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- STATIONARY NON-ERGODIC SOURCES

MirosLAv NosiL

Dopartment of Mathematioal Statistios at the Charles University, Praha

" [Received 17. VIIL. 1981

"

In this paper the special type of sta.tlonsry non-ergodic sources ig ‘studied and funda-
mental theorems on transmission for this type of sources are proved. This work proceed
from Winkelbauer’s work [5]. .

INFORMATION SOURCES

Throug out the whole paper the set of all natural numbers will be denoted
by N and the set of all integers will be denoted by I. If § is a finite non-empty
set then the symbol S? designates the set of all mappings of I into 8, i. e. the
set of all sequences of elements in 8 which are infinite to both sides; if z € 87
then we shall write z; instead of z(s) for any ¢ e I. The a-algebra. of subsets of
ST generated by the class of all sets of the form

{z.xeS{, 2 =a},i€l,ael

will be denoted by F,; If 4 is a probability measure on the o-algebra Fg, then
the couple [8, 4] will be called a information source or shortly source. Let T
be the transformation of 87 defined by the equation

(Tsx); = x4y, x€8, 1€ 1 '

If w(TsE) = u(E) holds for every E €F;, then the source [8, u] is said to be
stationary. If further

E€F¥s, TsE = E, y(B) > 0 = u(E) =1

holds, then the source [, u] is said to be. ergodic.

Levma 1. Let [S, u»], 4 =1, 2, ».., k be k different ergodm sources. Then
the measures u® and p (f, # y) are smgula.r and there exists the mea.sm'able
partition & = (E,, E,, ..., E;) of 87 such that '

pO(E) =84 1,5 =1,2,...,k (Krone’cker’s symbol).

Note: The sources [3, u] and [S, ] are said to be different if there existe
a set K €F, such that u(¥) = »(E).
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Proof: It follows from Birkhoff’s ergodic theorem, that the following
relation holds for any u"-integrable, ¢ = 1, 2, .. ., k, function f(x) on S:

n—1!

'
(1) uo {a: xel, %Ef(rﬂ;) — jfd,u("} =1 +=12...,k.
i=o

Since the sources [S, u®] are different, there exist the sets E;; € Fg, ¢,j =1, 2,
.«., k, 2 < j such that .
/‘Q(Eii) # u(By).

Now we put in (1) fy = xx,; (characteristic function of the set Ey).

Then [ £t = poED), | fedur = poiti
Further, the sets
o n—1
. . k l 3
Fy ={z rzell, ;zf"(T“‘;) — #“’(Eﬁ)}
=0
) . ln—l
. 1
Fy =,{x rzell, j’;‘zfii(TS’) - H‘”(EG)}
=0

aredisjointforanypa.iri,j =1,2 ...,k i<jand
”(‘)(Fii) =8jl’ ”m(Fil) =0’ "’j = 1"23 ) k: i #j
If now we put '
k
E,=NFy, t1=12 ...,k

=1
. J#E
then it is clear that
uth(Ey) =1, 1 =12, ...,k

Further , ¢
) k
”G((Ez) ==l“”(n Fa) g"m(Fw‘) = 0, irj = l: 2, s ooy k: ) :/;j
[
and _ , )
ek t .
EnE; = (\ Fun \ Fin C FynF; =0 (emptyset), 1,5 =1,2, ...,k ¢ #)
1 e .
If we put

—1
'E{-—-’E¢,i=l,2,...,k—l, Ek=SI——-UE|',

i=1
.

then the partition & = (H,, E,, ..., E;) has the property from the assertion of
LeMmMa 1. : " qeed.
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_ -Lzmma 2. Let [8, u9], s =1, 2, k(h>l)i>ekd1ﬂ'erentergodlcsomes
"Letay, ag ... ,akbekrealnumberssuchthat

Further we put

"“Then the source [S, 4] is stationary but non-ergodm
Proof: If £ € Fs then obviously ;

. k T
w(TsE) =2 «sO(TsE) = ) 2 (E) = )

i=1 =1

In accordance with LEMma 1 there exists the partition & = (E,, E,, ..., E'.)
such that
”(‘)(E’) = 6“, ‘,] = l, 2, .e .,‘k. '

Now we shall investigate the set £ = ) T4E,.

f=—00

HO(B) = u(( Q:ml) Zu0(E) = W) =1

o) uo(0 T4E) szuwuw —Epwwl) =0, j=23 ...,k

fm=—a0 fm—a0
It is clear that
.‘ . TsE = E.
But . .
k B
‘ w(E) =2 a«#“’(m Tu - q.e.d.

i=1 .
Let [8, u] be a source. For any n € N, let S* be the set of all “ordered n-tuples”
of the elements from 8. We define the probabihty measure on the g-algebra of
all subsets of S* by the relation .
Un(B) =pfr -z 81, (xo, Zy, ..., %ey) €K}, E'CS"
For every n € N we denote _ R '
Hy = — ) in(x) og pu(x)

‘ x€s"
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where logaljibilm is taken to the base 2. If a real number A exists, such that
sequence : - .

r»l—H,‘, n=12, ...
n

converges to %, then the number 4 is called the entropy of the source [S, u]
and is denoted by H[S, u] . (It is easy to show that the entropy of a stationary
source exists.) :

Let [8, 4] be an information source and for every z € N let x, be the mapping
of theset {1, 2, ..., s*} (where s is the number of elements in Si. e. 8 = card 8)
on S* so that )

Hn(n(5)) = pn(7en(j + 1))

If ¢ is a real number, 0 <'¢ <1, then the number L,([.8, 4], ¢), where
k

LS. o) = min fE: ) nlm(i) > 1 — o]

i=1

is called the n-dimensional e-length of the source [, u].

Lemma 3. Let [S, u%],5 = 1,2, ..., kbe k sources. Let. a;, as, . . ., a be k real
numbers quch ‘that : , _

a,-_>_0,i=l,2,,...,k,

& .
y’ =Z a"‘(i).

i=1

a,-=l.

IQ.MR‘
-

Further let

Then for every ne N, 0 < ¢ < 1 the following inequality holds

LMMMSEMWWML

f=1

Proof:Letmj.,j =1,2, ..., k,n € N be the mapping of the set {1,2,...,s%}
(where s = card S) on 8" such $hat-

9 nll) = pPn(l + 1)).
Then for any ne N, 0 <& <1

i

m

L.[(8, u2], €) = min{m :ng’(n,-,.(l)) >1— e},j =12 ...,k

=1
- Now we form the sets
M; ={x:x€8" mm(l) =x, 1 =1,2, ..., LS, u?),¢)}, =12, ...,k
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Obviously , o
“card M; = L,([8, 4], &),

p( M) >1—e j=12 ...,k

. k
M =( M.

jm=1

. k
(M) Zam‘fw) 22«”‘“’(1@) >1—e

j=1 i=1

_ In accordance with LEMMa 3, § 8 in [5]

. ca.rd M > L[S, p}, ¢).
But

card jf gz card M; —z Lu(IS, 4], ¢).

Then

k

LJ([8, 4, ) sEL..([s, Wl e)neN,0<e<1 ~  qed.

7=1

COMMUNICATION CHANNELS

Let A and B be a finite non-empty sets and let » be a real valued function on
the Cartesian product F x A7 satisfying the followmg properties:

a). For any Z € A7, the set function »(., z) is the probability measure on the

o-algebra F5.

b). For any set E € F3, the point function »{(Z,.) is FA-measurable Then the
triple [4, », B] is called the communication channel. If further next condition is
satisfied:

o). »(T'sH, T x) =» (E z) for any E €F3, z € 47,
then the channel [4, », B] is said atationary.

Let [4, », B] be a channel. If there exists a non-negative mteger m such
that, for any ‘
zeAl,x’€e A, neN,iel,he B
the relations :

z(+7'=x4’+7'" j=—"m" '_ml'Jf'l‘: ceey —"1: 0,1,...,n—1

imply that ‘ ‘
A Vin(b), 2') = HVin(b), )

Vm(b) ={y :yGBI, Yiv; = b,', j =0,1,...,n— 1},

" then the channel [4, » B] is called a channel with finite past history; the
least non-megative integer m, for which the above conditon is satisfied will be

where

H
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called the length of the finite past hlstory We emphasize that the concept of
the channel with finite past history, introduced and investigated first in [6], is
more general than the concept of the channel with finite memory.

- Let [4, », B] be a channel with finite past history of length m and let s be an
integer, s > m.If n € N, then for any u € 45+* we define the probability measure
7a(.| u) on the o-algebra of all subsets of B* by the relation

va(Bn) =o({y : y € B, (Yo, Y1, - - -» Yn-1) € E}, x), where z € V_, a,,(0).

Let[4, », B]be a channel with finite past history of length m and let ne N,
0 < e < 1. The set of all mappings of B* into Am*» will be denoted by
K(B, A, m + n). Then the number S,([4, », B], ), where

S.([4, », B], ¢) = max {card {X : Xx€ A" »(p~Y(X)X) > 1 —¢}:
:yeK(B, A, n, m + n)}
is ca.lled an n-dimensional ¢-size of the channel [4, », B] Further we define the
number C[4, », B] by the relation
| C[4,» B] = lim linﬁnf % log Su([4, » B], )

(the existence of the limit is estabhshed) This number is called a capacity of
the channel [4, », B].

TRANSMISSION

Let S be a finite non-empty set. If » is a natural number then a non-negative
finite real-valued function w, on the Cartesian product 9 x S~ is called an n-di-
mensional weight function on 8. An n-dimensional welght function w,on 8 is
called regular if, for any z € S*

wy(2Z, 2) = 0.

The sequence w = {w,}, where for any » € N w, is an n-dimensional weight
function on 8 will be called a weight function on 8. If a weight function w
consists of a regular n-dimensional weight functions only, then w is said to be
a regular weight function on 8. A weight function w on § is said to be bounded
by a real number ¢ if

w,,(z, zy<tforz,z’eS"neN.

If w is a weight function on S, we shall define the fuction v, on the space
8T x 8! by the relation

vu(x, ') = wa((Tg> Ty - - - Tn1)s (X0, T1y « - o5 Tn—)), Z, 2' € ST,

If we define, for n € N, the n-dimensional weight function w?, on § by the

equation
w’ (X, X') =0 for x =x', x, X’ €8

w (X, X’) =1 for x #x', x, X’ €8
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then the sequence w* ={w;} will be cafled the error wmght function. The
errror weight function is regular and bounded by the number 1.

If we define, for » € N the n—dimenmona.l weight ﬁmctxon ', on§ by the
relatxon

Wl (x, X) = —2 w',izs,\zi),_.,x, x’ e,

6=l

then the équenoe w = {w!} will be oalled tha fmqnency weight functlom

The frequency weight function is regular and bounded by ’ﬁhe number 1.
It is clear that

(2) (n +8)w! +,((u, v), (0, ¥ )) =.m w’(n, n’) + 8. wf(v, v),
n,nes" v,v’es'- '

LetAandeetwoﬁmtewts and n, se N. Amappmg xfromA'mto,B'
is called a code of type (n, 8) from 4 into B. If the mapping x is one-to-one,
then the code « is also said to be one-to-one. We denote the‘set of ‘all codes
from A into B of type (n, 8) by K (4. B, n, 8)..

Ifmel, m>0 n, 8€ N, m<n,xeKA B n,a)
andlf 2

X', X) = %(¥",X), x € A=

ﬁora.ny x’, X’ e 4Am, thenweshsllsaythattheoo&exdbeanobdmhngmsﬁ '
the ﬁrstmsymbols Then the code x’ eK(A ‘B; n.—m, ) umquely deﬁned by :

#(X) =.2%(X', x),x cAm, xeA"—"‘, :

wﬂl be called the reduced form of:the code x. ,
Let x be a code of type (n, 8) from 4 into B, wheren > 0. We deﬁne the
transformation r of A7 into BZ by the equation

(@), (@easas - - -» (m)l;+l—1) = 2{Tim; Tomass - - - » Zonns), BEL, zE AL

The transformation 7 is said to be associated with the oodo X ..

Let [S, 4] be an information , let [4, », B] be a communication cha.n
nel and let w be a . weight fanction onS,Fnrtherletn, 8eN,xe K(S, A, n, s),
3eK(B, S, s, n). We shall deéfiné the risk r.({S, ul, [4, », B], x, 8; w) of
length n with respect to the weight function # on S, oorrespondmg to the trans-
mission ef the source [S, u] over the channel [4, », B] w1th thet encoder x and
decoder & by the equation

r(IS, 4], [4, %, Bl, % & w) = 50. (=, oy) Iy, =) dp (z),
where z and ¢ are the transformations associated with the codes. » and 3. (It is
easy to show that the risk is defined by the above equation.) The minimum

“risk r, ([S, ul, [A », B]; w] will be defined by the relation A
ua([S, .“]’ [4,, Bj; w) = min {rn([‘g F]: [A ¥y B]a % d w) :
:x€ K(S, A4, n, a), deK(B, 8,3, n)} .-

46



The risks with respect to w* or ' will be called the probablhty of error or the'
average frequency of errors, respectively.

It is clear that if [4, v, B] is a channel w1th finite pa.st history of length
m, [S, u] is a source, w is a weight function on S, n, se N, xe K(S, 4, =, 8)
de K(B, 8, s, n) then

rull8, 4], [4, », B), x 8 w) =E z wa(X, 8Y) 7y | %X)paa(X) -

xes® yeBa

If even [8, u] and [A », B] are stationary, if 6 does not dlstmgmsh the first m
symboles and if & is a reduced form of the code 4, then clearly - '

(3) T,,([S, .“]n [A’ v, B]', %, 6; 'Il)] 22 Z Wy (X, ‘55’) "s——m(y , MX)[J"(X) .

xes" yen“"'

We shall say that the source [8, u]is transmissible over the channel (4, », B]
(with respect to the weight function w on 8) if, for every positive real number &,
there is a natural number n such that

(S, u), [4, %, B w) <e h

‘'We shall say that the source [S, ] is strictly transmissible over the channel
[4, », B] (with respect to the weight function w on 8) if, for every positive real
number ¢, there is a positive mteger n, such' that, for any natural number
n 2 n, the mequahty ‘

’ u([S, ul, [4, », B]; w) < ¢
holds.

We shall say that the source [, u] is not transmissible over ‘the channel
[4, v, B] (with respect to the weight functlon w on S) if there exists a positive
real number & such, that

lllf T,,.,,([S ul, [4,7, Blyw) > ¢.

LEMMA 4. Let [S, u] be sources, 1 = 1 2, ...,k Let &, ag, ..., & be non-
negative real numbers such that : :

k
[y
. a; =
i=1

Iu =2 a_il‘(") .
i=1
Further let [4, », B] be a sta.tlona.ry channel with finite past history, w a

weight function on S, n, se N .
Then

4 kK

k

rolS, 41, [4, », Bl, % 8; w) =2 aira (1S, 4], [4, », B], %, 8; w)

i=1
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resl(5S, p], (4, » Bl w) 22 m.(ts O 14 v B]. o)

i=1

Proof By definition . :
ru(lS, ul, [4, %, B, & w) = | j (@, ey) drly, ) duz) ,

where risthetransformation associated with thecode »and gis the transformatibn‘ |
~ associated with the code 8. Let f(x) be a‘funcbion on 3T defimed by the relation

f@) ={ vz o) d,(y, @).

It is olear that f(z) is a slmple funotlon and oosequently is mtegnble
Obviously

1y

jf(x) du(z) =2 & f(z)dp“’(z)

Lol Yemls
and then
k .
ra([S, ul, [4, » B], x, 0; w) =Zf'“"“¢8"i‘m]v 4, » B]’ », 0; w).
Farther '

inf {ra([S, u], [4, », B], x, 4; w) xeK(S A;n, 8), ée K(B, 8 8, n)} =
== r!\.l([S ﬂ]’ {A <) B]: w) >
j .
> z a; inf {ra([S, ,u(‘)], [4,» B], », ;) : % eK(g,fA, n,4),8€ K(B, 8, s, n)} =
i=1 o .
= Y (S, w0, [4, 5 B w) o qea
“l=l . ’ . . ¢
Now we can prooeed to the proofs of the fundamental theorems.

THEOREM 1. Let [A », B] be a stationary ehannel with finite past lustory
Let [S p], 1 =1, » k be dJﬂ'erent ergodic sources such that

max H[S ;4“’] < G[A % B]

1<<i<k -
Let a;, a, - . ., a be positive real Aumbers for which 2 “=1.

i=1

Further let

=1
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and let w be a regular bounded weight function on 8. Then the source [8, p]
is strictly transmissible over the channel [4, », B] (with respect to the weight
function w on 8). Especially the source [S, u] is strictly transmissible over the
channel [4, », B] with respect to the error weight function and with respect
to the frequency weight function.

Proof: In accordance with Theorem 4, § 16 in [5] it is sufficient to prove
that the source [S, u] is strictly transmissible with respect to the error weight
function.
We denote "

H = max HI[S, u*]
. 1=<i<k
According to LEMMA 3 if '
- 0<e<l nelN
then

. k
LS, 1), ) <) Lu([S, w0), o)
! f=1 .
Since the sources [S, u%],4 = 1,2, ..., £ are ergodic then according to Theorem
4, § 7in [5] and Lemma 5, § 8 in [5] “
71: log Lu([S, ], 8) — H[S, u®),é =1, 2, ..., k
and cofsequently for any & > 0 there exists Ny natural such that for n > ny,
—:TlogL,([S,p‘“), < HS, ud] +e< H +6,i=1,2, ..., k.

Now we denote 7, = max n. Obvioﬁsly for any natural number n > n, is

1<i<k
La(fS, p®], &) < 22®+0, §=1,2, ..., k.

Consequently for any ¢ >0 there exists a natura.l number 7, such tha.t for
every natural number n > n, is

@) o, LSab o) < ke,

Leta.rea,lnumber s,0<e<l ‘be given." We ohoose).>03.nd0<e <1
so that -
H—O[A,v,‘B] + ¢ +i=4<0, 2 <e.

" Let m be the length of finite past history of the channel [A, » B]. We put
T b = 92-m(Cld.»Bl—)
According to (4) there ‘exists a natural number n, such that for any n > n,
Lu([8, pl, &) < k.20E+S,

According to Theorem 1, § 17 in [5] there exists a natural number n, such that
for any n > n,

S,._m([A, v, B] sl) > 2(n—1n)(0L4.:v.B]—).) —_ h . 2»(0[4.7.8]-—1)_
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We denote n, = max (n,,.7,). Then for any'neimr&l number # > n;

L[S, 4, &) k.oE+o g )

Sonlld, » Bl, &) < K.owmarn ~ g} T

Since g < 0 there exists a natural number ny Such that for any n > n,

Ly([8, ul, & ‘) < SH([A ” B], 8 ).

According to Theorem 7, § 17 in [5] there exists a one-to-one oode %€ K(S A
n, n) and code 8 € K(B, S n, n) so that .

ru([s ©ls [4, », B]r x,t’ W)<2e,<8 o qﬁd

THEOREM 2. Let [4, », B] be a stationary channnl with ﬁmtepest lns
such that C[4, v,B]>0 Let [S, ;4(‘)],;—1 2 .. ,kbeergodmsonroese

that
' max H[S, p“’] =C[A » B].

1=<i<k

; k ..
Let &y, g, - . ., akberea.lpoutm numbereeud:t&ntza, =1.

1 '

Further let :
Iz *2 gt

4-1
Then the source [S, u] is striotly tmmbb over the c?\nnel [A v, B]
with respect to the frequency weight fungtion-w’.

Proof: First of all we prove then the souzge: [8 el is transmissible over the
channel [4, », B] with respect to the frequency weight function w'. In accord-
anoe with Theorem 3, § 16 in [5] the source {S, ;u] shall be strigtly transmissible
over the channel [4, » B] with respect to- the frequency weight function w'.

Let ¢ > 0 be given. We must choose a naturil number wand codes x€
€K(S, A,n,n), € K(B, 8, n, n) such that

r,.([S sl [4, 7, B), », d; w') < e
We denote H = max H[S u®] and let m be a lenght of finite past history

of the channel [A v B]
Now we choose 0 < ¢ < la.ndl > 0-such that

21 1,
).+H — €.

In acoordance with . Theorem 1, § 17 in [8] there exists a natural number Po
such that for any » > p,
8,4, % Bl, ¢) > 2=

Further in acoordance with (4) th.ere enste a natura.l nnmber q, suoh that
for any ¢ > ¢,
L8, ul, &)*< l‘o-&"'“’

.o
\

3a>e , 1<H

holds.
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Now we choose fast p and q such that p > po, ¢ > g, ¢ = [p T +:
_ logk
]
Then
H—24 log k

ISP g7 Hra

and cosequently
k.2uH+h) < QvH—A) -

Since p > p,, ¢ > q, we have .

L8, ul, €) < 8,(4, », B), ¢) .

According to Theorem 7, § 17 in [5] there are codes »' € K(S, 4, q, m + p),
&' e K(B, S, m + p, q) where ¢ does not distinguish the first m symbols such
that »

rl([S, pl, [4, v, B, «/, 8'; we) < 2¢.

Now we put n =m + p. Obviously ¢ < n.
Further we define a code x € K(8S, A, n, n) by the equation

#(z) =% (215295 «-529)y Z = (21,2 «--32g --. 24) ES™ .
and a code 8 € k(B, 8, n, n) by the equation
8(x) = (#(x), u), x€ Br

where u e 8" i xq, a firm vector. We show that the codes » and 4 are suitable
for.our p

The code ¢ does not distinguish the first m symbols. Let ¢” be the redueed
form of the code . Obviously 6'’ € #(B, 8, p, n).
In accordance with (2) and with (3)

718, ul, [4, % 2 x, 8; ) =Z ) e, 8" xp,(x] aalie) =

3 L4,

q
z€S? #' €S" ¥ xe B?

where é* is the reduoed form of the code ¢'.

wf_q(z u)]v,(x[xz)y,.(z z’)

ra([S, ul, [4, », B], », 6 wl) = z z w!(Z, 0*x)vy(X| x'Z)pq(2) +

ze§? xe B?

+ 21 Z w:l—-q (Z, u);u”_a(z') =

z'esm ¢

¢ 5 —
<LY Y wpim omxp(x| o) + L =

ze8? xeB?
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e | 2 2 x| D) + 2T =

- zesSixeB® .
=L (8, 41 (4% Bl %, 85w + 2L

n-—q_m+p;—'qvl,'_q___= ' e
But . —  mip <3¢ <l,r,,([S,y],[A,v,B],n,_d,w')<2s
and consequently C v - .

r,.([S 1l [A v, B], x, 8; w’)<2e +——e <é

\

q.e. d.

THEOREM 3. Let [A v,"’B] be a stationary channel with finite past history.
Let [S, p(ﬂ]1.=1 kbeargodlcsouroessnchthat
max H[S, y“’] > C[4,», B]
1<i<k *

Let «y, ag, ..., ar be po_sitive rpa.l numbers such thg,t Eq‘ =1 '.

i=1

Further let

=

B = z a‘-’l(‘)
i=1 '

Then the source [8,.u] 15 not transmissible over the channel [4, v, B] neither

with respect to the error weight function w* nor with respect to the frequency
weight funotion w’.

Proof: Let [S, 4®] be the source for which H[S, u®] = ma.x HIS, u¥].

Smoe H[S, p®] > Cf4, v, B], there exists (a.coordmg to Theorem 7, § 19 in
[5]) ¢ > 0 such that

' - inf "n.n([Ss u®), [4, v, Bl w) = & .
neEN .
. By assumption «; > 0. We denote ¢ = a;e’ > 0.
Acoording to LEMMA 4 we have
. . k

o reallS, ul 4, %, B wy> 2@,.'([8, 49), (4, 5, Bl w)
Then = o

nf rllS, ) (4,5, B ) >2 o raa(S, ), L4, %, BY; ) 2
=« lnf r~.([S l‘“’]’ [4,», B]s w') 2 €.
Second part of the proof we obtain 1f we wnte ' mntead . FA oooqeed.
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THEOREM 4. Let ¢ and K be arbitrary real numbers, € > 0. Then there exists
a stationary source [8, 4] with the following property:

1. - H[S,u]l =¢.
2. If [, v, B] is any stationary channel with finite past history such that
Cl4,», B]< K

then the source [S, x] is not transmissible over the channel [4, », B] neither
with respect to the error weight function w* nor with respect to the frequency
weight function w’.

Proof: If K < & then the assertion is the consequence of Theorem 3,.
§ 19-and of Lemma 7, § 6 and Lemma 3, § 7 in [5]. Then let be K > &. We
choose real numbers ¢, ¢, such that .

0<t1<s, K<ti< + oo.

According to Lemma 7, § 6 and Lemma, 3,§7in [5] there exist ergodic sources
[S, uv] and [S, u®] such that

- H[S,pM] =t H[S, /4"’] =1.
Now we choose « > 0 and > 0 such that af,, + ft; =5, +8 =1.
Further we define the source [S, u] by the equation
b= aud + ﬂ[l(”. ’
According to LEMMA 2 the source [, u] is stationary and according to Theorem

8, § 6 in (5)
HS, y] =at +pty =¢.
max H[S, u®] = H[S, u¥] =4, > K > C[4, v, B],

1<t<2
then the source [8, ] is not transmissible over the channel [4, », B] neither
with respect to the error weight function w# nor with respect to the frequency
weight function ' (the consequence of THEOREM 6). _
q.e. d.

COROLLARY. Let ¢ be a positive real number, let » be a natural number.
Then there exists a stationary source (S, u] with the following property:

1. H[S,p]l =c¢.

2. If [4, », B] is any stationary channel with finite past history where the
numbers of elements both in A and B do not exceed n, then the source [S, u]
is not transmissible over the channel [4, », B] neither with respect to the error
weight function w* nor with respect to the frequency weight funotlon w!.

Proof: Ife > 0 and n are given, we put

Since

K =logn.

If [4, », B] is a channel for which the numbers of elements both in 4 and B
do not exceed 7, then
C[A4,», Bl]< K
(see Theorem 4, § 17 in [5].)
The assertion is the consequence of Theorem 4. -
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" DISCUSSION .

Lemma 1 and 2 show that a non-trivial linear combination of the different .
ergodic sources is not the ergodic source and thus the problem of the trans-
mission is not solved in this case, Theorems 1, 2 and 3 solve this problem.
- /Theorem 4 shows that the entropy of the stationary ergodic source is not so
important for transmission as in the ergodic éase. It would be interesting if it
is possible to solve a general stationary case by a similar method (i. e. by
means of the aproximation of stationary source by the hnea.r combination
of ergodic sources). -

PesoMme

-

B aToit pa6oTe M3yJaeTCA CIeNMANbHEH THI c'rannonapnux HE3Proa¥4eCKAX HCTOU-
HAKOB MHQOPMAIMM H NOKA3HBAIOTCA HEKOTODHE OCHOBHbIE TEOPEMH O II6pEHOCE.
PaGoTa ocHOBHBaeTcA Ha McuepnuBaiomelt pa6ore [5] Kapna BunkeaBayepa. OcHoB-
HElE peaynma'm cllexyIonue:

Ilycrs [4, v, B] crauMOHApHHN KaHAJA C KOHEYHHIM NPOULIHIM, oyers [S, u¥],
s=1, 2, ..., k aprogudecrne nc'r,?qnnxn, IYCTh &, X3y ..., Of IOJOKHTEJIbHBIE

ReXCTBATENbHEE YNCIIA TAKKe 9TO Z ag=1, mycrs.

Vd
B = Z am(i) .

Ecau k > 1 ¥ cocTaBHHE MCTOYHHKHU pasHHeE, TO HCTOMHHK [S, u] ectn c'rauuouapnun
Heaproanveckuit mcrouynuk. Ecyam

max H[.s‘ u®] < C[4, %, B] -
1<i<

(H [S, p¥] sHTpONHsA ¢-TOr0 MCTOYHHKA [S, u#¥] u C[4, v, B] nponyckHas cnoco6HOCTE
KaHaua [4, v, B)]) u eciim w peryiispHaA opraEmdeHHad (YHKIWA NOTepb, TO HC-
TOYHUK [S, 4] CTPHKTHO INepeHOCHTeNbHHZ KamajoM [4, v, B] OTHOCHTEIBHO w.
CroenuajibHO HCTOYHHK [S, 4] CTPHKTHO NepeHOCHTEJIbHEIA KaHaiIoM [4, », B] oTHOCH-
TeJIbHO OmMOG0YHON (YHHKIMM IOTEePb U OTHOCUTEJIHHO YaCTOTHOMN ynmmu noTepb
(T. €. ¢ IPOM3BOJILHO MAJIO¥ BEepOATHOCTelf oIMMG KK U C MPOU3BOJILHO MaJIONi cpenHelt
gyacroTof oumGoxk). Ecim C[4,»,B] > 0 u ecim max H[S, u¥] = C[A4,, B]
i<k

TO HMCTOYHMK [S, 4] CTPHKTHO mIepeHOCHTEeJbHBI! KaHaJIOM (4,», B) OTHOCHTEJIBHO
4acTOTHON GyHKUMH HOTepE.
Ecin

max H[S, u] > C[4, v, B]

1<i<|

. TO HCTOYHHK (S, 4) HeIePEeHOCUTeNbHHY KanaioM [4, 'y, B} oTHOCHTEIBHO onmdo‘mon
GYHKINHK MOTEPh M OTHOCHTENIBHO YaCTOTHON PYHKIIMHM OTEph.
HHTepecHO ClIeqylomiee yTBEP:KACHHE:
ITycts ¢ 1 K nponaBoJIbHHE He#CTBHTEJbHHE YHCHA, & > 0 Torna CymecTByeT
CTallHOHAPHHI MCTOYHMK [S, 4] Tak uro

1. H[S, p] = e._
2. Eciu [4, v, B] npou3BoAbHHEN c'ralmonapnun KaHaJ ¢ KOHeYHHM TPOLITEIM, TSt
KOTOpOTO
O[4, » B] < K,

' _ - ' b3



TO HCTOYHHK [S, 4] HeepeHOCHTEILHE KanaxoM [4, v, B] 0THOCHATEILHO onmdounol
(bymtmm TOTeph ¥ OTHOCHTEJILHO YaCTOTHOM! (bynmmn oTepk.
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