2 (Q) for each n

and the inequalities

[un(x, t)]W 2,1
2

(Q) 6 C,(15)

‖θn(x, t)‖W 2,1
2

(Q) 6 C(16)

hold.
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P r o o f. We take the L2(Ω)-inner product of (11) and θn(x, τ) and integrate the

resulting relation over the interval [0, t], t 6 T . Then, using the equality

(Pn2(un · ∇θn), θn) = 0,

we obtain

(17) sup
06t6T

‖θn‖
2 +

∫ t

0

‖∇θn‖
2 dτ 6 C.

Similarly, using the equality

(Pn1PJ ((un · ∇)un), un) = 0

and (17), we have

(18) sup
06t6T

[un]2 +

∫ t

0

[∇un]2 dτ 6 C.

We multiply equation (10) in [L2(Ω)]2 by −PJ∆un and integrate the resulting rela-

tion over the interval [0, t], t 6 T . Then

1

2
[∇un(x, t)]2 + ν

∫ t

0

[PJ∆un(x, τ)]2 dτ

6

∫ t

0

[f(x, τ)][PJ∆un(x, τ)] dτ + gβ

∫ t

0

‖θn(x, τ)‖[PJ∆un(x, τ)] dτ

+

∫ t

0

[(un(x, τ) · ∇)un(x, τ)][PJ∆un(x, τ)] dτ.

Now, using the Cauchy inequality |a||b| 6 1
2ε|a|

2 + 1
2ε

−1|b|2 for sufficiently small

ε > 0, we obtain

[∇un]2 +

∫ t

0

[PJ∆un]2 dτ 6 C([f ]2L2(Q) + ‖θn‖
2
L2(Q) +

∫ t

0

[(un · ∇)un]2 dτ).

This and (17) yield

(19) [∇un]2 +

∫ t

0

[PJ∆un]2 dτ 6 C

(

1 +

∫ t

0

[(un · ∇)un]2 dτ

)

.

Let us estimate the integral on the right-hand side of (19). Applying the Hölder

inequality, we find that

J ≡

∫ t

0

[(un · ∇)un]2 dτ 6

∫ t

0

[un]2L4(Ω)[∇un]2L4(Ω) dτ.
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By using (13) for the spaces W 1
4 (Ω), W 2

2 (Ω) and W 1
2 (Ω), we get

J 6 C

∫ t

0

[un]2L4(Ω)[un]W 1

2
(Ω)[un]W 2

2
(Ω) dτ.

Next,

[un]2W 1

2
(Ω) = [un]2 + [∇un]2.

Since un = 0 on ∂Ω, using Friedrichs inequality, we have

[un] 6 C[∇un].

Hence,

[un]W 1

2
(Ω) 6 C[∇un].

Therefore,

J 6 C

∫ t

0

[un]2L4(Ω)[∇un][un]W 2

2
(Ω) dτ.

From this and the coercive inequality (see, for example, [10])

(20) [z(x)]W 2

2
(Ω) 6 C[−PJ∆z(x)], ∀ z(x) ∈ [W 2

2 (Ω)]2 ∩
◦

J(Ω)

we obtain

J 6 C

∫ t

0

[un]2L4(Ω)[PJ∆un][∇un] dτ.

Therefore, from (19) it follows that

[∇un]2 +

∫ t

0

[PJ∆un]2 dτ 6 C

(

1 + ε

∫ t

0

[PJ∆un]2 dτ +
1

ε

∫ t

0

[un]4L4(Ω)[∇un]2 dτ

)

.

Choosing sufficiently small ε > 0, we have

[∇un]2 6 C

(

1 +

∫ t

0

[un]4L4(Ω)[∇un]2 dτ

)

.

Now, applying the Gronwall inequality (see [4]), we come to an estimate

(21) [∇un]2 6 C exp

(

C

∫ t

0

[un]4L4(Ω) dτ

)

.

We use the inequality (13) for the spaces L4(Ω), W 1
2 (Ω), L2(Ω), arriving at

(22)

∫ T

0

[un]4L4(Ω) dτ 6 C

∫ T

0

[un]2[∇un]2 dτ 6 C,
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where the last inequality comes from (18). Therefore, from (21) we have

(23) sup
06t6T

[∇un(x, t)] 6 C.

By applying estimate (23), from equation (11) it follows that

(24) sup
06t6T

‖∇θn(x, t)‖ 6 C.

From the coercive inequality (see [10])

(25) [z]W 2,1
2

(Q) 6 C
[( ∂

∂t
− νPJ∆

)

z
]

L2(Q)
∀ z ∈ [W 2,1

2 (Q)]2 ∩
◦

J(Q)

we have

[un]W 2,1
2

(Q) 6 C([f ]L2(Q) + ‖θn‖L2(Q) + [(un · ∇)un]L2(Q)).

Then

[un]W 2,1
2

(Q) 6 C(1 + [un]L6(Q)[∇un]L3(Q)).

By using inequality (14) for the spaces W 1,0
3 (Q), W 2,1

2 (Q), L2(Q), we get

[un]W 2,1
2

(Q) 6 C(1 + [un]L6(Q)[un]
5/6

W 2,1
2

(Q)
[un]

1/6
L2(Q)).

Since the space W 1
2 (Ω) is embedded in L6(Ω) and inequalities (18), (23) hold, it

follows that

[un]W 2,1
2

(Q) 6 C(1 + [un]
5/6

W 2,1
2

(Q)
).

Thus, estimate (15) holds. By analogy we obtain (16).

From estimates (15), (16) and the Leray-Schauder principle it follows that the

solution of problem (10)–(12) exists. By analogy with the proof of the uniqueness of

the solution of the initial boundary value problem for the Navier-Stokes equations

(see [10]) the uniqueness of the solution to problem (10)–(12) is proved. �
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3. Error estimates for Galerkin method

In this section we establish error estimates for the approximate solutions, for the

gradient of the approximate solutions and for the derivative with respect to t.

Theorem 3.1. Suppose that f(x, t) ∈ [L2(Q)]2 and ϕ(x, t) ∈ L2(Q). Then

sup
06t6T

[un(x, t) − u(x, t)] 6 C(λ
−1/2
n+1 + µ

−1/2
n+1 ),(26)

sup
06t6T

‖θn(x, t) − θ(x, t)‖ 6 C(λ
−1/2
n+1 + µ

−1/2
n+1 ),(27)

lim
n→∞

[un(x, t) − u(x, t)]W 2,1
2

(Q) = 0,(28)

lim
n→∞

‖θn(x, t) − θ(x, t)‖W 2,1
2

(Q) = 0,(29)

where u(x, t) and θ(x, t) are the solution of problem (6)–(9).

P r o o f. For the differences un − u and θn − θ we have

∂(un − u)

∂t
− νPJ∆(un − u)(30)

= (I − Pn1)PJ ((un · ∇)un − f) + PJ ((u · ∇)u− (un · ∇)un)

− gβ(I − Pn1)PJ (k3θn) + gβPJ(k3θn − k3θ),

∂(θn − θ)

∂t
− κ∆(θn − θ)(31)

= (I − Pn2)(∇θn · un − ϕ) −∇θn · un + ∇θ · u.

We take the [L2(Ω)]2-inner product of (30) and un−u, take the L2(Ω)-inner product

of (31) and θn − θ and integrate over the interval [0, s], s 6 T . Then

1

2
[un − u]2 + ν

∫ s

0

[∇(un − u)]2 dt(32)

6

∫ s

0

|(PJ (−f + (un · ∇)un − gβk3θn), (I − Pn1)(un − u))| dt

+

∫ s

0

|(−(un · ∇)un + (u · ∇)u, un − u)| dt

+ gβ

∫ s

0

|(k3θn − k3θ, un − u)| dt,

1

2
‖θn − θ‖2 + κ

∫ s

0

‖∇(θn − θ)‖2 dt(33)

6

∫ s

0

|(∇θn · un − ϕ, (I − Pn2)(θn − θ))| dt

+

∫ s

0

|(∇θ · u−∇θn · un, θn − θ)| dt.
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Since θn − θ belongs to the space
◦

W 2,1
2 (Q), from (33) we obtain

1

2
‖θn − θ‖2 + κ

∫ s

0

‖∇(θn − θ)‖2 dt

6 µ
−1/2
n+1

∫ s

0

‖∇(θn − θ)‖‖∇θn · un − ϕ‖ dt

+

∫ s

0

|(∇θn · (un − u), θn − θ)| dt.

Because the space W 2,1
2 (Q) is embedded in L4(Q) and in W 1,0

4 (Q), by using the

Hölder and Cauchy inequalities and (15), (16), we get

1

2
‖θn − θ‖2 + κ

∫ s

0

‖∇(θn − θ)‖2 dt

6
C

ε
µ−1

n+1 +
ε

2

∫ s

0

‖∇(θn − θ)‖2 dt

+

∫ s

0

‖∇θn‖[u− un]2L4(Ω)‖θn − θ‖2
L4(Ω) dt.

This and (24) for sufficiently small ε > 0 imply

‖θn − θ‖2 +

∫ s

0

‖∇(θn − θ)‖2 dt 6 C

(

µ−1
n+1 +

∫ s

0

[u− un]2L4(Ω)‖θn − θ‖2
L4(Ω) dt

)

.

Using inequality (13) for the spaces L4(Ω), W 1
2 (Ω) and L2(Ω), we find that

‖θn − θ‖2 +

∫ s

0

‖∇(θn − θ)‖2 dt

6 C

(

µ−1
n+1 +

∫ s

0

[u− un]2L4(Ω)‖∇(θn − θ)‖‖θn − θ‖ dt

)

.

Now, by applying the Cauchy inequality, we obtain

‖θn − θ‖2 +

∫ s

0

‖∇(θn − θ)‖2 dt

6 C

(

µ−1
n+1 +

ε

2

∫ s

0

‖∇(θn − θ)‖2 dt+
1

2ε

∫ s

0

[u− un]4L4(Ω)‖θn − θ‖2 dt

)

.

Hence, for sufficiently small ε > 0 it follows that

(34) ‖θn − θ‖2 +

∫ s

0

‖∇(θn − θ)‖2 dt 6 C

(

µ−1
n+1 +

∫ s

0

[u− un]4L4(Ω)‖θn − θ‖2 dt

)

.

80



By analogy, from equation (32) we have

[un − u]2 +

∫ s

0

[∇(un − u)]2 dt(35)

6 C

(

λ−1
n+1 +

∫ s

0

[u− un]4L4(Ω)[un − u]2 dt+

∫ s

0

‖θn − θ‖2 dt

)

.

Adding (34) and (35), we come to the inequality

[un − u]2 + ‖θn − θ‖2

6 C

(

µ−1
n+1 + λ−1

n+1 +

∫ s

0

([u − un]4L4(Ω) + 1)(‖θ − θn‖
2 + [u− un]2) dt

)

.

We use the Gronwall inequality; then

(36) [un − u]2 + ‖θn − θ‖2 6 C

(

µ−1
n+1 + λ−1

n+1) exp

(

C

∫ T

0

([u − un]4L4(Ω) + 1) dt

)

.

Similarly to (22) we obtain

∫ T

0

[u− un]4L4(Ω) dt 6 C

∫ T

0

[∇(u− un)]2[un − u]2 dt 6 C,

where the last inequality comes from (18) and (23). Therefore, from (36) we obtain

estimates (26) and (27).

Now we shall prove the relations (28) and (29). We put

δ1n =
∂un

∂t
− νPJ∆un + PJ ((un · ∇)un) − gβPJ (k3θn) − PJf,

δ2n =
∂θn

∂t
− κ∆θn + ∇θn · un − ϕ.

Since un and θn are the solution of problem (10)–(12), we have

δ1n = −(I − Pn1)PJf + (I − Pn1)PJ ((un · ∇)un) − gβ(I − Pn1)PJ (k3θn).

Hence,

[δ1n]L2(Q) 6 [(I − Pn1)PJf ]L2(Q) + [(I − Pn1)PJ ((un · ∇)un)]L2(Q)

+ [gβ(I − Pn1)PJ (k3θn)]L2(Q).

From (15), (16) and from the embedding theorems (see [13]) it follows that the sets

{PJ(un · ∇)un} and {θn} are compact in L2(Q). It is known that a sequence of

bounded operators converges uniformly on a compact set, and therefore

(37) [δ1n]L2(Q) → 0, n→ ∞.
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By analogy, we establish that

‖δ2n‖L2(Q) → 0, n→ ∞.

For the difference un − u we have the identity

∂(un − u)

∂t
− νPJ∆(un − u) = δ1n + PJ ((u · ∇)u− (un · ∇)un) + gβPJ (k3(θn − θ)).

From this and from (25) it follows that

[un − u]W 2,1
2

(Q)(38)

6 C([δ1n]L2(Q) + [(u · ∇)u− (un · ∇)un]L2(Q) + [gβk3(θn − θ)]L2(Q)).

From (27) we obtain

(39) [gβk3(θn − θ)]L2(Q) → 0, n→ ∞.

Now we estimate the second summand on the right-hand side of (38)

[(u · ∇)u − (un · ∇)un]L2(Q) 6 [un − u]L4(Q)[∇u]L4(Q) + [un]L6(Q)[∇(un − u)]L3(Q).

By using the inequality (15) and the embedding of the space W 2,1
2 (Q) in L6(Q) and

in W 1,0
4 (Q), we come to the estimate

[(u · ∇)u − (un · ∇)un]L2(Q) 6 C([un − u]L4(Q) + [∇(un − u)]L3(Q)).

Further, applying inequality (14) for spaces L4(Q), W 2,1
2 (Q), and L2(Q), and also

for W 1,0
3 (Q), W 2,1

2 (Q), and L2(Q), we have

[(u · ∇)u − (un · ∇)un]L2(Q)

6 C([un − u]
1/2

W 2,1
2

(Q)
[un − u]

1/2
L2(Q) + [un − u]

5/6

W 2,1
2

(Q)
[un − u]

1/6
L2(Q)).

From this, (15), and (26) it follows that

(40) [(u · ∇)u − (un · ∇)un]L2(Q) → 0, n→ ∞.

Using (37), (38), (39), and (40), we obtain (28). By analogy, we come to esti-

mate (29). �
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In order to obtain error estimates for the derivatives of the approximate solutions

we introduce an auxiliary problem and prove its unique solvability. Let the vector-

function z1(x, t) belong to the space [W 2,1
2 (Q)]2 ∩

◦

J(Q) and let the function z2(x, t)

belong to the space
◦

W 2,1
2 (Q). We consider the problem

∂v

∂t
− νPJ∆v + PJ((z1 · ∇)v + (v · ∇)z1) − gβPJ(k3w) = PJh in Q,(41)

∂w

∂t
− κ∆w + ∇w · z1 + ∇z2 · v = h1 in Q,(42)

div v = 0 in Q,(43)

v = 0, w = 0 on S,(44)

v(x, 0) = 0, w(x, 0) = 0, x ∈ Ω.(45)

Lemma 3.1. Suppose that h(x, t) ∈ [L2(Q)]2, h1(x, t) ∈ L2(Q). Then prob-

lem (41)–(45) has a unique solution v ∈ [W 2,1
2 (Q)]2 ∩

◦

J(Q), w ∈
◦

W 2,1
2 (Q) for any

functions z1 ∈ [W 2,1
2 (Q)]2 ∩

◦

J(Q) and z2 ∈
◦

W 2,1
2 (Q) such that

[z1]W 2,1
2

(Q) 6 R, ‖z2‖W 2,1
2

(Q) 6 R,

where R is a positive constant.

P r o o f. We put

K(z1, z2)ψ =

(

PJ ((z1 · ∇)I + (I · ∇)z1) −gβPJ (k3I)

∇z2 · I ∇I · z1

)

·

(

v

w

)

.

Then

‖K(z1, z2)ψ‖[L2(Ω)]3(46)

6 [(z1 · ∇)v] + ‖∇w · z1‖ + [(v · ∇)z1] + ‖∇z2 · v‖ + gβ[k3w].

By using the Hölder inequality and (13), we obtain

I1 = [(z1 · ∇)v] 6 [z1]L4(Ω)[∇v]L4(Ω) 6 C[z1]L4(Ω)[v]
3/4

W 2

2
(Ω)

[v]1/4.

From (20) we have

(47) I1 6 C[z1]L4(Ω)[−PJ∆v]3/4[v]1/4.

Because z1(x, 0) = 0, we see that

∫ s

0

∫

Ω

∂z1
∂t

z3
1 dxdt =

1

4

∫

Ω

∫ s

0

∂

∂t
(z4

1) dt dx =
1

4

∫

Ω

z4
1 dx.
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This implies that
∫

Ω

z4
1 dx 6 C[z1]W 2,1

2
(Q)[z1]

3
L6(Q).

The space W 2,1
2 (Q) is embedded in L6(Q) (see [13]). Therefore,

∫

Ω

z4
1 dx 6 C[z1]

4
W 2,1

2
(Q)
.

Hence, from (47) we have

(48) I1 6 CR[−PJ∆v]3/4[v]1/4.

By analogy, we come to the estimate

(49) I2 = ‖∇w · z1‖ 6 CR‖∆w‖3/4‖w‖1/4.

The space W 2
2 (Ω) is embedded in L∞(Ω) (see [13]). Therefore,

I3 = [(v · ∇)z1] 6 C[v]L∞(Ω)[∇z1].

By using inequality (13) for the spaces L∞(Ω), W 2
2 (Ω), and L2(Ω), we get

(50) I3 6 C[∇z1][−PJ∆v]1/2[v]1/2.

It is obvious that

∫ s

0

∫

Ω

∂z1
∂t

∆z1 dxdt = −

∫ s

0

∫

Ω

∂∇z1
∂t

∇z1 dxdt

= −
1

2

∫

Ω

∫ s

0

∂|∇z1|
2

∂t
dt dx = −

1

2
[∇z1]

2.

From this and from (50) it follows that

(51) I3 6 CR[−PJ∆v]1/2[v]1/2.

Likewise, we come to the estimate

(52) I4 = ‖∇z2 · v‖ 6 CR[−PJ∆v]1/2[v]1/2.

From (46), (48), (49), (51), and (52) we obtain

‖K(z1, z2)ψ‖[L2(Ω)]3(53)

6 CR([−PJ∆v]3/4[v]1/4 + ‖∆w‖3/4‖w‖1/4 + [−PJ∆v]1/2[v]1/2) + C‖w‖.
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Setting

A =

(

−νPJ∆ 0

0 −κ∆

)

,

we get

‖Aψ‖[L2(Ω)]3 = [−νPJ∆v] + ‖−κ∆w‖.

From this and (53), by virtue of the positive definiteness of the operators (−PJ∆)

and (−∆), it follows that

(54) ‖K(z1, z2)ψ‖[L2(Ω)]3 6 C‖Aψ‖
3/4
[L2(Ω)]3‖ψ‖

1/4
[L2(Ω)]3 .

Thus, the operator K(z1, z2) is subordinated to the operator A with order
3
4 . There-

fore, the statement of the lemma follows from Theorem 2.1 of paper [15]. �

Theorem 3.2. Let f(x, t) ∈ [C1([0, T ];L2(Ω))]2, f(x, 0) = 0, ϕ(x, t) ∈ C1([0, T ];

L2(Ω)), ϕ(x, 0) = 0. Then

sup
06t6T

[∂(un − u)

∂t

]

+ sup
06t6T

∥

∥

∥

∂(θn − θ)

∂t

∥

∥

∥
6 C(λ

−1/8
n+1 + µ

−1/8
n+1 ),(55)

sup
06t6T

[∇(un − u)] + sup
06t6T

‖∇(θn − θ)‖ 6 C(λ
−1/4
n+1 + µ

−1/4
n+1 ).(56)

P r o o f. In problem (41)–(45) we put z1 = u, z2 = θ, where u and θ are the

solution of problem (6)–(9), h = ∂f/∂t, h1 = ∂ϕ/∂t. Then, according to Lemma 3.1,

problem (41)–(45) has a unique solution v ∈ [W 2,1
2 (Q)]2 ∩

◦

J(Q), w ∈
◦

W 2,1
2 (Q). Now,

we set z1 = un, z2 = θn, where un and θn are the solution of the problem (10)–(12).

Again, using Lemma 3.1, we obtain that problem (41)–(45) has a unique solution

v(n) = v(n;x, t) ∈ [W 2,1
2 (Q)]2 ∩

◦

J(Q), w(n) = w(n;x, t) ∈
◦

W 2,1
2 (Q) for each n.

If ψ =

(

v

w

)

, ψ(n) = ψ(n;x, t) =

(

v(n)

w(n)

)

, F =

(

PJ(∂f/∂t)

∂ϕ/∂t

)

, then

∂ψ

∂t
+Aψ +K(u, θ)ψ = F, ψ(x, 0) = 0,(57)

∂ψ(n)

∂t
+Aψ(n) +K(un, θn)ψ(n) = F, ψ(n;x, 0) = 0.(58)

Let Pn =

(

Pn1 0

0 Pn2

)

be the orthogonal projection of [L2(Ω)]3 onto the linear span

of the elements {ei,mi}
n
i=1. Then from (57), (58) we have

∂(ψ − ψ(n))

∂t
+A(ψ − ψ(n)) + PnK(u, θ)(ψ − ψ(n))(59)

= (Pn − I)K(u, θ)(ψ − ψ(n)) + (K(un, θn) −K(u, θ))ψ(n).
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According to inequality (54), the operator K(u, θ) is subordinated to the operator A

with order 3
4 . Hence, from [15] it follows that the operator ((∂/∂t)+A+PnK(u, θ))

is invertible and
( ∂

∂t
+A+ PnK(u, θ)

)−1

=
( ∂

∂t
+A

)−1(

I − Pn

(

I +K(u, θ)
( ∂

∂t
+A

)−1

Pn

)−1

K(u, θ)
( ∂

∂t
+A

)−1)

.

Therefore, from (59) we have

ψ − ψ(n) =
( ∂

∂t
+A

)−1

(60)

×
(

I − Pn

(

I +K(u, θ)
( ∂

∂t
+A

)−1

Pn

)−1

K(u, θ)
( ∂

∂t
+A

)−1)

×
(

(Pn − I)K(u, θ)(ψ − ψ(n)) + (K(un, θn) −K(u, θ))ψ(n)
)

.

We estimate each summand on the right-hand side of (60):

‖J1‖[L2(Ω)]3 =
∥

∥

∥

( ∂

∂t
+A

)−1(

I − Pn

(

I +K(u, θ)
( ∂

∂t
+A

)−1

Pn

)−1

×K(u, θ)
( ∂

∂t
+A

)−1)

(Pn − I)K(u, θ)(ψ − ψ(n))
∥

∥

∥

[L2(Ω)]3

6

∥

∥

∥

( ∂

∂t
+A

)−1

(Pn − I)K(u, θ)(ψ − ψ(n))
∥

∥

∥

[L2(Ω)]3

+
∥

∥

∥

( ∂

∂t
+A

)−1

Pn

(

I +K(u, θ)
( ∂

∂t
+A

)−1

Pn

)−1

×K(u, θ)
( ∂

∂t
+A

)−1

(Pn − I)K(u, θ)(ψ − ψ(n))
∥

∥

∥

[L2(Ω)]3
.

In [15] the estimates were established, which with reference to the given problem can

be written as
∥

∥

∥

( ∂

∂t
+A

)−1

(Pn − I)g
∥

∥

∥

[L2(Ω)]3
(61)

6 C(λ
−1/2
n+1 + µ

−1/2
n+1 )‖g‖[L2(Q)]3 , ∀ g ∈ [L2(Q)]3,

∥

∥

∥

(

I +K(u, θ)
( ∂

∂t
+A

)−1

Pn

)−1∥
∥

∥

[L2(Q)]3→[L2(Q)]3
6 C,(62)

∥

∥

∥

( ∂

∂t
+A

)−1

g
∥

∥

∥

[L2(Ω)]3
6 C‖g‖[L2(Q)]3 , ∀ g ∈ [L2(Q)]3.(63)

Taking into account (61)–(63), we come to the estimate

‖J1‖[L2(Ω)]3 6 C(λ
−1/2
n+1 + µ

−1/2
n+1 )‖K(u, θ)(ψ − ψ(n))‖[L2(Q)]3(64)

+ C
∥

∥

∥
K(u, θ)

( ∂

∂t
+A

)−1

(Pn − I)K(u, θ)(ψ − ψ(n))
∥

∥

∥

[L2(Q)]3
.
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From (54) we have

‖K(u, θ)(ψ − ψ(n))‖[L2(Q)]3 6 C‖A(ψ − ψ(n))‖
3/4
[L2(Q)]3‖ψ − ψ(n)‖

1/4
[L2(Q)]3 .

From Lemma 3.1 it follows that

sup
06t6T

‖ψ(n)‖[L2(Ω)]3 6 C,

‖Aψ(n)‖[L2(Q)]3 6 C.(65)

Therefore, from the last three inequalities we obtain

(66) ‖K(u, θ)(ψ − ψ(n))‖[L2(Q)]3 6 C.

Now we shall consider the second summand of (64):

∥

∥

∥
K(u, θ)

( ∂

∂t
+A

)−1

(Pn − I)K(u, θ)(ψ − ψ(n))
∥

∥

∥

[L2(Q)]3

6 C
∥

∥

∥
A

( ∂

∂t
+A

)−1

(Pn − I)K(u, θ)(ψ − ψ(n))
∥

∥

∥

3/4

[L2(Q)]3

×
∥

∥

∥

( ∂

∂t
+A

)−1

(Pn − I)K(u, θ)(ψ − ψ(n))
∥

∥

∥

1/4

[L2(Q)]3
.

Thus, taking into account inequalities (61) and (66), we derive

∥

∥

∥
K(u, θ)

( ∂

∂t
+A

)−1

(Pn − I)K(u, θ)(ψ − ψ(n))
∥

∥

∥

[L2(Q)]3
6 C(λ

−1/8
n+1 + µ

−1/8
n+1 ).

This, together with (64) and (66), leads to the estimate

(67) ‖J1‖[L2(Ω)]3 6 C(λ
−1/8
n+1 + µ

−1/8
n+1 ).

We estimate the second summand on the right-hand side of (60):

‖J2‖[L2(Ω)]3 =
∥

∥

∥

( ∂

∂t
+A

)−1(

I − Pn

(

I +K(u, θ)
( ∂

∂t
+A

)−1

Pn

)−1

(68)

×K(u, θ)
( ∂

∂t
+A

)−1)
(

(K(un, θn) −K(u, θ))ψ(n)
)

∥

∥

∥

[L2(Ω)]3

6 C‖(K(un, θn) −K(u, θ))ψ(n)‖[L2(Q)]3 .

It is obvious that

‖(K(un, θn) −K(u, θ))ψ(n)‖[L2(Q)]3(69)

6 [PJ (((un − u) · ∇)v(n))]L2(Q) + ‖∇w(n)(un − u)‖L2(Q)

+ [PJ ((v(n) · ∇)(un − u))]L2(Q) + ‖∇(θn − θ) · v(n)‖L2(Q).
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Now we shall consider each summand on the right-hand side of (69). Applying the

Hölder inequality, we get

I1 = [PJ(((un − u) · ∇)v(n))]L2(Q) 6 [un − u]L4(Q)[∇v(n)]L4(Q).

Next, we use the estimate (65) and inequality (13) for the spaces L4(Ω), W 2
2 (Ω),

L2(Ω). Therefore,

I1 6 C

(
∫ T

0

[un − u]2W 2

2
(Ω)[un − u]3 dt

)1/4

.

From this and from Theorem 3.1 we obtain

(70) I1 6 Cλ
−3/8
n+1 .

By analogy, we find that

I2 = ‖∇w(n)(un − u)‖L2(Q) 6 Cλ
−3/8
n+1 ,(71)

I3 = [PJ ((v(n) · ∇)(un − u))]L2(Q) 6 [v(n)]L6(Q)[∇(un − u)]L3(Q).

Now we apply estimate (65) and inequality (13) for the spacesW 1
3 (Ω),W 2

2 (Ω), L2(Ω).

Then

I3 6 C

(
∫ T

0

[un − u]2W 2

2
(Ω)[un − u] dt

)1/3

.

From the preceding relation and also from Lemma 2.1 and Theorem 3.1 it follows

that

(72) I3 6 Cλ
−1/6
n+1 .

Likewise, we obtain

(73) I4 = ‖∇(θn − θ)v(n)‖L2(Q) 6 Cµ
−1/6
n+1 .

According to inequalities (68)–(73), we have

(74) ‖J2‖[L2(Ω)]3 6 C(λ
−1/6
n+1 + µ

−1/6
n+1 ).

From (60), (67), and (74) it follows that

(75) ‖ψ − ψ(n)‖[L2(Ω)]3 6 C(λ
−1/8
n+1 + µ

−1/8
n+1 ).
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Putting ψn =

(

vn

wn

)

, zn =

(

un

θn

)

, z =

(

u

θ

)

, we get

(76)
∂ψn

∂t
+Aψn + PnK(un, θn)ψn = PnF, ψn(x, 0) = 0.

Equations (76) and (58) lead to the relation

∂(ψn − ψ(n))

∂t
+A(ψn − ψ(n)) + PnK(un, θn)(ψn − ψ(n))

= (I − Pn)(K(un, θn)ψ(n) − F ).

By analogy with the proof of (75), it is easy to establish that

(77) ‖ψn − ψ(n)‖[L2(Ω)]3 6 C(λ
−1/8
n+1 + µ

−1/8
n+1 ).

From (28) and (29) it follows that

(78) lim
n→∞

∥

∥

∥
ψn −

∂z

∂t

∥

∥

∥

[L2(Q)]3
= 0.

It is obvious that

∥

∥

∥
ψ −

∂z

∂t

∥

∥

∥

[L2(Q)]3
6 ‖ψ − ψ(n)‖[L2(Q)]3 + ‖ψn − ψ(n)‖[L2(Q)]3 +

∥

∥

∥
ψn −

∂z

∂t

∥

∥

∥

[L2(Q)]3
.

The last inequality, together with (75), (77), and (78) leads to the equality ψ = ∂z/∂t

almost everywhere in Q. Since

∥

∥

∥

∂(zn − z)

∂t

∥

∥

∥

[L2(Ω)]3
6

∥

∥

∥

∂z

∂t
− ψ(n)

∥

∥

∥

[L2(Ω)]3
+ ‖ψ(n) − ψn‖[L2(Ω)]3 ,

from (75) and (77) we obtain estimate (55).

Because zn is the solution of problem (10)–(12), we see that

‖Azn‖[L2(Ω)]3 6

∥

∥

∥

∂zn

∂t

∥

∥

∥

[L2(Ω)]3
+ [Pn1PJ ((un · ∇)un)] + ‖Pn2(∇θn · un)‖

+ gβ[Pn1PJ (k3θn)] + [Pn1PJf ] + ‖Pn2ϕ‖.

Hence, from (55) and (17) we have

‖Azn‖[L2(Ω)]3 6 C + [(un · ∇)un] + ‖∇θn · un‖.

Applying the Hölder inequality, we obtain

‖Azn‖[L2(Ω)]3 6 C + [un]L6(Ω)[∇un]L3(Ω) + [un]L6(Ω)‖∇θn‖L3(Ω).
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Since the space W 1
2 (Ω) is embedded in L6(Ω), from (23) and (24) it follows that

‖Azn‖[L2(Ω)]3 6 C(1 + [∇un]L3(Ω) + ‖∇θn‖L3(Ω)).

Now we use inequality (13) for the spacesW 1
3 (Ω),W 2

2 (Ω), L2(Ω), and inequalities (17)

and (18). Then

‖Azn‖[L2(Ω)]3 6 C(1 + [un]
2/3

W 2

2
(Ω)

+ ‖θn‖
2/3

W 2

2
(Ω)

).

This and coercive inequality (20) yield

‖Azn‖[L2(Ω)]3 6 C(1 + ‖Azn‖
2/3
[L2(Ω)]3).

Therefore,

sup
06t6T

‖Azn‖[L2(Ω)]3 6 C.

We use the moment inequality (see [9]), concluding that

[∇(un − u)] + ‖∇(θn − θ)‖ 6 ‖A(zn − z)‖
1/2
[L2(Ω)]3‖zn − z‖

1/2
[L2(Ω)]3 .

Hence, the desired estimate (56) follows. The proof of the theorem is complete. �

R em a r k. In this paper, the unique solvability of the approximate problem

for the heat convection equations was proved. The convergence estimates for the

Galerkin approximations and their derivatives in the uniform norm were obtained.

In this case the eigenfunctions are not represented in an explicit form. However, in

numerical realization of the method the eigenfunctions can be found approximately.

The technique can be applied to the study of other initial boundary value problems

for the heat convection (e.g. with a free boundary). Then the eigenfunctions can be

written explicitly for certain types of domains.
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