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Symplectic Killing spinors

Svatopluk Krýsl

Abstract. Let (M,ω) be a symplectic manifold admitting a metaplectic structure
(a symplectic analogue of the Riemannian spin structure) and a torsion-free
symplectic connection ∇. Symplectic Killing spinor fields for this structure are
sections of the symplectic spinor bundle satisfying a certain first order partial
differential equation and they are the main object of this paper. We derive a
necessary condition which has to be satisfied by a symplectic Killing spinor field.
Using this condition one may easily compute the symplectic Killing spinor fields
for the standard symplectic vector spaces and the round sphere S2 equipped
with the volume form of the round metric.

Keywords: Fedosov manifolds, symplectic spinors, symplectic Killing spinors,
symplectic Dirac operators, Segal-Shale-Weil representation

Classification: 58J60, 53C07

1. Introduction

In this article we shall study the so called symplectic Killing spinor fields on
Fedosov manifolds admitting a metaplectic structure. A Fedosov manifold is a
structure consisting of a symplectic manifold (M2l, ω) and the so called Fedosov
connection on (M,ω). A Fedosov connection ∇ is an affine connection on (M,ω)
such that it is symplectic, i.e., ∇ω = 0, and torsion-free. Let us notice that in
contrary to the Riemannian geometry, a Fedosov connection is not unique. Thus,
it seems natural to add the Fedosov connection into the studied structure and
obtain the notion of a Fedosov manifold. See, e.g., Tondeur [13] for symplec-
tic connections for presymplectic structures and Gelfand, Retakh, Shubin [3] for
Fedosov connections.

It is known that if l > 1, the curvature tensor of a Fedosov connection decom-
poses into two invariant parts, namely into the so called symplectic Ricci curvature
and symplectic Weyl curvature tensor fields. If l = 1, only the symplectic Ricci
curvature occurs. See Vaisman [14] for details.

In order to define a symplectic Killing spinor field, we shall briefly describe the
so called metaplectic structures with help of which these fields are defined. Any
symplectic group Sp(2l,R) admits a non-trivial, i.e., connected, two-fold covering,
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the so called metaplectic group, denoted by Mp(2l,R) in this paper. A metaplectic
structure over a symplectic manifold is a symplectic analogue of the Riemannian
spin structure. In particular, one of its parts is a principal Mp(2l,R)-bundle
which covers twice the bundle of symplectic frame of (M2l, ω). Let us denote this
principal Mp(2l,R)-bundle by q : Q →M .

Now, let us say a few words about the symplectic spinor fields. These fields
are sections of the so called symplectic spinor bundle S →M . This vector bundle
is the bundle associated to the principal Mp(2l,R)-bundle q : Q → M via the so
called Segal-Shale-Weil representation. The Segal-Shale-Weil representation is a
distinguished representation of the metaplectic group and plays a similar role in
the quantization of boson particles as the spinor representations of spin groups
play in the quantization of fermions. See, e.g., Shale [12]. The Segal-Shale-Weil
representation is unitary and does not descend to a representation of the sym-
plectic group. The vector space of the underlying Harish-Chandra (g,K)-module
of the Segal-Shale-Weil representation is isomorphic to S•(Rl), the symmetric
power of a Lagrangian subspace Rl of the symplectic vector space R2l. Thus, the
situation is parallel to the complex orthogonal case, where the spinor representa-
tion can be realized on the exterior power of a maximal isotropic subspace. The
Segal-Shale-Weil representation and some of its analytic versions are sometimes
called oscillatory representation, metaplectic representation or symplectic spinor
representation. For a detailed explanation of the last name, see, e.g., Kostant [8].

The symplectic Killing spinor field is a non-zero section of the symplectic spinor
bundle S →M satisfying certain linear first order partial differential equation for-
mulated by the connection ∇S : Γ(M,S)×Γ(M,TM) → Γ(M,S), the associated
connection to the Fedosov connection ∇. This partial differential equation is a
symplectic analogue of the classical symplectic Killing spinor equation from at
least two aspects. One of them is rather formal. Namely, the defining equation
for a symplectic Killing spinor is of the “same shape” as that one for a Killing
spinor field on a Riemannian spin manifold. The second similarity can be ex-
pressed by comparing this equation with the so called symplectic Dirac equation
and the symplectic twistor equation and will be discussed below in this paper. Let
us mention that any symplectic Killing spinor field determines a unique complex
number, the so called symplectic Killing spinor number. Let us notice that the
symplectic Killing spinor fields were considered already in a connection with the
existence of a linear embedding of the spectrum of the so called symplectic Dirac
operator into the spectrum of the so called symplectic Rarita-Schwinger operator.
The symplectic Killing spinor fields represent an obstruction for the mentioned
embedding. See Krýsl [10] for this aspect.

In many particular cases, the equation for symplectic Killing spinor fields seems
to be rather complicated. On the other hand, in many cases it is known that its
solutions are rare. Therefore it is reasonable to look for a necessary condition
satisfied by a symplectic Killing spinor field which is simpler than the defining
equation itself. Let us notice that similar necessary conditions are known and
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parallel methods were used in Riemannian or Lorentzian spin geometry. See, e.g.,
Friedrich [2].

In this paper, we shall prove that any symplectic Killing spinor field necessarily
satisfies certain zeroth order differential equation. More precisely, we prove that
any symplectic Killing spinor is necessarily a section of the kernel of a symplectic
spinor bundle morphism. We derive this equation by prolongating the symplectic
Killing spinor equation. We make such a prolongation that enables us to compare
the result with an appropriate part of the curvature tensor of the associated
connection ∇S acting on symplectic spinors. An explicit formula for this part of
the curvature action was already derived in Krýsl [11]. Especially, it is known
that the symplectic Weyl curvature of ∇ does not show up in this part and thus,
the mentioned morphism depends on the symplectic Ricci part of the curvature
of the Fedosov connection ∇ only. This will make us able to prove that the
only symplectic Killing number of a Fedosov manifold of Weyl type is zero. This
will in turn imply that any symplectic Killing spinor on the standard symplectic
vector space of an arbitrary finite dimension and equipped with the standard flat
connection is constant. This result can be obtained easily when one knows the
prolongated equation, whereas computing the symplectic Killing spinors without
this knowledge is rather complicated. This fact will be illustrated when we will
compute the symplectic Killing spinors on the standard symplectic 2-plane using
just the defining equation for symplectic Killing spinor field.

The cases when the prolongated equation does not help so easily as in the case
of the Weyl type Fedosov manifolds are the Ricci type ones. Nevertheless, we
prove that there are no symplectic Killing spinors on the 2-sphere, equipped with
the volume form of the round metric as the symplectic form and the Riemann-
ian connection as the Fedosov connection. Let us remark that in this case, the
prolongated equation has a shape of a stationary Schrödinger equation. More pre-
cisely, it has the shape of the equation for the eigenvalues of certain oscillator-like
quantum Hamiltonian determined completely by the symplectic Ricci curvature
tensor of the Fedosov connection.

Let us notice that there are some applications of symplectic spinors in physics
besides those in the mentioned article of Shale [12]. For an application in string
theory physics, see, e.g., Green, Hull [4].

In the second section, some necessary notions from symplectic linear algebra
and representation theory of reductive Lie groups are explained and the Segal-
Shale-Weil representation and the symplectic Clifford multiplication are intro-
duced. In the third section, the Fedosov connections are introduced and some
properties of their curvature tensors acting on symplectic spinor fields are sum-
marized. In the fourth section, the symplectic Killing spinors are defined and
symplectic Killing spinors on the standard symplectic 2-plane are computed. In
this section, a connection of the symplectic Killing spinor fields to the eigen-
functions of symplectic Dirac and symplectic twistor operators is formulated and
proved. Further, the mentioned prolongation of the symplectic Killing spinor
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equation is derived and the symplectic Killing spinor fields on the standard sym-
plectic vector spaces are computed. At the end, the case of the round sphere S2

is treated.

2. Symplectic spinors and symplectic spinor valued forms

Let us start recalling some notions from symplectic linear algebra. Let us
mention that we shall often use the Einstein summation convention without men-
tioning it explicitly. Let (V, ω0) be a symplectic vector space of dimension 2l,
i.e., ω0 is a non-degenerate anti-symmetric bilinear form on the vector space V
of dimension 2l. Let L and L′ be two Lagrangian subspaces1 of (V, ω0) such that
L ⊕ L′ = V. Let {ei}2li=1 be an adapted symplectic basis of (V = L ⊕ L′, ω0),
i.e., {ei}2li=1 is a symplectic basis and {ei}li=1 ⊆ L and {ei}2li=l+1 ⊆ L′. Because
the definition of a symplectic basis is not unique, we shall fix one which we shall
use in this text. A basis {ei}2li=1 of (V, ω0) is called symplectic, if ω0(ei, ej) = 1
iff 1 ≤ i ≤ l and j = l + i; ω0(ei, ej) = −1 iff l + 1 ≤ i ≤ 2l and j = i − l
and ω0(ei, ej) = 0 in the remaining cases. Whenever a symplectic basis will be
chosen, we will denote the basis of V∗ dual to {ei}2li=1 by {ǫi}2li=1. Further for
i, j = 1, . . . , 2l, we set ωij := ω0(ei, ej) and similarly for other type of tensors.

For i, j = 1, . . . , 2l, we define ωij by the equation
∑2l

k=1 ωikω
jk = δij.

As in the orthogonal case, we would like to rise and lower indices. Because
the symplectic form ω0 is antisymmetric, we should be more careful in this case.
For coordinates Kab...c...d

rs...t...u of a tensor K over V, we denote the expression

ωicKab...c...d
rs...t by Kab...

i
...d

rs...t
and Kab...c

rs...t...uωti by Kab...c
rs...

i
...u and sim-

ilarly for other types of tensors and also in a geometric setting when we will be
considering tensor fields over a symplectic manifold (M,ω).

Let us denote the symplectic group Sp(V, ω0) of (V, ω0) by G. Because the
maximal compact subgroup of G is isomorphic to the unitary group U(l) which
is of homotopy type Z, we have π1(G) ≃ Z. From the theory of covering spaces,
we know that there exists up to an isomorphism a unique connected double cover
of G. This double cover is the so called metaplectic group Mp(V, ω0) and will be

denoted by G̃ in this text. We shall denote the covering homomorphism by λ,
i.e., λ : G̃ → G is a fixed member of the isomorphism class of all connected 2:1
coverings.

Now, let us recall some notions from representation theory of reductive Lie
groups which we shall need in this paper. Let us mention that these notions are
rather of technical character for the purpose of our article. For a reductive Lie
group G in the sense of Vogan [15], let R(G) be the category the object of which
are complete, locally convex, Hausdorff vector spaces with a continuous action of
G which is admissible and of finite length; the morphisms are continuous linear
G-equivariant maps between the objects. Let us notice that, e.g., finite covers
of the classical groups are reductive. It is known that any irreducible unitary
representation of a reductive group is in R(G). Let g be the Lie algebra of G

1i.e., maximal isotropic with respect to ω0, in particular dimL = dimL′ = l
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and K be a maximal compact subgroup of G. It is well known that there exists
the so called L2-globalization functor, denoted by L2 here, from the category
of admissible Harish-Chandra modules to the category R(G). See Vogan [15]
for details. Let us notice that this functor behaves compatibly with respect to
Hilbert tensor products. See, e.g., Vogan [15] again. For an object E in R(G),
let us denote its underlying Harish-Chandra (g,K)-module by E and when we
will be considering only its gC-module structure, we shall denote it by E. If gC

happens to be a simple complex Lie algebra of rank l, let us denote its Cartan
subalgebra by hC. The set Φ of roots for (gC, hC) is then uniquely determined.
Further let us choose a set Φ+ ⊆ Φ of positive roots and denote the corresponding
set of fundamental weights by {̟i}li=1. For λ ∈ hC, let us denote the irreducible
highest weight module with the highest weight λ by L(λ).

Let us denote by U(W) the group of unitary operators on a Hilbert space
W and let L : Mp(V, ω0) → U(L2(L)) be the Segal-Shale-Weil representation of
the metaplectic group. It is an infinite dimensional unitary representation of the
metaplectic group on the complex valued square Lebesgue integrable functions
defined on the Lagrangian subspace L. This representation does not descend
to a representation of the symplectic group Sp(V, ω0). See, e.g., Weil [16] and
Kashiwara, Vergne [7]. For convenience, let us set S := L2(L) and call it the
symplectic spinor module and its elements symplectic spinors. It is well known
that as a G̃-module, S decomposes into the direct sum S = S+ ⊕ S− of two
irreducible submodules. The submodule S+ (S−) consists of even (odd) functions
in L2(L). Further, let us notice that in Krýsl [9], a slightly different analytic
version (based on the so called minimal globalizations) of this representation was
used.

As in the orthogonal case, we may multiply spinors by vectors. The multipli-
cation . : V × S → S will be called symplectic Clifford multiplication and it is
defined as follows. For f ∈ S and i = 1, . . . , l, we set

(ei.f)(x) := ıxif(x),

(el+i.f)(x) :=
∂f

∂xi
(x), x ∈ L

and extend it linearly to get the symplectic Clifford multiplication. The symplectic
Clifford multiplication (by a fixed vector) has to be understood as an unbounded
operator on L2(L). See Habermann, Habermann [6] for details. Let us also
notice that the symplectic Clifford multiplication corresponds to the so called
Heisenberg canonical quantization known from quantum mechanics. (For brevity,
we shall write v.w.s, instead of v.(w.s), v, w ∈ V and s ∈ S.)

It is easy to check that the symplectic Clifford multiplication satisfies the re-
lation described in the following

Lemma 1. For v, w ∈ V and s ∈ S, we have

v.(w.s) − w.(v.s) = −ıω0(v, w)s.
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Proof: See Habermann, Habermann [6]. �
Let us consider the representation

ρ : G̃→ Aut(

•∧
V∗ ⊗ S)

of the metaplectic group G̃ on
∧• V∗ ⊗ S given by

ρ(g)(α⊗ s) := λ∗∧r(g)α⊗ L(g)s,

where r = 0, . . . , 2l, α ∈ ∧r V∗, s ∈ S and λ∗∧r denotes the rth wedge power of
the representation λ∗ dual to λ, and extended linearly. For definiteness, let us
consider the vector space

∧• V∗ ⊗ S equipped with the topology of the Hilbert
tensor product. Because the L2-globalization functor behaves compatibly with
respect to the Hilbert tensor products, one can easily see that the representation
ρ belongs to the class R(G̃).

In the next theorem, the space o symplectic valued exterior two-forms is de-
composed into irreducible summands.

Theorem 2. For 1
2 dim(V) = l > 2, the following isomorphism

2∧
V∗ ⊗ S± ≃ E20

± ⊕E21
± ⊕ E22

±

holds. For j2 = 0, 1, 2, the E2j2 are uniquely determined by the conditions that
first, they are submodules of the corresponding tensor products and second,

E20
− ≃ S− ≃ L(̟l−1 −

3

2
̟l), E20

+ ≃ S+ ≃ L(−1

2
̟l),

E21
− ≃ L(̟1 −

1

2
̟l), E21

+ ≃ L(̟1 +̟l−1 −
3

2
̟l),

E22
+ ≃ L(̟2 −

1

2
̟l) and E22

− ≃ L(̟2 +̟l−1 −
3

2
̟l).

Proof: This theorem is proved in Krýsl [10] or Krýsl [9] for the so called minimal
globalizations. Because the L2-globalization behaves compatibly with respect to
the considered Hilbert tensor product topology, the statement remains true. �

Remark. Let us notice that for l = 2, the number of irreducible summands in
symplectic spinor valued two-forms is the same as that one for l > 2. In this case
(l = 2), one only has to change the prescription for the highest weights described
in the preceding theorem. For l = 1, the number of the irreducible summands is
different from that one for l ≥ 2. Nevertheless, in this case the decomposition is
also multiplicity-free. See Krýsl [9] for details.

In order to make some proofs in the section on symplectic Killing spinor fields
simpler and more clear, let us introduce the operators
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F+ :

•∧
V∗ ⊗ S →

•+1∧
V∗ ⊗ S, F+(α⊗ s) :=

2l∑

i=1

ǫi ∧ α⊗ ei.s,

F− :

•∧
V∗ ⊗ S →

•−1∧
V∗ ⊗ S, F−(α⊗ s) := −

2l∑

i,j=1

ωijιeiα⊗ ej.s,

H :
•∧
V∗ ⊗ S →

•∧
V∗ ⊗ S, H := {F+, F−}.

Remark. (1) One easily finds out that the operators are independent of the
choice of an adapted symplectic basis {ei}2li=1.

(2) Let us remark that the operators F+, F− and H defined here differ from
the operators F+, F−, H defined in Krýsl [9]. Though, by a constant real
multiple only.

(3) The operators F+ and F− are used to prove the Howe correspondence
for Mp(V, ω0) acting on

∧• V∗⊗S via the representation ρ. More or less,
the ortho-symplectic super Lie algebra osp(1|2) plays the role of a (super
Lie) algebra, a representation of which is the appropriate commutant. See
Krýsl [9] for details.

In the next lemma the G̃-equivariance of the operators F+, F− and H is stated,
some properties of F± are mentioned and the value of H on degree-homogeneous
elements is computed. We shall use this lemma when we will be treating the
symplectic Killing spinor fields in the fourth section.

Lemma 3. Let (V = L ⊕ L′, ω0) be a 2l dimensional symplectic vector space.
Then

(1) the operators F+, F+ and H are G̃-equivariant,
(2) (a) F−

|E11 = 0,

(b) F+
|E00 is an isomorphism onto E10,

(c) (F+)2|S = − ı
2ω ⊗ Id|S and it is an isomorphism onto E20.

(3) For r = 0, . . . , 2l, we have

H|∧r V∗⊗S = ı(r − l) Id|∧r V∗⊗S .

Proof: See Krýsl [9]. �
Let us remark that the items 1 and 3 of the preceding lemma follow by a

direct computation, and the second item follows from the first item, decomposition
theorem (Theorem 2), a version of the Schur lemma and a direct computation.



26 S. Krýsl

3. Curvature of Fedosov manifolds and its actions on symplectic
spinors

After we have finished the “algebraic part” of this paper, let us recall some
basic facts on Fedosov manifolds, their curvature tensors, metaplectic structures
and the action of the curvature tensor on symplectic spinor fields.

Let us start recalling some notions and results related to the so called Fedosov
manifolds. Let (M2l, ω) be a symplectic manifold of dimension 2l. Any torsion-
free affine connection ∇ on M preserving ω, i.e., ∇ω = 0, is called Fedosov
connection. The triple (M,ω,∇), where ∇ is a Fedosov connection, will be called
Fedosov manifold . As we have already mentioned in the Introduction, a Fedosov
connection for a given symplectic manifold (M,ω) is not unique. Let us remark
that Fedosov manifolds are used for a construction of geometric quantization of
symplectic manifolds due to Fedosov. See, e.g., Fedosov [1].

To fix our notation, let us recall the classical definition of the curvature tensor
R∇ of the connection ∇, we shall be using here. We set

R∇(X,Y )Z := ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

for X,Y, Z ∈ X(M).
Let us choose a local adapted symplectic frame {ei}2li=1 on a fixed open subset

U ⊆M . By a local adapted symplectic frame {ei}2li=1 over U , we mean such a local
frame that for each m ∈ U the basis {(ei)m}2li=1 is an adapted symplectic basis
of (TmM,ωm). Whenever a symplectic frame is chosen, we denote its dual frame
by {ǫi}2li=1. Although some of the formulas below hold only locally, containing a
local adapted symplectic frame, we will not mention this restriction explicitly.

From the symplectic curvature tensor field R∇, we can build the symplectic
Ricci curvature tensor field σ∇ defined by the classical formula

σ∇(X,Y ) := Tr(V 7→ R∇(V,X)Y )

for each X,Y ∈ X(M) (the variable V denotes a vector field on M). For the
chosen frame and i, j = 1, . . . , 2l, we define

σij := σ∇(ei, ej).

Let us define the extended Ricci tensor field by the equation

σ̃(X,Y, Z, U) := σ̃ijknX
iY jZkUn, X, Y, Z, U ∈ X(M),

where for i, j, k, n = 1, . . . , 2l,

2(l + 1)σ̃ijkn := ωinσjk − ωikσjn + ωjnσik − ωjkσin + 2σijωkn.

A Fedosov manifold (M,ω,∇) is called of Weyl type, if σ = 0. Let us notice,
that it is called of Ricci type, if R = σ̃. In Vaisman [14], one can find more
information on the Sp(2l,R)-invariant decomposition of the curvature tensors of
Fedosov connections.
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Now, let us describe the geometric structure with help of which the symplectic
Killing spinor fields are defined. This structure, called metaplectic, is a symplec-
tic analogue of the notion of a spin structure in the Riemannian geometry. For
a symplectic manifold (M2l, ω) of dimension 2l, let us denote the bundle of sym-
plectic frame in TM by P and the foot-point projection of P onto M by p. Thus
(p : P →M,G), where G ≃ Sp(2l,R), is a principal G-bundle overM . As in Sub-

section 2, let λ : G̃→ G be a member of the isomorphism class of the non-trivial
two-fold coverings of the symplectic group G. In particular, G̃ ≃ Mp(2l,R). Fur-
ther, let us consider a principal G̃-bundle (q : Q → M, G̃) over the symplectic
manifold (M,ω). We call a pair (Q,Λ) metaplectic structure if Λ : Q → P is
a surjective bundle homomorphism over the identity on M and if the following
diagram,

Q× G̃

Λ×λ

��

// Q

Λ

��

q

��@
@@

@@
@@

@

M

P ×G // P
p

>>}}}}}}}}

with the horizontal arrows being respective actions of the displayed groups, com-
mutes. See, e.g., Habermann, Habermann [6] and Kostant [8] for details on
metaplectic structures. Let us only remark that typical examples of symplectic
manifolds admitting a metaplectic structure are cotangent bundles of orientable
manifolds (phase spaces), Calabi-Yau manifolds and complex projective spaces

CP2k+1, k ∈ N0.
Let us denote the vector bundle associated to the introduced principal G̃-

bundle (q : Q → M, G̃) via the representation ρ acting on S by S, and call this
associated vector bundle symplectic spinor bundle. Thus, we have S = Q ×ρ S.
The sections φ ∈ Γ(M,S) will be called symplectic spinor fields. Further for
j2 = 0, 1, 2, we define the associated vector bundles E2j2 by the prescription
E2j2 := Q ×ρ E2j2 . Further, we define Er := Γ(M,Q ×ρ

∧r V∗ ⊗ S), i.e., the
space o symplectic spinor valued differential r-forms, r = 0, . . . , 2l. Because the
symplectic Clifford multiplication is G̃-equivariant (see Habermann, Habermann
[6]), we can lift it to the associated vector bundle structure, i.e., to let it act
on the elements from Γ(M,S). For j2 = 0, 1, 2, let us denote the vector bundle
projections Γ(M, E2) → Γ(M, E2j2) by p2j2 , i.e., p2j2 : Γ(M, E2) → Γ(M, E2j2) for
all appropriate j2. This definition makes sense because due to the decomposition
result (Theorem 2) and Remark below Theorem 2, the G̃-module of symplectic
spinor valued exterior 2-forms is multiplicity-free.

Let Z be the principal bundle connection on the principal G-bundle (p : P →
M,G) associated to the chosen Fedosov connection ∇ and Z̃ be a lift of Z to the
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principal G̃-bundle (q : Q →M, G̃). Let us denote by ∇S the covariant derivative

associated to Z̃. Thus, in particular, ∇S acts on the symplectic spinor fields.
Any section φ of the associated vector bundle S = Q×ρ S can be equivalently

considered as a G̃-equivariant S-valued function on Q. Let us denote this function

by φ̂, i.e., φ̂ : Q → S. For a local adapted symplectic frame s : U → P , let us

denote by s : U → Q one of the lifts of s to Q. Finally, let us set φs := φ̂ ◦ s.
Further for q ∈ Q and ψ ∈ S, let us denote by [q, ψ] the equivalence class in S
containing (q, ψ). (As it is well known, the total space S of the symplectic spinor
bundle is the product Q× S modulo an equivalence relation.)

Lemma 4. Let (M,ω,∇) be a Fedosov manifold admitting a metaplectic struc-
ture. Then for each X ∈ X(M), φ ∈ Γ(M,S) and a local adapted symplectic
frame s : U → P , we have

∇S
Xφ = [s,X(φs)]−

ı

2

l∑

i=1

[ei+l.(∇Xei).− ei.(∇Xei+l).]φ and

∇S
X(Y.φ) = (∇S

XY ).φ +X.∇S
Y φ.

Proof: See Habermann, Habermann [6]. �
The curvature tensor on symplectic spinor fields is defined by the formula

RS(X,Y )φ = ∇S
X∇S

Y φ−∇S
Y∇S

Xφ−∇S
[X,Y ]φ,

where φ ∈ Γ(M,S) and X,Y ∈ X(M).
In the next lemma, a part of the action of RS on the space of symplectic spinors

is described using just the symplectic Ricci curvature tensor field σ.

Lemma 5. Let (M,ω,∇) be a Fedosov manifold admitting a metaplectic struc-
ture. Then for a symplectic spinor field φ ∈ Γ(M,S), we have

p20RSφ =
ı

2l
σijωklǫ

k ∧ ǫl ⊗ ei.ej .φ.

Proof: See Krýsl [11]. �

4. Symplectic Killing spinor fields

In this section, we shall focus our attention to the symplectic Killing spinor
fields. More specifically, we compute the symplectic Killing spinor fields on some
Fedosov manifolds admitting a metaplectic structure and derive a necessary con-
dition satisfied by a symplectic Killing spinor field.

Let (M,ω,∇) be a Fedosov manifold admitting a metaplectic structure. We
call a non-zero section φ ∈ Γ(M,S) symplectic Killing spinor field if

∇S
Xφ = λX.φ
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for a complex number λ ∈ C and each vector field X ∈ X(M). The complex
number λ will sometimes be called symplectic Killing spinor number. (Allowing
the zero section to be a symplectic Killing spinor would make the notion of a
symplectic Killing spinor number meaningless.)

Let us note that one can rewrite equivalently the preceding defining equation
for a symplectic Killing spinor into

∇Sφ = λF+φ.

Indeed, if this equation is satisfied, we get by inserting the local vector field
X = X iei the equation ∇S

Xφ = ιX(λǫi ⊗ ei.φ) = λǫi(X)ei.φ = λX iei.φ = λX.φ,
i.e., the defining equation. Conversely, one can prove that ∇S

Xφ = λX.φ is equiv-
alent to ιX∇Sφ = ιX(λF+φ). Because this equation holds for each vector field
X , we get ∇Sφ = λF+φ. We shall call both the defining equation and the equiv-
alent equation for a symplectic Killing spinor field the symplectic Killing spinor
equation.

In the next example, we compute the symplectic Killing spinors on the standard
symplectic 2-plane.

Example 1. Let us solve the symplectic Killing spinor equation for the stan-
dard symplectic vector space (R2[s, t], ω0) equipped with the standard flat Eu-
clidean connection ∇. In this case, (R2, ω0,∇) is also a Fedosov manifold. The
bundle of symplectic frame in TR2 defines a principal Sp(2,R)-bundle. Because
H1(R2,R) = 0, we know that there exists, up to a bundle isomorphism, only
one metaplectic bundle over R2, namely the trivial principal Mp(2,R)-bundle
R2 ×Mp(2,R) → R2 and thus also a unique metaplectic structure Λ : Mp(2,R)×
R2 → Sp(2,R) × R2 given by Λ(g, (s, t)) := (λ(g), (s, t)) for g ∈ Mp(2,R) and
(s, t) ∈ R2. Let S → R2 be the symplectic spinor bundle. In this case S → R2

is isomorphic to the trivial vector bundle S× R2 = L2(R)× R2 → R2. Thus, we
may think of a symplectic spinor field φ as of a mapping φ : R2 → S = L2(R).
Let us define ψ : R3 → C by ψ(s, t, x) := φ(s, t)(x) for each (s, t, x) ∈ R3. One
easily shows that φ is a symplectic Killing spinor if and only if the function ψ
satisfies the system

∂ψ

∂s
= λıxψ and

∂ψ

∂t
= λ

∂ψ

∂x
.

If λ = 0, the solution of this system of partial differential equations is neces-
sarily ψ(s, t, x) = ψ(x), (s, t, x) ∈ R3, for any ψ ∈ L2(R).

If λ 6= 0, let us consider the independent variable and corresponding depen-
dent variable transformation s = s, y = t + λ−1x, z = t − λ−1x and ψ(s, t, x) =

ψ̃(s, t + λ−1x, t − λ−1x) = ψ̃(s, y, z). The Jacobian of this transformation is
−2/λ 6= 0 and the transformation is obviously a diffeomorphism. Substitut-
ing this transformation in the studied system, one gets the following equivalent
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transformed system

∂ψ̃

∂s
=

ı

2
λ2(y − z)ψ̃

∂ψ̃

∂y
+
∂ψ̃

∂z
= λ(

∂ψ̃

∂y
λ−1 +

∂ψ̃

∂z
(−λ−1)).

(Let us notice that the substitution we have used is similar to that one which
is usually used to obtain the d’Alemebert’s solution of the wave equation in two

dimensions.) The first equation implies ∂ψ̃
∂z = 0, and thus ψ̃(s, y, z) = ψ(s, y) for a

function ψ. Substituting this relation into the second equation of the transformed
system, we get

∂ψ

∂s
=
ı

2
(y − z)λ2ψ.

The solution of this equation is ψ(s, y) = e
ı
2λ

2(y−z)sψ̃(y) for a suitable function ψ̃.
Because of the dependence of the right hand side of the last written equation on z,

we see that ψ does not exist unless λ = 0 or ψ̃ = 0 (More formally, one gets these

restrictions by substituting the last written formula for ψ into the first equation
of the transformed system.) Thus, necessarily ψ = 0 or λ = 0. The case λ = 0 is
excluded by the assumption at the beginning of this calculation.

Summing up, we have proved that any symplectic Killing spinor field φ on
(R2, ω0,∇) is constant, i.e., for each (s, t) ∈ R2, we have φ(s, t) = ψ for a function
ψ ∈ L2(R). The only symplectic Killing spinor number is zero in this case.

Remark. More generally, one can treat the case of a standard symplectic vec-
tor space (R2l[s1, . . . , sl, t1, . . . , tl], ω0) equipped with the standard flat Euclidean
connection ∇. One gets by similar lines of reasoning that any symplectic Killing
spinor for this Fedosov manifold is also constant, i.e.,

ψ(s1, . . . , sl, t1, . . . , tl) = ψ,

for (s1, . . . , sl), (t1, . . . , tl) ∈ Rl and ψ ∈ L2(Rl). But we shall see this result more
easily below when we will be studying the prolongated equation mentioned in the
Introduction.

Now, in order to make a connection of the symplectic Killing spinor equation
to some slightly more known equations, let us introduce the following operators.

The operator

D : Γ(M,S) → Γ(M,S), D := −F−∇S

is called symplectic Dirac operator and its eigenfunctions are called symplectic
Dirac spinors. Let us notice that the symplectic Dirac operator was introduced
by Katharina Habermann in 1992. See, e.g., Habermann [5].
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The operator

T : Γ(M,S) → Γ(M, E11), T := ∇S − p10∇S

is called (the first) symplectic twistor operator.
In the next theorem, the symplectic Killing spinor fields are related to the

symplectic Dirac spinors and to the kernel of the symplectic twistor operator.

Theorem 6. Let (M,ω,∇) be a Fedosov manifold admitting a metaplectic struc-
ture. A symplectic spinor field φ ∈ Γ(M,S) is a symplectic Killing spinor field if
and only if φ is a symplectic Dirac spinor lying in the kernel of the symplectic
twistor operator.

Proof: We prove this equivalence in two steps.

(1) Suppose φ ∈ Γ(M,S) is a symplectic Killing spinor to a symplectic Killing
number λ ∈ C. Thus it satisfies the equation ∇Sφ = λF+φ. Applying the
operator −F− to the both sides of the preceding equation and using the
definition of the symplectic Dirac operator, we get Dφ = −λF−F+φ =
λ(−H + F+F−)φ = −λHφ = −λ(−ılφ) = ıλlφ due to the definition of
H and Lemma 3(2)(a) and (3). Thus φ is a symplectic Dirac spinor.

Now, we compute Tφ. Using the definition of T, we get Tφ = (∇S −
p10∇S)φ = λ(F+φ−p10F+φ) = λp11F+φ = 0, because F+φ ∈ Γ(M, E10)
due to Lemma 3(2)(a).

(2) Conversely, let φ ∈ Γ(M, E00) be in the kernel of the symplectic twistor op-
erator and also a symplectic Dirac spinor. Thus, we have∇Sφ−p10∇Sφ =
0 and Dφ = −F−∇Sφ = µφ for a complex number µ ∈ C. From
the first equation, we deduce that ψ := ∇Sφ ∈ Γ(M, E10). Because
F+
|Γ(M,E00) is surjective onto Γ(M, E10) (see Lemma 3(2)(b)), there ex-

ists a ψ′ ∈ Γ(M, E00) such that ψ = F+ψ′. Let us compute F+F−ψ =
F+F−F+ψ′ = F+(H − F+F−)ψ′ = F+(−ılψ′) = −ılψ, where we have
used the defining equation for H and Lemma 3(2)(a) and (3). Thus we
get

−F+F−ψ = ılψ.(1)

From the symplectic Dirac equation, we get µφ = −F−ψ. Thus −F+F−ψ
= µF+φ. Using the equation (1), we obtain ılψ = µF+φ, i.e., ∇Sφ =
−ıµl F+φ. Thus, φ is a symplectic Killing spinor to the symplectic Killing
spinor number −ıµ/l. �

In the next theorem, we derive the mentioned prolongation of the symplectic
Killing spinor equation. It is a zeroth order equation. More precisely, it is an
equation for the sections of the kernel of an endomorphism of the symplectic
spinor bundle S →M . A similar computation is well known from the Riemannian
spin geometry. See, e.g., Friedrich [2].
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Theorem 7. Let (M2l, ω,∇) be a Fedosov manifold admitting a metaplectic
structure and a symplectic Killing spinor field φ ∈ Γ(M,S) to the symplectic
Killing spinor number λ. Then

σijei.ej .φ = 2lλ2φ.

Proof: Let φ ∈ Γ(M2l,S) be a symplectic spinor Killing field, i.e., ∇S
Xφ = λX.φ

for a complex number λ and any vector field X ∈ X(M). For vector fields X,Y ∈
X(M), we may write

RS(X,Y )φ = (∇X∇Y −∇Y∇X −∇[X,Y ])φ

= λ∇X(Y.φ) − λ∇Y (X.φ)− λ[X,Y ].φ

= λ(∇XY ).φ+ λY.(∇Xφ) − λ(∇YX).φ− λX.∇Y .φ− λ[X,Y ].φ

= λT (X,Y ).φ+ λ2(Y.X.− Y.X.)φ

= λT (X,Y ).φ+ ıλ2ω(X,Y )φ = ıλ2ω(X,Y )φ,

where we have used the symplectic Killing spinor equation and the compatibility
of the symplectic spinor covariant derivative and the symplectic Clifford multipli-
cation (Lemma 4).

Thus RSφ = ıλ2ω ⊗ φ. Because of Lemma 3(2)(c), we know that the right
hand side is in Γ(M, E20). Thus also RSφ = p20RSφ. Using Lemma 5, we get
ı
2lω⊗σijei.ej.φ = ıλ2ω⊗φ. Thus σijei.ej.φ = 2lλ2φ and the theorem follows. �

Remark. Let us recall that in the Riemannian spin geometry (positive definite
case), the existence of a non-zero Killing spinor implies that the manifold is Ein-
stein. Further, let us notice that if the symplectic Ricci curvature tensor σ is
(globally) diagonalizable by a symplectomorphism, the prolongated equation has
the shape of the equation for eigenvalues of the Hamiltonian of an elliptic l di-
mensional harmonic oscillator with possibly varying axes lengths. An example
of a diagonalizable symplectic Ricci curvature will be treated in Example 3. Al-
though, in this case the axis will be constant and the harmonic oscillator will be
spherical.

Now, we derive a simple consequence of the preceding theorem in the case of
Fedosov manifolds of Weyl type, i.e., σ = 0.

Corollary 8. Let (M,ω,∇) be a Fedosov manifold of Weyl type. Let (M,ω)
admit a metaplectic structure and a symplectic Killing spinor φ field to the sym-
plectic Killing spinor number λ. Then the symplectic Killing spinor number λ = 0
and φ is locally covariantly constant.

Proof: Follows immediately from the preceding theorem and the symplectic
Killing spinor equation. �

Example 2. Let us go back to the case of (R2l, ω0,∇) from Remark below Ex-
ample 1. Corollary 8 implies that any symplectic Killing spinor field for this
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structure is covariantly constant, i.e., in fact constant in this case, and any sym-
plectic Killing number is zero. In this case, we see that the prolongated equation
from Theorem 7 makes it possible to compute the symplectic Killing spinor fields
without any big effort, compared to the calculations in Example 1 where the
2-plane was treated.

In the next example, we compute the symplectic Killing spinor fields on S2

equipped with the standard symplectic structure and the Riemannian connection
of the round metric. This is an example of a Fedosov manifold (specified more
carefully below) for which one cannot use Corollary 8, because it is not of Weyl
type. But still, one can use Theorem 7.

Example 3. Consider the round sphere (S2, r2(dθ2 + sin2 θdφ2)) of radius r >
0, θ being the longitude a φ the latitude. Then ω := r2 sin θdθ ∧ dφ is the
volume form of the round sphere. Because ω is also a symplectic form, (S2, ω)
is a symplectic manifold. Let us consider the Riemannian connection ∇ of the
round sphere. Then ∇ preserves the symplectic volume form ω being a metric
connection of the round sphere. Because∇ is torsion-free, we see that (S2, ω,∇) is
a Fedosov manifold. Now, we will work in a coordinate patch without mentioning
it explicitly. Let us set e1 := 1

r
∂
∂θ and e2 := 1

r sin θ
∂
∂φ . Clearly, {e1, e2} is a local

adapted symplectic frame and it is a local orthogonal frame as well. With respect
to this basis, the Ricci form σ of ∇ takes the form

[σij ]i,j=1,2 =

(
1/r 0
0 1/r

)
.

Let us consider S2 as the complex projective space CP1. It is easy to see that
the (unique) complex structure on CP1 is compatible with the volume form. The

first Chern class of the tangent bundle to CP1 is known to be even. Thus, the
symplectic manifold (S2, ω) admits a metaplectic structure and we may consider a
symplectic Killing spinor field φ ∈ Γ(S2,S) corresponding to a symplectic Killing
spinor number λ. Because the first homology group of the sphere S2 is zero, the
metaplectic structure is unique and thus the trivial one. Because of the triviality of
the associated symplectic spinor bundle S → S2, we may write φ(m) = (m, f(m))
where f(m) ∈ L2(R) for each m ∈ S2. Using Theorem 7 and the prescription for
the Ricci form, we get that σijei.ej .[f(m)] = 1

rH [f(m)] = 2λ2f(m), where H =
∂2

∂x2 − x2 is the quantum Hamiltonian of the one dimensional harmonic oscillator.

The solutions of the Sturm-Liouville type equationH [f(m)] = 2rλ2f(m), m ∈ S2,
are well known. The eigenfunctions of H are the Hermite functions fl(m)(x) =

hl(x) := ex
2/2 dl

dxl (e
−x2

) for m ∈ S2 and x ∈ R and the corresponding eigenvalues

are −(2l+ 1), l ∈ N0. Thus 2rλ
2 = −(2l+ 1) and consequently

λ = ±ı
√

2l+ 1

2r
.
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Using the fact that {e1, e2} is a local orthonormal frame and ∇ is metric and
torsion-free, we easily get

∇e1e1 = 0 ∇e1e2 = 0
∇e2e1 = cot θ

r e2 ∇e2e2 = − cot θ
r e1.

From the definition of differentiability of functions with values in a Hilbert
space, we see easily as a consequence of the preceding computations that any
symplectic Killing spinor field is necessarily of the form φ(m) = (m, c(m)fl(m))
for a smooth function c ∈ C∞(S2,C). Substituting this Ansatz into the symplectic
Killing spinor equation, we get for each vector field X ∈ X(S2) the equation

∇X(cfl) = (Xc)fl + c∇Xfl = λc(X.fl).

Due to Lemma 4, we have for a local adapted symplectic frame s : U ⊆ S2 →
P = Sp(2,R)× S2,

∇Xfl = [s,X(fl)s]−
ı

2
[e2.(∇Xe1).− e1.(∇Xe2).]fl.

(See the paragraph above Lemma 4 for an explanation of the notation used in
this formula.)

Because m 7→ (m, fl(m)) is constant as a section of the trivial bundle S → S2,
the first summand of the preceding expression vanishes. Thus for X = e1, we get

(e1c)fl +
ıc

2
[e2.(∇e1e1).− e1.(∇e1e2).]fl = λc(e1.fl).

Using the knowledge of the values of ∇e1ej , for j = 1, 2, computed above, the
second summand at the left hand side of the last written equation vanishes and
thus, we get

1

r

∂c

∂θ
fl = λcıxfl.

This equation implies c(θ, φ) = ψ(x, φ)eırxλθ for x such that hl(x) 6= 0 and a
suitable function ψ. (The set of such x ∈ R, such that hl(x) 6= 0 is the complement
in R of a finite set.) Because r > 0 is given and λ is certainly non-zero (see the
prescription for λ above), the only possibility for c to be independent of x is
ψ = 0. Therefore c = 0 and consequently φ = 0. On the other hand, φ = 0 (the
zero section) is clearly a solution, but according to the definition not a symplectic
Killing spinor. Thus, there is no symplectic Killing spinor field on the round
sphere.

Remark. In the future, one can study holonomy restrictions implied by the ex-
istence of a symplectic Killing spinor. One can also try to extend the results to
general symplectic connections, i.e., to drop the condition on the torsion-freeness
or study also the symplectic Killing fields on Ricci type Fedosov manifolds admit-
ting a metaplectic structure in more detail.
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