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ON FIXED SETS UNDER CONTINUOUS TRANSFORK-LTIONS 

Z D S Ќ Ž K FBOLÍX, 

Chaгl s Univ гsity Prague 

(R o iv d May 2бtћ, 1961) 

1. PRELIMINARIES 

All spaces under consideration are supposed to be ^-spaces, i. e. finite 
sets are closed. ifp, or merely M, will be used to denote the closure of a subset 
i f of a space P. If ffi iB a family of subsets_of a space P, then WR

f or merely IS, 
will be used to denote the family of all MP, Me SDL A centred family of sets 
is a family ffi of sets with the finite intersection property, i. e., the intersection 
of every finite subfamily of ffi is non-void. /? (P) will be used to denote the 
Cech-Stone compactification of a completely regular space P. 

A transformation of a space P is a continuous mapping from P to P. If/ is 
a transformation of P, then/0 denotes the identity transformation of P, i. e. 
f° (x) = x for each x in P, and by induction 

fn+i=fof» ( n = 0,1,2, :v.) / 

Let / be a transformation of a space P. A subset M of P is fixed under /, 
or merely /-fixed, if/[if] C M, or equivalently, if the restriction f/M off to i f 
is a transformation of M. 

Definition 1. Let/ be a transformation of a space P. A minimal /Axed set 
is a non-void closed/-fixed subset W of f which contains no non-void closed 
/-fixed proper subset, i. e., if 0 # .J^ C P and P x is a dosed /-fibrtd setj then 
Fx = P. 

In the present note we shall investigate the existence and properties of 
minimal/-fixed sets. In the sequel, the following trivial assertions (a) and (b) 
will be used without references: 

(a) Let/ be a transformation o!f a space P. The intersection of/-fixed sets 
is a/-fixed set. The closure of an/-fixed set is an/-fixed set. 

Indeed, if / [M] C M for earflih .Jf in 3R* t h ^ 

and if/ [M] C M, then by continuity of/ we have 

_ /[J-lc/prj-
and consequently, / [M] C if. 
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(b)Let / be a transformation of P and let z be a point of P The sets 

(1) M(f,z)={f»(z);n=0, I, 2, . . . } 

and 
(S) ' F(f,z)=M(f,z) 

are /-fixed. Moreover, if M is /-fixed and z e M, then M (/, z) d M. If Jf 
is closed and/-fixed and if z e M, then F (/, z) C --t-T. 
Thus we have proved* 

THEOREM 1. Let fbe a transformation of a space P. A non-void subset F of P 
is a minimal f-fized set if, and only if, 

zeF => F (f,z) =F 

In consequence, if F is a minimal f-fized set, thenf [F] = F. 

2. EXISTENCE OF MINIMAL FIXED SETS 

THEOREM 2. / / / i8 a transformation of a compact space P, then every non-void 
closed f-fized subset ofP contains a minimal f-fized set. In consequence, ifP^ 0, 
then there exists at least one minimal f-fized set. 

Proof. Let 9JI be the family of all non-void closed /-fixed subsets of P. The 
family 2R is ordered by inclusion. Clearly, minimal elements of 2Ji are precisely 
minimal/-fixed sets. Thus we have to prove that for every F in 2R there exists 
a minimal F0eWl with F0e 2R. It is sufficient to show that every linearly 
ordered subfamily 31 of 3K has a lower bound. But it is obvious. Indeed, jiV0 = 
•= H 5R is /-fixed as an intersection of /-fixed sets and N0 is non-void, since 
P is a compact space. Clearly N0C1 N for each N in 31. 

Let us recall that a Iipschitz transformation of a metric space (P, Q) is 
a transformation f of P such th$t 

z,yeP=>Q (f (z), f (y)) ̂  aQ (z, y) . 

The following result is well-known. 
THEOREM 3. If f is a Lipschitz transformation of a complete metric space 

(P, Q) with constant a < 1, then there ezists a point z inP such that f (z) = x 
and for every yinP 

]im Q (f* (y), x) =0, 
n->oq 

that is, 
yeP^zeF(f,y) 

We shall prove a generalization of the preceding theorem. Clearly, ^ trans* 
formation/of a metric space (P, Q) is a Lipschitz transformation with constant 
a if and only if 

M C P => d (/[./¥]) ^ ad (M) 
where 
(3) d (M) = sup {Q (z,y)\zeM,ye M), 

d(0) = 0 . 



Definition 2. A diameter on a space P is a non-negative function d (values 
of d are non-negative real numbers tod oo) defined for all Jf C P and satisfying 
the following axioms: ^ 

(dl)M(ZNc:P=*d(M)^d(N) 
(d2)xeP=*d((x))= 0 V 
(d3) d (M) = inf {d (U); U open, 77 3 15f} 
(d4)d(if) = d(Jf) r • 

A d-Cauchy family is a centred family 2# of subsets of P such that 

inf {d(Jf); MeWl} = 0 . 

A diameter d on P will be called complete, if HSR ^ 0 f°r ©very d-Cauchy 
family m. 
. Definition 3. Let d be a diameter on a space P, A transformatioh f of P 

will be called a Lipschitz transformation of P with constant a, if 

MdP^>sd(f[M])^od(M) 

.THEOREM 4. Le£ d be a complete diameter on a space P. Iff is a Lipschitz 
transformation of P with constant a, then every non-void closed f-fixed set of finite 
diameter contains a minimal f-fixed set. 

Proof. Let JPbea non-void closed /-fixed set and let d(F) < oo. Let us 
define by induction F0 = F and 

^ i = / [ - ? J (n = 0 , 1 , 2 , ; . . ) 

Then Fn Z> Fn+1 -£ 0 for all n and 

(4) .. ]imd(Fn) = 0 
n->oo 

It is easy to see that . 
K = Cl{Fn;n^l, 2, . . , .} . > 

is a compact non-void /-fixed set. K is /-fixed, .since every Fn is /-fixed. The 
diameter d being complete, from (4) it follows at once that K is non-void. 
To prove compactness of K, let 501 be a centred fAmily of subsets of P. Clearly 

M e 2R => d(M) ^ d(Fn) = d(Fn) ^ «*d(F0) 

and consequently, • 

Mem*>d(M) = 0 

The diameter d being complete, we have 

0 ^()W = C\W. 
Thus K is a compact /-fixed subspace of P. By Theorem 2 there exists a mini-' 
mal (//IQ-fixed subset K0 of K. Clearly JST0 is a minimal /-fixed set |uid K0 C 
C --f C F. The proof is complete* . . * . . , , . : . 

It is easy to see that a metric space (P, e) is complete if and only if the dia­
meter d defined by (3) is complete in the sense of Definition (2). A transfor­
mation / of (P, Q) is Lipschitz with constant a if and only iif is a Lip^ohitzt 
transformation of (P, d) with constant a. V 



Now the Theorem 3 follows easily from Theorem 4. Indeed, it is easy to see 
that 

d(F(f,y))=d(M(f,y))< co 
Thus every F(f, y) contains a minimal /-fixed set. 

If d(F) < oo and f[F] = F, then d(F) = 0 because d(F) ^ *d(F). But 
d(M) = 0 if and only if M is at most one-point. Thus minimal /-fixed sets are 
one-point and there exists only one minimal set. The fact 

lim Q(fn(y), x) = 0 
fl->00 

follows from the fact that 
]imd(F(f,f»(y)))=0. 
n->oo 

Let us recall that a completely regular space P is said to be topologically 
complete in the sense of E. Cech, or merely complete, if P is a Os in the Cech* 
Stone compactification ft(P) of P. If P is complete and PC.R, P = R, then 
P is a Od in R. 

THEOREM. 5. A completely regular space P is complete if and only if there 
exists a complete diameter on P. 

Proof. In [2] it is proved that if there exists on P a complete diameter 
satisfying only (dl), (d2) and (d3), then P is a complete space. Conversely, 
let P be a Od in a compactification K of P. Let us choose open sets Un in K 
such that Un 3 Un+1 and 

P = Cl{Un;n = 1 , 2 , . . . } . 

Let M C P* If M and K — Un are completely separated for no n, then we 
put d(M) = 1. (Of course, subsets Nl9 N2 of K are completely separated, if 
there exists a continuous real-valued function f on K with f[Nt] = (0) and 
f[N2] = (1).) In the other case, let 
d(M) = inf {1/n; M and K — Un are completely separated}. Clearly the con­
ditions (dl)—(d4) are fulfilled. It is sufficient to prove that d is complete. 
Let 2R be a drCauchy family. Let us choose Mn e 3R» with d(Mn) < l/n. 
Clearly we have Mn C Un. It follows 

0 ?-= 0 M* C 0 {Mn\ n = 1, 2, . . . } C P. 

But for every M C -P we have 

s * n -p = 3fp 

and consequently, 

The proof is complete. 
Note. To prove Theorem 4, it is sufficient to assume that d satisfies only 

the conditions (dl) and (d4). 

3. A QUOTIENT SPACE ASSOCIATED WITH A GIVEN TRANSFORMATION 

Let / be transformation of a space Q. Let % be the family of subsets of Q 
consisting from all minimal /-fixed sets and all one-point sets (x), where x 
belongs to no minimal /-fixed set. Clearly, $ is a decomposition of Q. Let us 
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consider the quotient spate K — Q}%. Let n be the projection of Q onto K. 
Clearly 

n(x) = n(y) **> n{f(x)) = n(f(y)). 
Let us define a transformation O of K as follows 

<l>(n(x))=ntf(x)), 
that is, 

<bon =nof ' 

Evidently, O is a mapping from K to K. Both mappings/ and n are continuous, 
and consequently, nof and hence Q o n is continuous, n being the quotient-map­
ping and <bon being continuous, the mapping 4> is continuous. Thus. * is a trans­
formation of K. 

Proposition 1. If M is a /-fixed subset of Q, then n[M] is a O-fixed set. 
Indeed, clearly 

$>[n[M]] =-= n[*[M]] C n[M] . 

Proposition 2. If N is a O-fixed subset of K, then TT^N] is a /-fixed subset 
otQ. 

Proof. Clearly 

nWtr^N]]] = O ^ n r 1 ^ ] ] = • [ # ] CN. 
It follows 

F =f[ar*[N]]] Cvr^N] 
because 

TC^F]] =-= F. 
The proof is complete. 

If F is a minimal /-fixed set, then F e $ and f[F] = .F, and consequently 

ti(F) =F. 

Thus minimal/-fixed sets are fixed points of O. Conversely, fiied points of <X> 
are minimal/-fixed sets. 
Thus we have* proved the following assertion. 

THEOREM 6. Let f be a transformation of a space Q. There exists a quotient 
mapping nofQ onto a space K and a transformation <t> of K such that 

(1) If F <ZQ i* a minimal f-fixed set, then n[F] is a fixed point of <t>. 
(2) If F(Z Q is f-fixed, then n[F] is <b-fixed. 
(3) If FCZ K is to-fixed, then nr^F] is f-fixed. 
(4) Oorc =7ZOf. 

4. ORBICULAR SPACES 

In this section we shall investigate spaces which are niinimal /-fixed sets 
under a transformation of a space. 

Let / be a transformation of a space P and let F be a minimal /-fixed set. 
If xeP, then F(f, x) -= F (See 2). 

Definition. An orbicular transformation of a space P is a transformation / 
of P such that 

xeP => F(f, x) •-= P . 
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A space P will be Called orbicular, if there exists an orbicular transformation 
of P and P has at least two points. 

Examples. If a space P has the fixed-point property, that is, if every conti­
nuous transformation / has a fixed point, then P is not aai orbicular space. 
For example, a closed interval of real-numbers (i. e. simple arc) and Euclidean 
cubes are not. On the other hand a Simple closed curve (i. e., any space homeo-
morphical with the circle) is an orbicular space. It is easy to construct an orbi­
cular transformation of the circle K = {z; \z\ = 1} of the complex plane. Let 

. / , ( * » ) . = «-<-+*>„ 

If r\ == oca, a irrational, then/, is an orbicular mapping of K. 
Proposition 3. Let / be an orbicular transformation of a, countably compact 

space P. Let {yn} be a sequence of points in P such that 

f{y«+i) =y» (n = 1, 2, . . . ) 
Then the set Y of all yn, n = 1, 2, . . . is dense in P. 

Proof. For every k =-= 1, 2, . . . , let Yk be the closure of the set {yn; n ^ k}. 
Put 

fc=i 

The space P being countably compact, the set F is non-void. By our assumption 

A^iicr. 
and hence 

/ [ -ncn / iY^jcn Yk=F.. 
fc=i * = i 

Thus F is a non-void closed /-fixed subset of P. / being an orbicular mapping, 
F = P. In consequence, Y is dense in P because Y ID Yk U P. 

Proposition 4. Let / be an orbicular transformation of an infinite space P: 
Let a;0 eP, X0 = (x0) and 

^ * + i = / - ™ ( n = 0 , 1, 2,-...) 

Then the sequence \Xn} is disjoint. 
Proof. Let us suppose that the proposition is not true. Let n be the least 

integer such that Xn fj Xm ^ 0 for some m >n. Let p be the least positive 
integer, with 

Xn fl -3-n+p =?-= 0 . • 
If n > 0, then 

-3-n-i H -^n+p-l ^ ^ 
since 

/[-^J = = -"--it-l-. /[----»+pJ = -Kn+p-i • 

But it is impossible. Thus n = 0. Since J£0 = (#0), we have .r„Glp, and by 
definition of Xk we have fp (x0) = x0. In consequence 

F(fxo)= K f(*o)> • • •>f^M} • 
The transformation/being orbicular, 

F(f,x,)=P, 
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bat it is impossible, since P is an infinite set and F{f, £0) is a* finite set. This 
contradiction completes the proof . 

THEOREM 7. Let f be an orbicular transformation of a space P. Then either /* 
is an orbicular transformation of P or there exist two disjoint subsets P* and F* 
of P such that Fx \) Pa == P, /[P-J == F%, / [ P j — Jfi arid f*/Fi is aw orbicular 
transformation of Fi (i = 1, 2). In particular, if P is connected, then f* is an 
orbicular transformation of P. ' ' ' , * 

Proof. Let us suppose that/2 is not an orbicular transformation of P. Thus 
there exists a point x in P such that the set 

Jf = Jf(/*, x) = {/*»(*); n = 0, 1, 2, . . . } 

is not dense in P. Consider also the set 

N H/**+M*);» - o, i , 2,'./;•}. 

Sinoe / is an orbicular mapping, Jf (/, x) is dense in P and hence (Jf (/, x) = 
,-=Jf U'JO _ 

Jf y ] f = p . 
Clearly _ _ 
<3) f[Ml(ZN% fmcff 
and henoe _ _ _ _ _ 

/ [ S n -V] c(-*f n N. -:,'•, 
Thus the set Jf 0 -^ is /-fixed. The transformation / being orbicular, we have 
either Jf f) N = 0 or Jf 0 <-¥ =-P- By our a^umptioji Jf is not dense in P, 
and consequently, M f) N -= 0 . Moreover, from (3) itfoUows:^t/*[_JS]CJ? 
and f*[N] C -V. It remains to prove^ that 1&he restrictions /"/Jf and f*fN are 
orbicular. Let y be an element of Jf. The set Jf (/, y) is dense in P and Jf is 
open in P. Thus 

_ M()M(f,y) 
is a dense subset of Jf. But 

* MClM(f,y)=M\f*,y) 

Thus the restriction /*/Jf of / to Jf is an orbicular transformation of Jf; 
Analoguously we can prove that/^JV is orbicular. v 

The preceding theorem has the following generalization. 
THEOREM 8. Let f be an orbicular transformation of P and let p be a positive 

integr. Then either fi is an orbicular transformation of P or there exist disjoint 
closed sets P0, . . . , Fv-X such that 

(")FoU . . U*V-i--P 
(b)f[F0] C Pi, ... .,/[P^2] C P^i,/[Pp-i] C Pi-
(c) The restriction f»/Fi of p to Fi (i = 0, 1, . ; , , p—1) is an orbicular 

transformation of Fi. 
In consequence, if P has at most p—1 different components, then p is cm 

orbicular transformation of P. 
As an immediate consequence of Theorem 8 we have the foUowing 
THEOREM 9. Iff is an orbicular transformation of a connected space P, then 

f» is an orbicular transformation cf P for every positive integer p. 
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Since 

we have 

Proof of Theorem 8. Let us suppose that the theorem is not true. Henoe, 
there exists an orbicular transformation / of a space P and a positive integer p 
such that/* is nbt an orbicular transformation of P and for no disjoint closed 
sets F0, . . . , Pp-i the conditions (a), (b) and (c) are fulfilled. 
Since f* is not orbicular, there exists a point z in P such that the set 

M0 = {/*»(*); n = 0, 1, 2, . . . } 
is not dense in P. Put 

Mx =/[-M0] = {f>»+*(x); n = 0, 1, 2, . . . } 

M*-x - / [ J f t J = {f>w-Hz); n = 0, 1, 2, . . . } 

M0\J ... K)M9.x^M(f9x) 

JtfoU . . . U ^ P - i = - P . 
By continuity of / we have 

f[M0] CMU..., / [ ^ - J C M--X 
Clearly 

• / [ J l V J C J - ; 
and hence also 

/ [ I p - i ] c l 0 . 
The set _ _ 

P = - ^ 0 n .. n J-Vi 
is /-invariant, since 

/mc -^n .. n^p-ifi^ocp. 
Since / is an orbicular transformation of P, we have either F = 0 or P = P . 
If P = P, then Jf0 = F = P, which is impossible because if0 is not dense 
in P (by our assumption). Hence F = 0 . I_«t i + 1 be the least integer such 
that 

M0 n .. • n -S^i = 0 • 
Put _ 

p0 = ^ n . . . n ^ i ^ 0 

^i = /PoT, . . . , P , - I = / I ^ - 2 ] . 
It is easy to see that the sets P0, . . . , F^-x are disjoint and /[Pp-i] C P0. 
It follows that the set 

P = P o U .. U * V i 

is/-fixed (and of course closed) and hence F = P. Clearly P* satisfy the condi­
tions (a) and (b). To prove (c) it is sufficient to notice that F{ are also open 
in P. The proof is complete. 

THEOREM 10. Let f be an orbicular transformation of an infinite Hausdorff 
compact space K. Let us choose points xneK, n = 0, ±1, ±2, . . . , so that 

f(*n) = *»+i (n == 0, ±1 ±2, ...) 
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Let X be the set of all x% and let p(X) be the Ceok-Stone compactificqtion of X. 
Let g be the Cech-Stone continuous mapping qffi(X) onto K (that is, the restriction 
of g to X is the identity mapping). Then there exists an orbicular transformation 
O of P(X) such that 
(4) • fog =groO 

The preceding equality uniquely defines continuous O, and <t> is the unique 
continuous extension of f\X to ft(X). 

Proof. It is easy to see that f[X] = X and hence f/X is a continuous map­
ping from X onto X. By Cech-Stone theorem, there exists a continuous mapping 
$ from p(X) onto p(f[X]) = P(X). Thus O is a transformation of p(X). Now 
we shall prove (4), i. e. the commi^tativity of the following diagram: 

к JU K 
"î * ť 
ß(X) -* ß(X) Sînoe g/X is the identity mapping, w have 

fog/K-f/X. V 
6 

Sinee Ф/X =f/X, we have also 

(goФЦX = go(Ф/X) = go (//*) = / / * 

The last equality follows from the fact that f[X] C X. Since/o g and g 6 O are 
continuous, X is dense in fi(X) and the Restrictions to X are identical, we have 
fog=go<b. 

It remains to prove that $ is an orbicular transformation. Let F be a minimal 
O-fixed set in 0(X). Then 

MF]]=gt*[F]y=g[F]. 

Thus g[F] is a non-void closed/-fixed subset of P, and consequently, g[F] = K. 
In particular, X C g[F], and hence, X C.F.X being dense in 0(X), F = 
= P(X). 

Corollary. An orbicular space may fail to be a homogeneous space (in any 
usual sense). 
Indeed, if K is a circle, then K is a metrizable space, and in particular, every 
point of f is of a countable character. Let X be the set from theorem 10. 
Clearly every point of X has a countable character in (i(X). On the other 
hand, no point of (}(X) — X has a countable pseudocharaoter in fi(X). It can 
be noticed that in this case the space ft(X) is totally disconnected. 

Problem. I do not know whether there exists a connected (locally connected) 
orbicular compact space which is not homogeneous. 

Note. Let us recall that the character of a point a? of a space P is the least 
cardinal of a local base at x in P. The pseudocharaoter is the least cardinal m. 
such that there exists a family 2JI of open subsets of P such that the cardinality 
of 2R is m and the intersection of SR is the one-point set (x). Let us recall, 
if P is a compact space then characters and pseudocharacters of points coincide. 
For further informations see [3]. 
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O SAMODRUŽNÝCH MNOŽINÁCH P^I SPOJITÝCH TRANSFORMACÍCH 

Souhrn 

Transformací prostoru P rozumíme spojité zobrazení prostoru P do sebe. V článku 
se studují minimální uzavřené invariantní množiny při dané transformaci a dále prostory, 
které mohou být minimální uzavřenou samodružnou množinou při nějaké transformaci 
nějakého kompaktního prostoru. Přitom minimální uzavřenou samodružnou množinou 
transformace / prostoru P se rozumí neprázdná uzavřená množina F C. P> která je sa­
modružná, to zn. /[F] = F a která neobsahuje žádnou neprázdnou uzavřenou samo­
družnou množinu Fx Ť-= F. Zřejmě každý pevný bod je minimální uzavřenou samo­
družnou množinou. 

Snadno se nahlédne, že každá transformace kompaktního prostoru má TniníTnAlni 
uzavřené samodružné množiny. Dokazuje se, že některé transformace topologicky 
úplného úplně regulárního prostoru mají minimální uzavřené samodružné množiny. 
Tato věta obsahuje jako speciální případ známou větu o existenci pevného bodu 
Lipschitzovských transformací úplného metrického prostoru. 

Transformaci / prostoru P nazýváme cirkulární, jestliže pro každé x postupné interace 
/(se), /2(a?) = f(f(x))t . . . bodu x tvoří hustou množinu v P. Prostor nazýváme cirkulár­
ním, jestliže připouští cirkulární transformaci. Zřejmě právě cirkulární prostory mohou 
být minimální uzavřenou samodružnou množinou při transformacích prostorů. Napří­
klad kružnice je cirkulárním prostorem. Dále zřejmě všechny konečné prostory jsou 
cirkulární. Dá se dokázat, Že Cantorovo discontinuum je cirkulárním prostorem. 
V článku se dokazuje m. j . několik výsledků o] mocninách cirkulárních zobrazení. 

OB HHBAPHAHTHbIX MHCttKECTBAX IIPH HEnPEPBIBHLlX OTOEPAJKEHHHX 

Р е з ю м е '" 

Непрерывное отображение / пространства Р в себя называется циркулярным, 
если для всякой точки х пространства Р множество всех точек ](х)9 г(х) = 
=Щ(х))> является плотным в Рщ Пространство Р называем циркулярным. 
если существует циркулярное отображение Р до Р. В статье рассматриваются 
циркулярные пространства и доказывается некоторое обобщение известной тео­
ремы о неподвижной точке отображения Липшица полного метрического про­
странства для некоторых отображений полных (в смысле Э. Чеха) вполне ре­
гулярных пространств. 
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