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In this paper we discuss some questions arising in the transportation problem
when solution has to be bounded by given constants.

As in [1] we use great Latin letters to denote real matrices of type (m, n).

= (ay), B = (by) and if ay; < b; for every i =1, 2, ... m and for every

_7 = l 2, ..., n, we write 4 < B. If the sum of all elements in every line (row
or column) of A equals the sum of all elements in the con'espondmg line of B,
we write A ~ B. The null-matrix will be denoted by O.

ProBLEM. Given A >0 and B > O we have to decide whether there exists
amatrix X withO < X < Band X ~ A.

We shall use the following notions: leen U = (w;) and V = (v;) we write
U < V if and only if

vy =20 =2 v;>uy=>0 and
5 <0 = Uy <0
is true forevery ¢ = 1,2, ..., mand foreveryj =1,2, ..., 5. If U < V then
V—-—U=<V.
If for a given V ~ O we have N
(1) ) V=U1+Ug+...+Uf

and 0 # U, ~0, Uy = Vioreveryk = 1,2, ..., rthen we call (1) a standard
decomposition of V. If O = V ~ O is an snteger matrix (with integer elements
only) and if no standard decomposition (1) of V with snfeger matrices U, is
possible except the trivial one with ¥ = 1 and U, = V, then we call V a basic
mamz In [1] all basic matrices are found ([1], Corolary 2, 1, page 192)

= (vy;) t8 basic if and only if there are two sequences of mdwes %1 B3, - .., 3 ONA
J,, Jas - - > Jss each of them containing distinct numbers only, such that
Visiy, = —Wigip = Vigjy = ~Wigjy = -+« = —W4_jj, = v‘ﬂjl = Y%, = —1

\ andtr,;—-()mauotherca,sea
This may be proved in connection with the following 1mportant lemma
([1], Theorem 2, 1, page 191):
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Lrmma: For every F such that O # F ~ O it i3 always possible to find a
standard decomposition
2 =oU, +eUs+ ... +eU

with o, > 0 and unth basic matrices Uy for every k = 1, 2
Using this lemma we may prove
THEOREM 1: Suppose A >0, B > 0. Let A £ B, say ai;, > by, for some
fized ¢, and j,. Then tftherewamatnxXauch that X ~ Aand O < X < B, then
there exists a basic matriz U = (uy;) such that

i

1) T wy >0 = ey < by
Uu; <0 = a;>0

foreverys =1,2, ..., mand foreveryj =1,2, ..., n;

) Wiyiy <0 . .
Proof:Let F = X — Asothat X = A + FandO # F ~ 0. Usingourlemma
we find some standard decomposition (2) of . We have f;,;, < 0 and consequent-
ly taking U = U, for suitable k¥ we have u,;; <0. Now if u;; > 0 then f;; > 0
wd%< ngbu Ifu;,< 0thenf,,< Oandogxg, < @.

REMARK 1: If a basic mairiz U = (uy;) satisfies the conditions of theorem 1 then
it 18 always possible to find a number o > 0 such that

U >0 = ay +ouy<b; u; <0 = aii+9uii20

Joreveryi =1,2, .. ,mandforeveryy =1,2,

For any two matrices U = (uy), V (v‘,) let pl(U V) denote the set
of all pairs (2, j) such that w; > v; and p,(U, V) the set of all pairs (¢, j) such
that u; < v;. By s(U, V) we denote the sum of all u; — v; where (i, j) €
epy(U, V).

Thus the conditions 1) and 2) of theorem 1 may be written as p,(U, 0)c
C 71 (B, 4) and (i3, j1) € (0, U) C p:(4, 0).

The conditions of remark 1. have the form p,(U, O) C py(4 + oU, B) and
2(0, U) C ps(0, A + oU). Notice that the following is true: p,(4 + oU, B) C
Cpl(A’ B)’ 8(A + QU, B) < S(A’ -B)'

SOLUTION OF THE PROBLEM¥*): Our solution of the problem (for formulation
see above) is based on a certain construction of a sequence 4 = 4, 4,, ...,
A;; ... such that O < A, ~ A. (k =0, 1, ....). This sequence is constructed
term by term and will stop in the following two cases:

1) We come to a matrix A, such that 4; < B. Then our problem is solved
by X = Ak

2) We come to a matrix 4, < B and choosing some fixed pair (%, j,) €
€ p,(4x, B) we prove that there is no basic matrix U such that

2(U, 0) C py(B, 44)
(3) . , and
»(ip J1) €p(0, U) C py(4s, 0) .

Then from theorem 1 we conclude that our problem has no solution.

*) for rational matrices 4 and B.
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If for some A; neither 1) nor 2) is satified then we construct A, in the
following way: We have already chosen some (3y, j,) € p,(4x, B) and we have
found a basic matrix U such that (3). Using remark 1 we find greatest o > 0
such that p,(U, 0) C Py 4i + @U, B) and p,(0, U) (- pg(O A; + oU). Then
putting 4,,, = 4; + U we have O < A4, ~ Ay ~ A, py(4ry,, B)C
C p1(4s, B) and 8(4s4q, B) < 8(4y, B).

From that it follows that if 4 and B have ratioral elements then our sequence
must be finite so that after a finite number of steps we come to the case 1) or 2).

Let us now discuss the case 2) in greater detail. Let A <X B and (44, jy) €
€ p,(4, B). We have to decide Whether there exists a basic.matrix U such

that
2(U, 0) C py(B, 4) '
(4) and
(41, J1) €2(0, U) C py(4, 0)

On the set 3 ={1, 2, ..., n} we define a binary relation a: for j, j'€J
we write jaj’ if an only if there exists an index ¢ = 1, 2, ..., m such that
(3, 5) € p1(4, O0) and (3, j°') € p1(B, A). Let 3, be the set of all Jj €3 such that
(4, j) € Py(B, A4). Let 31 be the least subset of & containing &, such that if
j€$, and jaj’ then 5’ € §;. Now we can prove

.THEOREM 2: For the existence of a basic matrix U satisfying (4) it is necessary

and sufficient that j, € 3.

Proof: Let U = (uy) be a basic matrix satisfying (4). We can find two
sequences of indices 4;, %3, ..., 9, and jy, js, ..., J, such that w,; = —u,;, =
= Uiy, = —Uipjy = o0 = "_11.=’U'4‘,"=—’u§.11=—1o

We have j; €, jaajs, Jsdjes - - -» Jeajy and consequently j; € 3.

NOW let jl € 31. We m&y ﬁn.d j’, ja, “eey j, Subh tha:t jg € 31, jgaja, jsaj‘, vo oy
Jsjy, making s at the same time as small as possible. It follows that (3,, j5) €
€p (B, A) and that there aresome indices 4,, %5, ..., 9, satisfying (%, ji) €
em(4, 0) and (4, ji1) €Py(B, A) for all k =2, 3, ..., 8 (we put Jouy =3J1)-

From the fact that s is minimal it follows that j,, j,, ..., Js are distinct indices
and that 4 # 4., (k =1, 2, ..., 8 —1), 43, #14,. Now putting v;;, =—1
(k=1,2 ...,8), v, =1((k=12, ..., 8) and v; =0 in all other cases
we get an mteger matrix V = (vy) satlsfymg the conditions (4). Making integer
standard decomposition V = U, + U; + ... + U, in basic matrices and tak-
ing U = U, for suitable ! we get a basic matrix U satisfying (4).

REMARK 2: Methods given in this paper may be joined with methods given
in [1] for an ordinary transportation problem so that we get methods for
solving a transportation problem with given bounds. These methods will be

_ treated in another paper.
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O JEDNOM PROBLEMU SOUVISEJICIM S DOPRAVNIM PROBLEMEM:

Souhrn

V préci se Feii tento problém: Pro dvé nezdporné matice 4, B s raciondlnimi prvky je
tfeba rozhodnout, zdali existuje matice O <Z X < B, kteréd by se s matic{ A shodovala
v f4dkovych a sloupcovych soudtech.
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