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The aim of the present note is to show how the notion of the minimum-ideal 
and related methods introduced by N. H. McCoy [1] may be used for general
ising a theorem on singular matrices due to O. BOB^VKA [2]. 

Let A be a given square matrix with elements in an arbitrary commutative 
ring 9ft with unit element. The minimum-ideal 3 pf A consists of all polynomials 
9>(a;) e $i[x] with the property <p(A) = 0 . It was already proved by McCoy 
that, given any y>(x)e?R[x], the matrix y>(A) has its inverse matrix over 9t 
if and only if (3> w(x)) = (!)• Prom that it follows immediatly that 3 is not 
a maximal ideal of dt[x] if and only if there is a polynomial y>(x) e $t[x] such 
that y>(A) -?-= 0 and such that y>(A) has no inverse matrixtover St. 

However, a generalisation of Boruvka's theorem (see [2], Theorem 2 or 
the end of this paper) may be got as weU as foUows: 

THEOREM: Let 9i be an arbitrary commutative ring with unit dement and let A 
be a square matrix of order n with elements in 9ft. The minimum-ideal 3 of A 
is not prime if and only if there is a polynomial y>(x) e fR[x] such thai y>(A) =£ O 
and such that at least one of the following two conditions is satisfied: 

a) det((y>(A)) = 0, 
P) there exists a square matrix B of order n with elements in 9fl such thai det(.B) =?-= 

^Oand y>(A)B = 0. 
Proof: Suppose first of aU that 3 k n ° t prime â nd consider <p(x)X(x)^% 

?(*) $ 3> W $ 3- It foUows that <p(A)X(A) = 0 , tp(A) # 0 , X(A) ^O. If 
det (X(A)) = 0 the condition a) holds for y>(x) = X(x). In the opposite case,we put 
y>(x) = <p(x) and B = X(A) and we get /?). 

To make the proof in the opposite direction consider at first the case y>(4) 7-= 0 
and det(tp(A)) = 0. We denote by E the identity matrix of order n and we put 
M(x) ^y>(x)E—y>(A), d(x) = det(M{x)). Prom M(A) = 0 foUows (see [1], 
Theorem Z')6(A) = 0 and d(x) e 3 . Furtherfrom det(V(-4)) = 0, using the weU-
known expansion of det(-3f(x)) in powers of y>(x), we get d(x) == [y>(x)]m[a + 
+ y>(x)X(x)] with a # 0, X(x) € 8t[a:], 1 <>m <>n. Now the assumption for 3 to be 
prime leads to a contradiction as foUows. It would be a + tp(q)X(x) e 3, <*E + 
+ y>(A)X(A) = 0. Prom.ii .# 0 we have X(x) i 3 . It foUows 

y>(A)X(A) = —aE, 0 = det(y>(A))det(X(A)) = <—a)», 
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[rp(A)k(A)]» = (—a)»E =0. 

It must be l(x) e 3 what is a contradiction with k(x) $$. 
Consider now the case y>(A) =£ 0, det(B) -£ 0 and rp(A)B = 6. Put M(x) = 

= ip(x)B so that M(A)=Q. If d(x) =det(M(x)), it follows again d(A) = 0 . 
But d (x) = [y^)]*det(.B) e Qf and the assumption for g to be prime would give 
det(-B) e 3 and det(2?) = 0 contrary to our hypothesis. Thus our theorem is 
proved. 

In the case that dt is a field the condition ft) never holds and we get Boruvka's 
theorem (see [2], Theorem 2): The minimal polynomial <p(x) of A is reducible 
over dt if and only if there is a polynomial tp(x) e $t[x] such thai y>(A) ^O and 
det(tp(A)) = 0 . 

POZNÁMKA O M-IDEÁLU DANÉ MATICE 

Souhrn 

V práci se používá pojmu M-ideálu (minimum-ideal) čtvercové matice nad libovol
ným komutativním okruhem 8 jednotkovým prvkem, zavedeného N. H. MCCOYXM 
[1], ke zobecnění jedné věty O. BORŮVKY ([2], věta 2). Uvádí se nutná a postačující 
podmínka k tomu, aby M-ideál dané matice nebyl prvoideál. 
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