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1. PRELIMINARIES

All spaces under consideration are supposed to be T,-spaoes, i. e. finite
sets are closed: M", or merely M, will be used to denote theslosure of a subset
M of a space P. If zm is a family of subsets of a space P, then ", or merely R,
will be used to denote the family of all M*, M € . Aoentredfumﬂyofsets
is'a family IR of sets with the finite intersection property, i. e., the intersection
of every finite subfamily of 3R is non-void. g (P) will be ‘used to denate the
Cech-Stone compactification of & completely regular space P. ~

A transformation of a space P is a continuous mapping from P.to P. If f is
a transformation of P, then f° denotes the identity tmnsformatlon of P, i. e.
S° (z) = =z for each x in P, and by induction

i =fofr (n=0, '1.,,2, o) o y

Let f be a transformation of a space P. A subset M of P is fixed under f,

or merely f-fixed, if f{M] C M, or equivalently, if the restriction f/M of f to M
is a transformation of M.

Definition 1. Let f be a transformation of a space P. A minimal f-4ixed. set
is & non-void closed f-fixed subset ¥ of P which oontains no non-void olosed
fﬁxedpropersubset ie,if o #F,CFand P,is a.olosedfﬁxtdset then

1.= .

In the present note we shall mveaelgaw the existence and propertles of
minimal f-fixed sets. In the sequel, the following ‘trivial assertions (a) and (b)
will be used without references: .

(8) Let f be a transformation of & spaoe P. The intersection of f -fixed sets
is a f-fixed set. The closure of an f-fixed set, is an f-fixed set. . ‘

Indeedlff[M]chorea.nhMm!Rtheg . ‘

[INMCNUMEE e WA
andif f[M]C M, then by continuity of f we have

[ cfid
and consequently, f [M] C M. L
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(b)Let f be a tra.mformatibn of P and let = be a point of P. The sets

(1) M(f,z) ={fMz);n=0,1,2, ...}
- and
@ - F(fix) =M (f =)

are f-fixed. Moreover, if M is f-fixed and x € M, then M (f,z)C M. If M
is closed and f-fixed and if z € M, then F (f,z) C M.
Thus we have proved.

THEOREM 1. Let f be a transformation of a space P. A non-void subset F of P
18 @ minimal f-fived set if, and only if,

) zeF = F (f,z) =F
In coﬁseqmce, if F is a minimal f-fixed set, then f [F] =

2. EXISTENCE OF MINIMAL FIXED SETS

THEOREM 2. If f 18 a transformation of a compact space P, then every non-vosd
closed f-fixed subset of P contains a minimal f-fixed set. In consequence, if P # &,
then there exists at least one minimal f-fixed set.

Proof. Let M be the family of all non-void closed f-fixed subsets of P. The
family R is ordered by inclusion. Clearly, minimal elements of It are precisely
minimal f-fixed sets. Thus we have to prove that for every F in It there exists
a minimal Fye I with Foe M. It is sufficient to show that every linearly
ordered subfamily i of It has a lower bound. But it is obvious. Indeed, N, =
= ( N is f-fixed as an intersection of f-fixed sets and N, is non-void, since
P is a compact space. Clearly Ny C N for each N in .

Let us recall that a Lipschitz transformation of a metric space (P, o) is
a transformation f of P such that

z,yeP =0 (f (). f(¥) = a0 (z,¥).

The following result is well-known.
THEOREM 3. If f is a Lipschitz transformation of a wmplete metric space
(P, o) with constant a << 1, then there exists a point x in P such that f () = =

and for every y in P
li;g e (@, z) =0

tha.tis,
yeP=>zxzeF (f, y)

We shall prove a generalization of the preceding theorem. Clearly, g trans-
formation f of a metric space (P, o) is a Lipschitz transformation with constant
a if and only if

MCP=d(f[M]) = ad (M)
where :
(3) d (M) =sup {e (z,y); xe M, ye M},

d(2)=0.



‘Definition 2. A diameter on a spaoce P isa non-neg&t.rvp functmn d (values
of d are non-negative real numbers and oo) deﬁned for all M C P and satisfying
the following axioms: .

@)MCNCP=d(M)=d®) ..

. (d2)zeP =d {(z)) =0 e

- (d3)d (M) =inf{d (U); U open, U>D M}

44 d (M) =d (M) .

A d-Cauchy family is a eentred famlly I of subsets of P such that, ]

inf {d (M); Me D) =0.

A diameter d on P will be called complete, if- nMm ;& @ for every d-Ca.uohy
family .

Definition 3. Let d be a diameter on a space P, A transformation f of P
will be called a Lipschitz transformation-of P with constant a, 1f

M C P =N (f[M)) < od (M)

. THEOREM 4. Let d be a complete diameter on a .spaoe P Iffisa Lmsclutz
transformation of P with constant «, then every non-void closed f- fized set of finte

~ diameter contains a minimal f-fized set.

" Proof. Let F be a non-void closed f-fixed set’ and let d(F) < . Let us

define by induction If"o = F and A

Foiy —f[Fn] »=012...)
ThenF :)1?’,.+1 #* @ fora.llnand
(4) ‘ lim d(F,) =0

n->o
It is easy to see that

K = n{f',.;n—12 }

is a compact non-void f-fixed set. K is f-fixed, since every F is f-fixed. The
diameter d being complete, from (4) it follows at once that K is non-void. °
To prove compactness of K, let It be a eentred family of subeets of P. Clearly

MeM = dM) < dF,) = dF,) < ard(Xy)

‘and consequently, Y
' - Me 9)& = d(M) = 0

The diameter d being complete, we have
7 # NW|W = NM".

Thus K is a compact f-fixed subspace of P. By Theorem 2 t.here ensts a mini-’
mal (f/K)-fixed subset K, of K. Clearly K., is a minimal f fixed set and K, C
C K C F. The proof is complete, -

It is easy to see that a metric space (P 9) is oomplete if and only if the dia-
meter ¢ defined by (3) is complete in the sense of Definition (2). A transfor-
mation f of (P, ¢) is Lipschitz with constant « if and only lf f isa Llpqohltz
transformation of (P, d) with constant a. ,



Now the Theorem 3 follows easily from Theorem 4. Indeed, it is easy to see

that ) :
d(F(f,y) =dM(f,y) < o

Thus every F(f, y) contains a minimal f-fixed set.

If d(F) < o and f[F] =F, then d(F) =0 because d(F) < «d(F). But
d(M) = 0if and only if M is at most one-point. Thus minimal f-fixed sets are
one-point and there exists only one minimal set. The fact

,132 e(fi(y), x) =0
follows from the fact that :
' o ”li;g aAF(f, f¥) =o0.

Let us recall that a completely regular space P is said to be topologically
complete in the sense of E. Cech, or merely complete, if P is a @, in the Cech«
Stone compactification g(P) of P. If P is complete and P C R, P = R, then
PisaG;sin R.

THEOREM. 5. A completely regular space P is complete if and only if there
exists a complete diameter on P.

Proof. In [2] it is proved that if there exists on P a complete diameter
satisfying only (d1), (d2) and (d3), then P is a complete space. Conversely,
let P be a G; in a compactification K of P. Let us choose open sets U, in K
such that U, D U,,, and

P=N{Usn=12 ...}

" Let MC P.If M and K — U, are completely separated for no =, then we
put d(M) = 1. (Of ocourse, subsets N,, N, of K are completely separated, if
there exists a continuous real-valued function f on K with f[N;] = (0) and
f[N;] = (1).) In the other case, let

d(M) = inf {1/n; M and K — U, are completely separated}. Clearly the con-
ditions (d1)—(d4) are fulfilled. It is sufficient to prove that d is complete.
Let M be a d-Cauchy family. Let us choose M,e M, with d(M,) < 1/a.
Clearly we have M C U,. It follows

s«ENMcCcN{M;n=12...}CP.
But for every M C P we have
M nNP=M
and consequently, L o
The proof is complete.

Note. To prove Theorem 4, it is sufficient to assume that d satisfies only
"the conditions (d1) and (d4).

3. A QUOTIENT SPACE ASSOCIATED WITH A GIVEN TRANSFORMATION
Let f be transformation of a space Q. Let D be the family of subsets of @

consisting from all minimal f-fixed sets and all one-point sets (x), where z
belongs to no minimal f-fixed set. Clearly, ® is a decomposition of Q. Let us
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, conm;lerthequotnentspabex Q/i) Letnbet«hopro;ecﬂonof@ontoK
- Clear y
a(z) = n(y) = =(f(z)) = 7({y)):
Let us define a transformation ® of K as follows
O (n(z)) = a(f(z)),

bon ==nof :

that is,

Evidently, @ is a mapping from K to K. Both mappings f and = are continuous,
and consequently, z o f and hence ® o z is continuous. x being the quotient-map-
ping and @ o x being continuous, the mapping P is continuous. Thus P is a trans-
formation of K.

Proposition 1. If M is a f- ﬁxed subset of Q, then n[M] is a ®-fixed set.

Indeed, clearl
[ O[a[M]] = alf[M]] C =[M] .

Proposltlon 2. If N is a ®-fixed subset of K, then ar‘[N] is a f-fixed subset
of Q.

Proof. Clearly
a1 [N]]] = D[~ [N]]] = ‘D[N] CnN.
It follows
F =fl={N]1 C ““[N]
because
naF]} =

The proof is complete.

If F is a minimal f-fixed set, then F €d a.nd f[I"'] = F, and oonsequently

<b(F) = ’ '

Thus minimal f-fixed sets are fixed points of ®. Conversely, fixed pomts of ®
are minimal f-fixed sets.
Thus we have. proved the following assertlon

THEOREM 6. Let f be a transformation of a space Q. There exists a quohent
mapping n of Q onto a space K and a transformation ®-of K such that

(1) If F C Q ¢ a minimal f-fixed set, thenu[F]waﬁzedpomton

(2) It F C Q s f-fized, then n[F)] 18 ®-fixed.

(3) If F C K i3 ®-fized, thenﬂ‘l[F]wfﬁz?d

(4)<Don wof.

4. ORBICULAR SPACES

. In this section we shall investigate spaoee which are qnmma.l f-ﬁxed sets
under a transformation of a space.
Let f be a transformation of a space P and let F be a , inimal f-fixed set.
If z € P, then F(f, z) = F (See 2).
Definition. An orbicular transformation of a space P is # transformation f
of P such that
zeP = F(f,z) =



A space P will be ¢alled orbicular, if there exists an orbicular transformation
of P and P has at least two points.

Examples. If a space P has the fixed-point property, that is, if every contl-
nuous transformation f has a fixed point, then P is not an orbicular space.
For example, a closed interval of real-numbers (i. e. simple arc) and Euclidean
cubes are not. On the other hand a simple closed curve (i. e., any space homeo-
morphical with the circle) is an orbicular space. It is easy to construct an orbi-
cular transformation of the circle K = {z; |2| = 1} of the complex plane. Let

f'l(eu) — e’i(H‘ ),

If ) = om, & 1rratlonal then f»i8 an orbicular mapping of XK . o
Proposition 3. Let f be an orbicular transformation of a countably compact
space P. Let {y.} be a sequence of points in P such that

fWns)) =9 (=1,2, ...)

Then the set Y of all y,; » = 1, 2, ... is dense in P.
Proof. For every k =1, 2, , let Y; be the closure of the set {y,; n = k).
Put

F=ﬁn.
k=1

The space P being countably éompé,bt, the set F is non-void. By our assumption

Yl C Y,
and hence

fIF1C n.f[Yk+1]C n Y, =F.

Thus F is a non-void closed f-fixed subset of P. f being an orbicular mapping,
F = P. In consequence, Y is dense in P because YO Y.DOF.

Proposition 4. Let f be an orbicular transformation of an infinite space P:
Let z,€ P, X, = (z,) and

Xty =f1&a] (n=0,1,2,...)

Then the sequence {X,.} is disjoint.
Proof. Let us suppose that the proposition is not true. Let » be the least
integer such that X, N X,, # & for some m > n. Let P be the least posmve

integer, with

X'n n Xn+p F#* Q)' .
If » > 0, then i .
. Xor O Xopp1 # @
since

f[Xn] = Xn—l: f[Xn+v] = n+p—1

But it is impossible. Thus » = 0. Since X, = (x,), we have zg€ X,, and by
definition of X « we have f? (,) = z,. In consequence

F(f, %) = {xo’ J @), - - f"'](“’o)}
The transformation f being orbicular,

F(f: Z,) =P

10



+ bat it is impossible, smoeranmﬁmteseta.ndF(f z.,)maﬁmteseb.’l‘hxs
contradiction completes the proof.
- THEOREM 7. Let f be an orbicular tramformahm of a space P. Then estherf‘
18 an orbicular transformation of P or there exist. two disjoint subsets: Fy and Fy
of P such that F,\) F, = P, f[F,] = Fy, f[F5] = F, and f3/F; is an orbicular
transformation of Fi (i = 1, 2). In particular, if P is connected, then f* is an
orbicular transformation of P. -
Proof. Let us suppose that f* is not an orbicular transforma.’l;xon of P. Thus
there exists a point z in P guch that the set

M = M(f? z) ={ftnz); n —0 1, 2 ..}

is not dense in P. Consider also the set -
N ={fmi@;n =0,1,2, .1}
Sinoe f is an orblcular mapping, M| (j x) is dense in P and - henoe (M(f z) =

=M N)

MUN-=P.
Clearly IR . ,
3) fIM]IC N, f[ﬁ’]cf
- and hence -
' f[MancﬂﬂN

Thus the set M (| N is J-fixed. The tra.ﬂsformatlon f being orbicular, we have
eithee M \N = gor MO\ N =P. ByonrusnmpttoannotdensemP
and consequently, M (\ N = . Moreover, from (3) it follows.tifat L M] C M
and f’[N]C N. It remains to prove, that the restrictions f*/M and f*/N are
orbicular. Let y be an element of M. The set M(f, ) is dense in P and M is
open in P. Thus

N’ 0 M, y)

is & dense subset of M. But

‘MO Mfy = M(f’y)

Thus the restriction f)M of f to M is an orbicular tra.nsforma.tlon of M.
Analoguously we can prove that f2/N is orbicular. - .

The preceding theorem has the following generalization.

THEOREM 8. Let f be an orbicular transformation of P and let p be a positive
indegr. Then either fr 13 an orbicular transformation of Por there exist dwgomt
closed sets Fo, ..., Fyy such that ) ' ) )

(a) Fo U . UF,, =P - ' .

(6) T C oy o F ] € oy SFylC P | |

(c) The restriction fo/F; of fr toF; (1 = ,.1, cies p—1) iaan orbicular
tra}uformtwn of F} A J

” consequence; ¢, has at most p—] aﬁere-nt -then fr is-an
orbicular transformation of P. W f,

As an immediate consequence of Theorem 8 we have the followmg

THEOREM 9. If f is an orbicular transformation of a conmected space P, then .
Jf* 18 an orbicular transformation of P for every positive integer p.

11



Proof of Theorem 8. Let us suppose that the theorem is not true. Hence,
there exists an orbicular transformation f of a space P and a positive integer p -
such that f» is not an orbicular transformation of P and for no disjoint closed
sets F,, ..., F,_, the conditions (a), (b) and (c) are fulfilled.

Since f? is not orbicular, there exists a point z in P such that the set

'MO ={fw(x);n =0,1,2, "'}
is not dense in P. Put

= f[M,] ={fr+}(z);n =0, 1,2, ...}
M,y =M, ] = {fori(a);m = 0,1,2, ...}
MU ...UM, =Mfz)
we have

b ‘ M\...UM,, =P.
By continuity of f we have

fIM)C M, ..., f[M,,lC M,,

Since

Clearly
fM,,] C M,
and hence also . .
fM 1 C M, .

The set o
8 , F=M,(... M,
is f-invariant, %ince

fIFlc M, (... NM,,NMCF.

Since f is an orbicular transformation of P, we have either ¥ = gor F =P.
If F = P, then M, = F = P, which is impossible because M, is not dense
in P (by our assumption). Henoe F = @. Let ¢ + 1 be the least integer such
 that

M,N.. "My, =0.

“Put o B
F,=M,N... M, # o
f[Fo]: ) Fp-l =fTF;~_2] .
It is easy to see that the sets F, ..., F,_, are disjoint and f[F, ] C F,.
It follows that the set

F=FU...UF,,

is f-fixed (and of course closed) and hence F' = P. Clearly F; satxsfy the condi-
tions (a) and (b). To prove (c) it is sufficient to notice that F; are also open
in P. The proof is eomplete.

THEOREM 10. Let f be an orbicular transformation of an infinite Hausdorff
- compact space K. Let us choose points x,€e K, n = 0, +1, 42, ..., so that

f(Za) = Tpgs (0 =0, +-1, 12, ...)

12



. Let X be the set of all , and let B(X ) be the (eok-Stome compactification of X.
Let g be the Cech-Stone continuous mapping of B( X ) onto K (that 13, the restriction
of g to X is the identity mapping). Then there exists an orbicular transformation
® of B(X) such that
(4) fog=go®

The preceding equality uniquely defines continuous @, and @ is the unique
continuous extension of f|X to B(X). n ’

Proof. It is easy to see that f[X] = X and hence f/X is a continuous map-
ping from X onto X. By Cech-Stone theorem, there exists a continuous mapping
® from B(X) onto B(f[X]) = A(X). Thus ® is a transformation of f(X). Now
we shall prove (4), i. e. the commutativity of the following diagram:

£ bk
| o 2 do
Sinoce g/X is the identity mapping, we have.
| fogK =fix.  }
Since ®/X = f/X, we have also
(@o ®)X =go(®/X) =go(fiX) =fIX

The last equality follows from the fact that f[X]C X.Sincefogand g o ® are
;ontinuous, (gl is dense in (X) and the restrictions to X are identical, we have
og=god. - ' )
It remains to prove that @ is an orbicular transformation. Let F* be a minimal
®-fixed set in f(X). Then

flglF1) = gf®[F]}-= g[F] .

Thus g[F] is a non-void closed f-fixed subset of P, and consequently, g[F] = K.
In‘ﬂl&:r)bicular, X C g[F), and hence, X C F. X being dense in f(X), F =
. Corollary. An orbicular space may fail to be a homogeneous space (in any
usual sense). o
Indeed, if X is a circle, then K is a metrizable space, and in particular, every
point of K is of a countable character. Let X be the set from theorem 10.
Clearly every point of X has a countable character in f(X). On the other
hand, no point of §(X) — X has a countable pseudocharacter in f(X). It can
be noticed that in this case the space g(X) is totally disconnected.

Problem. I do not know whether there exists a connected (locally connected) -
orbicular compact space which is not homogeneous.

Note. Let us recall that the character of a point z of a spaoce P is the least
cardinal of a local base at = in P. The pseudocharacter is the least cardinal m.
such that there exists a family IR of open subisets of P such that the cardinality
of M is m and the intersection of IR is the one-point set (x). Let us recall,
if P is a compact space then characters and pseudocharacters of points coincide.
For further informations see [3]. '
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PY .
0 SAMODRUZNYCH MNOZINACH PRI SPOJITYCH TRANSFORMACICH

Souhrn

Transformac{ prostoru P rozumime spojité zobrazeni prostoru P do sebe. V &lénku
se studujf mlmmglni i uzaviené invariantni mnoZiny p#i dané transformaci a déle prostory,
které mohou byt miniméinf uzavienou samodruZnou mnoZinou pii néjaké transformaci
néjakého kompaktniho prostoru. P¥itom miniméln{ uzavienou samodruZnou mno#inou
transformace f prostoru P se rozumi neprézdné uzaviend mnoZina F C P, které je sa-
modruZné, to zn. f[F] = F a kterd neobsahuje ¥4dnou neprézdnou uzavienou samo-
drufnou mnofinu F, # F. Zfejmé kaZdy pevny bod je miniméini uzavienou samo-
druZnou mno#inou. : . '

Snadno se nahlédne, %e ka¥d4 transformace kompaktnfho prostoru mé miniméln{
uzaviené samodruZiné mnoZiny. Dokazuje se, Ze nékteré transformace topologicky
tplného Gplnd regulérniho prostoru maji miniméln{ uzaviené samodruiné mnoZiny.
Tato véta obsahuje jako speciélni Eﬂpad znémou vétu o existenci pevného bodu
Lipschitzovskych transformacf iplného metrického prostoru.

ansformaci f prostoru P nazyvéme cirkuldrni, jestlife pro kaZdé x postupné interace
(=), (=) = f(f(z)), ... bodu z tvoif hustou mnefinu v P. Prostor nazyvéme cirkuldr-
nim, jestlife pfipousti cirkuldrn{ transformaci. Zfejmé prévé cirkulérni prostory mohou
byt miniméln{ uzavfenou samodrufnou mno%inou pfi transformacich prostoriu. Nap#i-
klad kruZnice je cirkuldrnfm prostorem. Déle ziejmé vSechny koneéné prostory jsou
cirkulérni. Dé se dokézat, %e Cantorovo discontinuum je cirkulérnim prostorem.
V é&lanku se dokazuje m. j. nékolik vysledkit o] mocnindch cirkuldrnich zobrazeni.

OB MHBAPMAHTHBHIX MHOKECTBAX IIPI HEIPEPEIBHbIX OTOBPAMKEHMAX

PesoMe ~

. HenpepuBHoe oTo6GpakeHue f mpocrpancTtBa P B ce6 HasHBAETCA LHPKYJIAPHbLIM,

€CJIM JJIsi BCAKON TOYKH T IPOCTPaHCTBA P MHOMECTBO BCeX TOYeK f(z), fi(x) =
=f(t(=)}),..-.. ABAAeTc WIOTHHM B P, IIpocrpaHcTBo P HasHBaeM IUPKYJIAPHEIM,
eCciIM CyIIeCTByeT IEMPKYJIsApHOe oToGpaskenme P no P. B crarbe paccMaTpHBaloTCA
IMPKYJIAPHHE OPOCTPAHCTBA M NOKasHBAETCSA HEKOTOpoe 0600menne n3pecTHOR Teo-
PeMBEl 0 HemONBM;KHOM Todke oTOOpaskeHMA JIMIIMNa IOJHOIO METPHYECKOI'0 Mpo-
CTPAaHCTBA [JIA HEKOTOPHX oToGpaikeHMit MOJHHX (B cMHCIe J. Uexa) BHOJIHe pe-
IryJAPHHX IPOCTPAHCTB.
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