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NORMAL TOLERANCE LIMITS BASED ON MEAN RANGE
JOSEF MACHEK

Department of Mathematical Statistics, Charles University, Prague

>
Summary. Consxder a normal population with mean u and standard deviation o.
Let R be the average of ranges of & mutua.lly independent samples of size » from this
population. Further let # be an estimate of x, independent of R and normally distri-
buted about u with variance ¢?/N. In this paper we present tables of auxiliary quanti-
ties for the computation of coefﬁclents T, and T; which posess the following proper-

ties:
(1) the expectation of the proportion of the underlying population covered by the

interval 4 — T\R, 2+ T\R is approximately equal to a predetermined value P, i. e.

ﬂ'{'TxE

E{ j (27:0’)—_;_ exp[ 3o (w—-y)'] }=P;

A—T,R

(2) the probability that the interval g — T,Ti! A+ T,E covers at least the predeter-
mined proportion P of the populatxon is approximately equal to a given confidence
coefficient p, i. e.

A+

{ j (2r at)” [— o (o m*] dx = P} oy

A—T,R

Introduction. The following problem is often encountered in statistics, espe-
cially in industrial applications: to estimate on the basis of a random sample
an interval which covers a given proportion of the population with some pre-
scribed degree of assurance. This degree of assurance refers to the performance
of the estimation procedure in the long run. Most frequently it is expressed
either by the requirement that the relative frequency of intervals covering less
than the desired proportion of the population shall not exceed a given small
quantity, or by the requirement that the proportion of the population covered
by the interval be on the average equal to the given value. The intervals
posessing some of the above properties are called toleran¢e intervals. For
normal populations there are wWell known methods of constructing tolerance
intervals of either type mentioned. In those methods the end-points of the in-
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tervals are linear functions of sample mean and sample standard deviation.
However, since in routine work in industry only means or medians and ranges
of small samples are frequently recorded, it would be advatageous to have
a method for the construction of tolerance intervals from this type of data.
In the present paper an approximate solution is proposed and some auxiliary
tables given.

Survey of existing results. Let X be a random variable with a normal
distribution with mean x and variance o2. In the sequel we shall denote such
a distribution briefly by N (4, 0?). Further let X,, X,, ..., X, denote a sample
from N (u, ¢?), i. e. » mutually independent observations of X. By a tolerance
interval we mean an interval whose end points are functions of the sample,
say L and U, which posesses either the property

1) E {f(2n )T exp [_— Tts‘ (x— ,u)’] dx } — P,
or the property ’

(2) P {j(2no’)_ % exp [— 21? ( _”)ﬂ] dx > p} =y
’ L

where P and y are given numbers in the interval (0, 1), E denotes the expecta-
tion of the random variable shown in brackets and P {. . .}is the probability of
the event shown in brackets.

Intervals (L, U) computed so as to satisfy (1) will thus in repeated samples
have the following property: the long run average of areas under the frequency
curve of N (u, ¢2) bounded by the ordinates in the points L and U will be equal
to P. Briefly we may say that the intervals satisfying (1) will cover on the
average 100P Y, of the population. Intervals (L, U) satisfying (2) provide an
assurance that in a long series of samples approximately 100y 9%, samples will
yield values L and U such that the area under the frequency curve between
ordinates in L and U will be at least equal to P. Briefly stated, approximately
100y 7, of intervals will cover at least 100P Y, of the population.

To fix terms, we shall call intervals fulfilling condition (1) simply ‘“100P %,
tolerance intervals”, and.intervals fulfilling condition (2) “100P?%, tolerance
intervals to 100y 9%, confidence level” or ‘‘to confidence level y’’.

Formulas for 100P7, tolerance intervals have been given by Wilks [1]. His
intervals have the form

(3) T—ks, %+ ks
where Z denotes the sample mean,
8 the sample standard deviation,

(4) s={”il E(X,-—z)’}‘;“

i=1

and the coefficient k, is given by

(5) S =)
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In equation (5), £,_p(n — 1) is the 100 (1 — P)9, critical point of Student’s
distribution with # — 1 degrees of freedom, defined by

hop(n—1) Jn=T)=
(6) 2 L n—1) 2T,

2_ j [1 + n-—l)— 2 dz = P.I’[——z—] I’[%]
Details of the derivation of (5) have been described by Proschan, [2].

Wald and Wolfowitz, [3], have suggested an approximate method for the
construction of tolerance intervals to a given confidence level y. Their intervals
have the same form as those of Wilks, viz.

(7) E— kzss z + kr’
where

_ (n—1)
® A me—

r is the root of the equation

(9 - O T 41)— O (i F—r) =

In (8) and (9) ®(u) denotes the distribution functlon of N(0,1), and y2 (n — 1)
is defined by the relation

I L ]

Zy (n—l)

The approximation involved in the method is based essentially on following
considerations. It is easily seen that the following relation holds for 4 known

(11) P{(D(t—'s]—.d) [—-‘t—"] gp} -
a ag
if —_—
_ (n—1)
(12) t—ul__;ie A1)
where '“1+P is the 100 — 1 + 9, fractile of N (0,1) and yZ(n — 1) is defined

by (10). If the mean of the underlymg normal populatlon were u’ instead of u
and the tolerance interval were nevertheless constructed symmetrically about
4, it would be necessary to increase the coefficient ¢ at s, viz., we would have
to put ¢ equal to

o =1
.(13) . =% Zm—1) °
where %' is the root of o
(14) Q(Jﬁ:—”l + u’]— ) (@ — u] =P.
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The intervals (7) are computed symmetrically about Z, the true value of u
being unknown. The approximation consists in replacing I—'u:'lf—l— in (14) by
c

—1:. Wald and Wolfowitz have investigated the accuracy of the approxima--
n

tion and have found that it worked very well for samples of size ten and more.
The values of the coefficients &, given by (8) have been tabled by Bowker, [4],
for some selected values of P and y and a large scale of sample sizes. Later,

Weissberg and Beatty, [5], tabled the factors r and V% of (8) sepa-
2(n—1) =

rately to enable the computation of tolerance intervals to a given confidence
level also for more complicated experiments than a simple random sample.
In such cases the intervals have the form

(15) f— ko, £ =k,

where 4 and 6 are mutually independent estimates of 4 and o resp., 4 is sup-

2
posed to be distributed normally according to N (,u, oW],ais assumed to dis-
2

tributed as o Vx—' , 1. e. a8 o-times second square root of a chi-square variate

divided by the corresponding number of degrees of freedom. The coefficient
k4 is then computed from the formula

(16) m=mmvgﬁ

where ry, p is the root of

: 1 1
() ON 2 +ryp)— PN 2 —ryp) =P
and x7 (f) is defined as in (10). In the paper quoted Weissberg and Beatty give

extensive tables of ry » and VW)- . As has been stated in the introduction,
i Y

the problem of estimating tolerance intervals arises often in industrial sta-
tistics, where a favourite statistic for estimating variability is sample range or
mean range of several samples. Thus e. g. means and ranges or maxima and mini-
ma of samples or medians and ranges are frequently recorded on control charts.
To enable the subsequent utilisation of such routinely kept data to the esti- -
mation of tolerance intervals we shall consider in the next section the problem
of estimating tolerance intervals on the basis of mean range.

Tolerance intervals based on mean range. The construction of tolerance in-
tervals for normal distribution with mean range as a statistic for variability
may be based on following two facts. First, it is easily seen that the special
choice of Z and s as statistics for mean and variance is not essential in any
of the methods so far discussed, but that both Wilks’s and Wald-Wolfowitz’s
procedures may be modified for use in connection with any pair of mutually
independent estimates for u and o, 4 and 6 say, where £ is normally distributed
and 6 as a constant multiple of a chi-variate. Second, it has been shown by Pat-
naik, [6], that the distribution of the mean of ranges of kindependent samples
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of size n is very cloéely approximated by the I-type distribution whose para-
meters are determined so as to make the first two moments of this distribution
coincide with the first two moments of mean range.

- Therefore, let R denote the mean range of k samples of size » from N (u, o)
2

and 2 an unbiassed estimate of u, normally distributed with variance TGV— and

independent of R. According to Patnaik, [6], the density of R is very close to -
y? - V2
= () v (&)
Y 1 v
272 r [?]

where x2 is a chi-square variate with » degrees

(18) ’ Pr,n (y) =

—XT
v _
of freedom and ¢ and » are determined so as to satisfy

i. e. to the density of ¢

— 1 -
(19) Q'V“(v; ] = E{R}
r(3)
and )i
@ La =) | D ()

Y
r(3)
Of course, the solution of (19) and (20) as a rule yields a non-integral value for
v, so that a “fractional number of degrees of freedom’ results. For selected

values of & and # the solutions of (19) and (20) are tabled in [7]. In this paper
. we give a more extensive table. -

2
Thus if the estimate 4 is distributed according to N (,u, aw) it may be

shown in the same way as in [2] that the following relation holds approxi-
mately .

— - —
(21) E{@[ﬂ]—q)[—ilg—]}iza,[——““v ]—1,

o o J¥N+1 )
where G,(t) denotes the distribution function of Student’s distribution with
- (non-integral) number of degrees of freedom », » and ¢ being determined by

(19) and (20). If it is required that the expectation (21) be equal to a prescribed
number P, we must clearly put

, N _P+1
&2 6, (o V(N+1) )-=3
whence

_ t_p(‘l’) .N+ 1
(23) 2= - c V N
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where, in correspondence with current usage, ¢,_p(») denotes the value of a
t-variate corresponding to the two sided tail area 1 — P, viz.

(24) 21 — G, (t_p())) = 1 — P.
Thus the 100PY%, tolerance interval is given by

_h () YN+ & tr) /N +1 5
(25) /2 c N—— -R: ﬂ + c _N— .R.

If one-sided 100PY%, tolerance limit is required, we find it from the formula

t2 a—p) (7) N +1 D.
(26) axenl) YT LR
the sign “4’’ is used for the upper and the sign “—’ for the lower limit.

To determine the 100P Y%, tolerance interval to a given confidence level y

e first note that the probability that the interval u + zR with u known will
cover at least 100R %, of the population is

27) P{(D(?]—d)[— zR]gP}iP{E;@},

o o
14 P
2

where %;.py, i8 the 100 % fractile of N (0,1). If we replace the dis-

tribution of % by the distribution (18) with the parameters given by (19)
and (20), we obtain for the probability (27) the approximation )

‘ —z
= - ®  exp [——] /21
o elo(F)o(-F)ar)= [ I
° o . 22 I [l]
4 (;*"P/i 2

'If the probability (28) is required to be equal to a given confidence level v,
z must be equal to

U v
(29) 2 = 4 -:;Plz) sz ('V) = u(l+P/2) 2 (y; k: n) ’
14

where 7 () is defined similarly as in (10) and may be found by interpolation
in some standard table of percentage points of x2. Since, however, the tolerance:
interval has £ and not u as its centre, the coefficient ., p). in (28) and (29)
is replaced by the root 7y p of equation (17). The coefficients ry, p are
extensively tabled in [5]. Thus we obtain finally as approximate 100P9, tole-
rance intervals to confidence level y

(30) /2 — TN, PZ('}’, k’ 71«) R, ,a + rN. PZ()’, k3 n)-

Corresponding one-sided tolerance limits to a given confidence level y may
be obtained from an analogue of the non-central ¢-distribution, based on mean
range. For it may be easily seen that the probability that the interval (— oo,

£ + tR) will cover at last 100P% of the population N (u, ¢®) is equal to

26



(31) P{‘D[m:—ﬂ]zP}ﬁP{Mgtw—\f}’

Wk, n

where & and wy,, are mutually independent random variables, the former
being distributed according to NV (0,1) and the latter as the mean range of k
independent samples of size » from a normal population with unit variance.
If this probability is required to be equal to a specified confidence level y, the
coefficient ¢ must be chosen to be.

1 —
(32) =75 Y up |N),
wheret, (k, n, up /N ) denotes the 100P%, quantile of the statistic
(33) (& & i /¥)

k.n

If we repla.oe — following Patnaik, [6] — the variable wy,, by the variable

£—, where 22 has » “degrees of freedom”, ¢ and » being determined accord-
ing to (19) and (20), we may regard (33) as a i — multiple of a non- -central

t-variable with » degrees of freedom and the pa.rameter of non-centrality equal

to up | NV . Using the notation of Johnson and Welch, [8] we then may appro-
ximately put the upper IOOP% tolerance limit to confidenoe level y equal to

(34) A+ —= VN .t(v, up N, 1—9) R,

where ¢ and » depend on the number & and size n of subsamples for R. Alter-
natively, we may use the tables of A. Zaludova [9] for the determmatlon of

t (k n, Up VN)

The tables. The main part of this paper are the tables which have been
computed to facilitate the determination of tolerance intervals. Table 1. con-
tains the constants » and ¢ for the approximation to the distribution of mean
range. This table has been compited by numerically solving equations (19)
and (20) on a desk calculating machine. This table may be used in connéection
with formulas (25) and (26); the critical point of ¢-distribution corresponding
to the fractional “number of degrees of freedom” v, is found by interpolation
in some standard table of Student’s distribution. Alternatively, we may use
a table of a mean-range analogue of Student’s statistic (e. g. Lord, [10].)

‘Tables ITa, IIb and Ilc contain the coefficients

1 v
(35) 20, b, n) = I/ 0]

appearing in formula (30). Three confidence levels are included, viz. y = 0,90;
y = 0,95 and y = 0,99. The tables have been computed in the following man-
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ner: the constants » and ¢ have been taken from Table I., the yZ(v) values have
been found for » < 30 by interpolation in the table [11] by means of Lagran-
gian four point formula, for 30 < » < 100 by linear interpolation, and for
» > 100 computed according to Goldberg’s and Levine’s formulas [12]. The
computations have been carried out by Mrs M. Kr§NAKOVA in the computing
laboratory of the Institute of Mathematical Statistics at the Charles’ Univer-
sity, Praha.

An example. To demonstrate the application of the formulas developed in
the preceding section let us consider the following example. Assume that we
have at our disposal the records of twenty samples from a normal distribution
of size five and that the statistics recorded are the sample medians and sample

Table 1

Constants v and ¢ for the approximation of the distribution of mean range of k
samples of size n by«the x2-distribution

nloos 6'7'8 9 | 10 11‘12'15 20

1 3.829| 4.679| b5.486| 6.252| 6.983( 7.668| 8.349| 8.990| 10.673| 13.373
2.481| 2672| 2.830| 2.963| 3.0781 3.179; 3.269| 3.350| 3.564| 3.805

2 7.472( 9.160| 10.768 | 12.296 | 13.7563 | 15.146 | 16.480 | 17.760 | 21.319 | 26.516
2.40b| 2.604| 2.768| 2906| 3.024| 3.129| 3.221| 3.305| 3.513| 3.770

3 11.103 | 13.634 | 16.040 | 18.332 | 20.516 | 22.603 | 24.604 | 26.5624 | 31.862 | 39.653
2.379| 2.581| 2.747| 2.886| 3.006} 3.112| 3.205| 3.289| 3.499| 3.769

4 14.729 18.10é 21.311| 24.364 | 27.276 | 30.060 | 32.727 | 35.284 | 42.401 | 52.791
2.366| 2.670| 2.736| 2.877| 2997| 3.103| 3.197| 3.282| 3.492| 3.753

5 |.18.355| 22.671| 26.579 | 30.397 | 34.035 | 37.514 | 40.849 | 44.047 | 52.941 | 65.931
2.358| 2.663| 2.730| 2.871| 2992| 3.098| 3.192| 3.277| 3.488| 3.749

6 21.980 | 27.039 | 31.848 | 36.428 | 40.795| 44.969 | 48.970 | 52.808 | 63.480 | 79.064
2.363| 2.558| 2.726| 2.867| 2.988| 3.095| 3.189| 3.274| 3.486| 3.747

7 | 25.608| 31.505 | 87.116 | 42.459 | 47.564 | 52.424 | 57.092| 61.569 | 74.020 | 92.200
2.349| 2b55| 2.723| 2.864| 2986| 3.092| 3.187| 3.272| 3.484| 3.745

8 29.228 | 35.971 | 42.384 | 48.490| 54.312| 59.878 | 656.213| 70.325 | 84.559 (105.336
2.346| 2552 2.720| 2.862| 2.984| 3.090| 3.185| 3.270| 3.482| 3.744

9 32.852| 40.438 | 47.652 | b4.521 | 61.072| 67.333 | 73.334| 79.090 | 95.100 (118.485
2.344| 2.550| 2.719| 2.860| 2.982| 3.089| 3.184| 3.269| 3.481| 3.743

10 36.476 | 44.904 | 52.920 | 60.552 | 67.830 | 74.786 | 81.456 | 87.850 |105.639 (131.617
2.342| 2.549| 2.717| 2.859| 2981| 3.088| 3.183| 3.268| 3.480| 3.742

12 43.722 | 53.836 | 63.465 | 72.614 | 81.347| 89.694 | 97.696 |105.872 |126.717 |157.888
2.339| 2.646| 2.716| 2.857| 2.979| 3.086| 3.181| 3.266| 3.479| 3.741

15 54.592 | 67.234 | 79.257| 90.705 [101.622 |112.0567 [122.0568 [131.655 (150.793 {179.293
2.337| 2.b44| 2.713| 2.865| 2.977| 38.084| 3.179| 3.2656| 3.478| 3.740

20 72.716 | 89.564 (105.593 [120.849 [135.413 {149.330 |162.665 (175.457 |211.033 |262.978
2.334| 2.541| 2711| 2.853| 2.976| 3.083| 3.178| 3.263| 3.476| 3.739

30 |108.94 (134.21 |1568.27 |181.19 |203.00 [223.87 [243.88 |263.06 (316.42 |394.36
2331 2.639| 2709 2.851| 2.974| 3.081| 3.176| 3.262| 3.475| 3.737

60 " [217.63 |268.20 |316.28 |362.14 |405.75 |447.47 [487.47 |5625.87 [632.69 |788.39
2.329| 2.537| 2.706| 2.849| 2.972| 3.079| 3.174| 3.260| 3.473| 3.736
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Table IIa

Coefficients z (y, k, n) for the determination of tolerance limits to confidence level
y= 0,90 with mean range as an estimator of the standard deviation

n 5 6 7 8 9 10 11 12 15 20

0.794 | 0.671 | 0.595 | 0.546 | 0.508 | 0.478 | 0.466 | 0.436 | 0.394 | 0.352
0.641 | 0.562 | 0.5610 | 0.473 | 0.445 | 0.418 | 0.405 | 0.390 | 0.358 | 0.32b
0.689 | 0.522 | 0.477 | 0.445 | 0.420 | 0.401 | 0.385 | 0.373 | 0.343 | 0.312
0.662 | 0.500 | 0.459 | 0.430 | 0.407 | 0.389 | 0.374 | 0.362 | 0.334 | 0.306
0.544 | 0.487 | 0.448 | 0.420 | 0.398 | 0.381 | 0.367 | 0.3656 | 0.329 | 0.301
0.532 | 0.477 | 0.440 | 0.413 | 0.392 | 0.3756 | 0.362 | 0.360 | 0.326 | 0.298
0.623 | 0.470 | 0.434 | 0.408 | 0.387 | 0.371 | 0.368 | 0.347 | 0.322 | 0.296
0.519 | 0.464 | 0.429 | 0.403 | 0.384 | 0.368 | 0.366 | 0.344 | 0.319 | 0.294
0.510 | 0.460 | 0.425 | 0.400 | 0.381 | 0.365 | 0.362 | 0.342 | 0.317 | 0.292
10 0.5056 | 0.466 | 0.422 | 0.397 | 0.378 | 0.363 | 0.350 | 0.340 | 0.316 | 0.291
12 0.498 | 0.464 | 0.417 | 0.393 | 0.374 | 0.359 | 0.347 | 0.336 | 0.313 | 0.288
15 0.490 | 0.443 | 0.411 | 0.388 | 0.370 | 0.366 | 0.343 | 0.333 | 0.311 | 0.287
20 0.481 | 0.436 | 0.406 | 0.383 | 0.365 | 0.3561 | 0.339 | 0.329 | 0.307 | 0.283
30 0.471 | 0.428 | 0.398 | 0.376 | 0.359 | 0.346 | 0.335 | 0.325 | 0.303 | 0.281
60 0.468 | 0.418 | 0.390 | 0.369 | 0.352 | 0.339 | 0.329 | 0.319 | 0.299 | 0.277

LTI T WD =

Table IIb

Coefficients z (y, k, n) for the determination of tolerance limits to confidence level
y= 0,95 with mean range as an estimator of the standard deviation

k\\“ 5 6 7 8 9 10 11 12 15 20
1 0.971 | 0.800 |.0.694 | 0.625 | 0.575 | 0.638 | 0.508 | 0.483 | 0.431 | 0.382
2 0.729 | 0.628 | 0.663 | 0.5614 | 0.484 | 0.468 | 0.437 | 0.420 | 0.382 | 0.344
3 0.650 | 0.669 | 0.516 | 0.478 | 0.450 | 0.428 | 0.409 | 0.394 | 0.361 | 0.327
4 0.610 | 0.638 | 0.491 | 0.466 | 0.431 | 0.410 | 0.394 | 0.380 | 0.349 | 0.318
b 0.686 | 0.5619 | 0.476 | 0.443 | 0.419 | 0.399 | 0.384 | 0.8371 | 0.342 | 0.312
6 0.568 | 0.56056 | 0.463 | 0.433 | 0.410 | 0.392 | 0.377 | 0.364 | 0.336 | 0.307
ki 0.666 | 0.496 | 0.4656 | 0.426 | 0.404 | 0.386 | 0.372 | 0.8369 | 0.332 | 0.304
8 0.549 | 0.487 | 0.445 | 0.420 | 0.399 | 0.382 | 0.8367 | 0.356 | 0.329 | 0.302
9 0.637 | 0.481 | 0.443 | 0.416 | 0.395 | 0.378 | 0.364 |~0.362 | 0.327 | 0.301

10 0.630 | 0.476 | 0.439 | 0.412 | 0.391 | 0.375 | 0.361 | 0.350 | 0.326 | 0.299
12 0.620 | 0.468 | 0.432 | 0.406 | 0.386 | 0.370 | 0.367 | 0.346 | 0.321 | 0.298
15 0.609 | 0.458 | 0.425 | 0.399 | 0.383 | 0.366 | 0.352 | 0.341 | 0.318 | 0.292"
20 0.499 | 0.449 | 0.416 | 0.392 | 0.374 | 0.359 | 0.348 | 0.336 | 0.313 | 0.288
30 0.483 | 0.440 | 0.407 | 0.385 | 0.366 | 0.352 | 0.8340 |-0.330 | 0.308 | 0.284
60 0.466 | 0.424 | 0.396 | 0.374 | 0.367 | 0.344 | 0.333 | 0.323 | 0.302 | 0.279

ranges. Then we may take as an estimate of the population mean the average
of the twenty medians, ‘

This estimate will be very nearly normally distributed with mean x and va-
riance
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Table I1c

Coefficients z (y, k, n) for the determination of tolerance limits to confidence level
’ y= 0,99 with mean range as an estimator of the standard deviation

K \“‘ 5 ‘ 6 7 8 .9 ' 10 l 11 12 15 20
1 1.515 | 1.149 | 0.952 | 0.833 | 0.746 | 0.680 | 0.633 | 0.695 | 0.518 | 0.444
2 0.917 | 0.791 | 0.692 | 0.652 | 0.677 | 0.5640 | 0.510 | 0.487 | 0.436 | 0.386
3 0.795 | 0.678 | 0.604 | 0.562 | 0.514 | 0.485 | 0.461 | 0.442 | 0.400 | 0.358
4 0.720 | 0.622 | 0.659 | 0.515 | 0.482 | 0.456 | 0.436 | 0.418 | 0.381 | 0.343
b 0.676 | 0.589 | 0.632 | 0.492 | 0.462 | 0.438 | 0.419 | 0.404 | 0.369 | 0.333
6 0.645 | 0.566 | 0.513 | 0.476 | 0.448 | 0.426 | 0.408 | 0.393 | 0.360 | 0.327
7 0.624 | 0.649 | 0.500 | 0.464 | 0.438 | 0.417 | 0.400 | 0.385 | 0.364 | 0.322
8 0.612 | 0.536 | 0.489 | 0.466 | 0.430 | 0.410 | 0.393 | 0.379 | 0.349 | 0.318
9 0.594 | 0.526 | 0.481 | 0.448 | 0.423 | 0.404 | 0.388 | 0.374 | 0.3456 | 0.314
10 0.583 | 0.517 | 0.474 | 0.442 | 0.418 | 0.399 | 0.383 | 0.370 | 0.342 | 0.312
12 0.566 | 0.504 | 0.463 | 0.433 | 0.410 | .0.391 | 0.376 | 0.364 | 0.336 | 0.307
15 .0.648 | 0.490 | 0.451 | 0.423 | 0.401 | 0.383 | 0.369 | 0.3567 | 0.332 | 0.303
20 0.529 | 0.476 | 0.438 | 0.412 | 0.391 | 0.374 | 0.361 | 0.350 | 0.324 | 0.297
30 0.607 | 0.468 | 0.424 | 0.399 | 0.380 | 0.364 | 0.362 | 0.341 | 0.317 | 0.292
60 0.483 | 0.448 | 0.407 | 0.384 | 0.366 | 0.852 | 0.340 | 0.330 | 0.308 | 0.284

0,28683 02

where 0,28683 is the variance of the median of the sample of size five from
N (0,1); the value has been taken from [13]. Thus the factor N appearing in
our formulas is N = 69,73. From table I we have as the constants for the appro-
ximation of the distribution of mean range » = 72,716 and ¢ = 2,331. The
average 907, tolerance interval then is obtained from formula (25) as

A4 —0,720R, 4 + 0,720R.

A 909, tolerance interval to, say, confidence level y = 0,99 is obtained as fol-
lows: from Weissberg’s and Beatty’s table [5] (or from a table of the normal
distribution computing by trial and error) we find reszs;00 = 1,666627. Then
from Table IIc we get z (0,99; 20; 5) = 0,529. Thus the 909, tolerance interval
to confidence level 0,99 is

4—0,876R, 4 + 0,876R.
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TOLERANCNI MEZE PRO NORMALNI ROZDELENT

Souhrn
Oznadme R prumérné rozpétf k navzéjem nezdvislych ndhodnych vybéru rozsahu

n ze souboru s normélnim rozdélenim se stfedni{ hodnotou x a s rozptylem o2 2 ne-

stranny odhad parametru s nezévisly na Ra rozdéleny normélné s rozptylem o?/N,
kde N je zndmé é&fslo. V élénku jsou tabelovédny pomocné velidiny pro stanoveni

‘tolera.nénich intervali, zaloZenych na (. a R. (V tabulee I. jsou sestaveny konstanty
¢ a ¥ pro aproximaci rozdélen{ veli¢iny R/s (viz seznam literatury, [6]). Interval tvaru

e p(v) ]/ Ni1 = o tip) ]/ NF1l =
p'— ¢ N R) P-+ ° N R

pokryvé v priméru 100P % zdkladnfho souboru. (¢,_p(») je 100(1-P)9%, kritické hod-
nota Studentova rozdéleni s v stupni volnosti, definovand vztahem

- et a P)I’( ]an

2“1+"—:]— P du = i) ;)

t-p(» 2

Tabulky IIa, IIb a ITe obsahujf velidiny z (y, k, n) takové, Ze interval
o —rypz(y,k,n) E, o+ ry.pz (¥, k,n) R

pokryje s pravdépodobnosti y aspoti 100P 9, zédkladnfho souboru. (ry, p je kofen rovnice

VN +r

1 v
— e 2 du=P) .
V2n

I/Vb—'ﬂ— r
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TOJEPAHTHBIE IIPENEJIBI OJIA HOPMAJIBHOI'O PACIHPEIEJIEHUA

Pe3oMme

ITycts R cpemumit pa3amax k B3aMMHO He3aBHCHMEIX BHIGOPOK 06'beMa n M3 HOpMallb-
HO pacnpefeldeHHOi COBOKYIHOCTH C MaTeMATHYEeCKUM OKMIAHUEM u U C Jucliepcueit
0%, 0. HeCMellleHHasi OLIEHKA IapaMmeTpa u, paclpenejeHHasA HOPMAJbHO € OucIepcuei
0% N, rne N - uaBecTHoe yuciao. B HacTosmieii cratbe Ta0yJIUpPOBAHH BCIIOMOTATe Ib-
HBle BeJIMYMHBL JJIA BBIYMCJIEHUA TOJEPAHTHHIX MHTEPBAJIOB, OCHOBAaHHHIX Ha Q. ¥ R.
B ra6aune I nmpuBeneHsl IOCTOAHHBIE ¢ U v, OTBeYalole Pa3HbIM COYETAHHAM K U N
¥ o0Jajmaiolue CBOMCTBOM: MHTEPBAI

ti—p(v) N+1 — Li—p(¥) N+1 =
0- - ¢ V N R, il + ¢ V N R9

rae t;_p(») — 100P -mepueHTHOe KpUTHYECKOe 3HauYeHWe pacrpenelienusa CTbiomeHTa
onpeqesiieMoe COOTHOLIEHNEM

» _
-] ut vt 1 (1 —P) r [?] VV”
2 j [1 + —] 2 du = .
v v+ 1
tp F( 2 ]

TIOKpHIBaeT B cpenHeM modo 100PY, reHepaibHoit coBokynHocTd. B ta6auue II mpu-
BeJleHbl BeJIMYMHH 2Z(y, k, n), ob6anaiomue cBOXCTBOM: MHTePBAJI

@ —ryp.2(» kn) R +rypz(»kn R,
I'7e ry,p — KOPEHb yYpaBHEHUA
I/VN +r
V2n
I/VJTT-T

ul
e 2 du =P,

IIOKpoOeT C Bépomnocn,lo y 1o MeHblelt Mmepe 100PY%, coBoxkymnHoctH. Tabauna Ila
npegHasHadYeHa MiIA Koepdunuenra mosepusa y = 0,90, Tabauna IIb maa y = 0,95
u Ilc paa y = 0,99.
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