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1965 AcTA UNIVERSITATIS CAROLINAE — MATHEMATICA ET PHyYsiCA No. 2 Pag 21-33

FINITE DIFFERENCE METHOD FOR THE CAUCHY PROBLEM FOR
LINEAR HYPERBOLIC SYSTEMS WITH DISCONTINUOUS
COEFFICIENTS

RESEN{ CAUCHYOVY ULOHY PRO LINEARNI HYPERBOLICKOU SOUSTAVU
S NESPOJITYMI KOEFICIENTY DIFERENCN! METODOU

PENIEHUE 3AIAYM KOWM JJIS IMHEAHON TUITEPBOJWUYECKOM CHCTEMBI
C PA3PBIBHBIMU KOIPPULIMEHTAMU METOIOM KOHEUHBIX PA3HOCTEN

JaN VLEEK
(Recetved October 1, 1964)

1. ENERGY INEQUALITIES

Denotations and definitions.
We consider in the domain M = E; x <o, To,0< T< + o0
in the plane {x, t} the system

0N az + +Bu=f

where 4 = (a¥!), B = (%)), k, [ =1, 2 are matrices,
f=(fo,f, . f(r)) U= (um u®, u(r))

are vector-functions."We suppose, dunng all the paper, all the functions to be
real. We say that the function u (x, t) is the generalized solution (solution almost
everywhere) of (1) with initial condition

@ u (0, x) = ¢ (x)
where ¢ (x) = (p® (x), p@((x),. ..., @) is a given function, if

oum  9(Au)m
1. utm), ua: , X al;) eLo(Mym=1,2,...,1
2. u satisfies the system (1) almost everywhere,
3. u admits initial values (2) in the following sense:

Lim [ |um™ (x, ) — @™ (x) [2dx = 0, m = 1,2, .
t—>04 E,

We say that the function x, defined on M, has the compact support with respect
to x in M if there exists a positive conStant L such that x = 0 for t € (o, T,
| x | > L. We denote by e®) (M) the set of functions with compact support with
respect to x in M such that all their derivatives up to the order & are continuous
in M. We denote, for arbitrary open domain Q in the plane {x, z}, by ¢*)(Q) the
set of the functions with continuous derivatives up to the order % in Q, having com-
pact support in Q.

0 (Au)
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Suppose that
(«) the elements of 4 are bounded piecewise continuous functions on M with unique
discontinuity line x = 0, and they have bounded first derivatives with respect
to ¢, satisfying the Lipschitz condition with respect to ¢. A is symmetric and
positive definite uniformely in M. The elements of B are bounded piecewise
continuous in M, satisfying the Lipschitz condition with respect to .
(B) The components of f are piecewise continuous in M, satisfying the Lipschitz
condition with respect to z and they have the compact support with resp. to x.
'The components of ¢ are piecewise continuous with compact support in E;
. . d(A(x, o)p(x) .
and such that the derivative d — s bounded.
We construct, in the {x, ¢} plane, the net with mesh sizes Ax = h, Az = 7 and
netpoints (z4, 57), 1, j integers; if x is a function defined in the net points, we write
uey = u (th, y7). We introduce the operators

Biv1g — pi-1y

A1”u=———2h————-,A2”u=.”_‘jjl—__&l_.

T > Jrg = pag1 + pag 1

We shall use, for solving the probléme (1), (2) the following explicit difference
scheme:
In the net points we define the function # as follows:

3) ug = us = @(th) for every integer 7.

For every integeriand 0 < j < [TT] we write the difference equations

4 Aouy + Arvyy + (Bu)y = fu,
where v = Au.

(3) and (4) determine u;; for every integer i andj=—10, ..., %'— + 1:
we take in the discontinuity points the left-hand (or right-hand) limit values.
The symbol ' signifies the summation over all the integers 2. We denote by Q,
for a positive 'integer p, the set of all the couples of integers #, j satisfying the
inequalities 1 < j < p — 1;u . vis the scalar product of the vectors u, v, 4 = u.u,
(uy V)1,0) = f u.vdG, || u |2, = (u, u)e for an arbitrary set G and for vector

& .
functions u, v defined on G. We denote by L3(G) the set of the vector functions

such that || ||z, < + oo. . . o
Lemma 1.1 There exists a positive integer ¢ such that for all integer ¢ satisfying the

inequalities 1 > ¢, 1 < — ¢, 0 <j < %] +1 holds uy; = 0, where uy; is the
function defined by (3), (4).

. . . T
Proof. There exists a go such that for i > go, 1 <—¢q 0 <7 < [—;] fir=0,

o(ih) = 0. Hence we can take ¢ = ¢o + [TT .
Lemma 1.2 For arbitry mesh functions uy, &y, satisfying the conditions
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ey = &y =0 for 0<]<[—] and i = q1, i = ¢z (g1 < ¢z are two integers)
the relation

as qs
3) _ > Ay by =— D py A by
i=q i=q, .
holds for every integer j, satisfying the inequalities 0 <j < [1]

Proof The formula (5) follows 1mmed1ately from the evident formula
(6 ,?_:1 [u(k + 1) — u(k — 1)] &(k) = —glm [Ek + 1) — &k —1)] +

+ u(l + 1)EQ) — u(1)E0) + uDER + 1) — wO)ED),
~ which is true for arbitrary functions u, £ of integer argunient.

Theorem 1. There exists a positive constant K, independant on r,bh, f, @ such that
for uy; defined by (3) and (4) the inequality

™ B3y < KB (o + ) + th 3f1)

holds for 7, % = - sufficiently small and for arbitrary £, 1< p < [_TT—] .
Proof. Multipliing (4) by Jv; and summing over ,, we get
(8) > A uyy . Foy + D Aroy Joy + D (Budy Fou = D fu. oy .
[ 2 2 2

Let us arrange the expressions in (8) as follows:

Ugg+1 Deg -1 — Ui51 Dy
E Az uy Joy = § Az (ugs vyy) + E T
2 2, 2,

Put 4(j) = Z u},. We have also

Utp Vip + Usp-1 Vep-1 Us1 V01 -+ D0 Vi

By the boundedness, the symmetry and the positivity of A we obtain (the Kj are
positive constants)

9 z Az (wy vy) > -2% (&(p) + Hp-1) — % (%) + 9(1))

It holds also

Z Uep+LV4g-1 — Uig1 Digl “ ( Ay — Ayn ) “
? T 1541 T 515

Qp
(10) ‘ z MR ML | < Ky Zﬂ(f),
]-0

where the Lipschitz contmmty of A with respect to ¢ was also used.
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It follows by the lemma 1.2:
2 A1y Joyy = —2 v Ma (Joy) = — > vy Aoy — D vy Aoy +
o i o

o,
+ Dvip A1 vipa
— 2. 91810 + D v Aron + D Arva v = — 3 Aoy Jou +
i i i 2p

+ 22 Vip M1 Vip1 + 2 Z v10 A1 i1

hence we get

(11 ‘ z A1 vy Jo

It can be easily proved now that

< % s+ 00 £ 0

(12) 13 B o | < Ky z o)

(13) |5 fu-Fou| < 3F+ Ks 3 0.
Suppose ’ ’

M x< 7‘;—3 and substitute the relations (9) — (13) in (8). We obtain
19 ) < KO + K + T f%) + Kor 3.0)

)
Let y = Ko (4(0) + #(1) + = !)Zf %), R(p) = _Zoﬁ(f)-
» 1=
In these expressions the relation (14) gets the form
(15) R(#)(1 — 1Ke) < y + R(p— D).

Let v be sosmall, that 1 — tKs > % If we denote E = (1 — 7Ks)-1, we easily

prove by mathematical induction

1
(16) R(p) < yE. i’EFTI—I + Er-1 R(1).
Substituing this in (14) and using the relations
Ke \P_ ™% _E—1

= 4(0) + (1),
we obtain immediately the statement of the theorem.
Theorem 2. There exists a positive constant L, independent on 7, 4, f, ¢ such that
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for uy defined by (3), (4) and 7, &, x = % sufficiently small the inequality

a7 hY | Asup |2 < L{hz (vdo + uiy) + hz (1A2 ujp + Az uj)
+ Th [, qu + Z (Az fy)*1}

1 j=0

~

holds for arbitrary p, 1 < p < [ T]

Proof. Denoting Asu¢; = uy; and appliing to the system (4) the operator Az we
obtain

(18) Az pygy + Ay (Aggs1 pras + D2 Ayyugg1) + By + 1 pyg = Do fig — AaBiy ugy 1
forl <j< [—?] — 1. Let us define the matrix 4 in E; > M as follows:

Am)=22 T).c—D+A®Dort>T,xe By

A(x,t)=—a%(x,o)t+A(x,‘o) fort < 0, x € E.

We note that the functions A Ayj, A7 A¢; remain bounded by a constant indepen-
dent on 7, A.

Denoting A¢j+1 pes + Az Ay uiga = &y,

multipliing (18) by #4i; and summing over Q, we get

(19) > Ao Jeu + > A &y FEy + D Bia g FEy =
2y 2y 2
= Az fiy FEiy — > A2 By ugs-1 Féos.
2, o

Let us transform the expressions in (19) as follows:
It is
(20) ; As py Foyy = DZAz my [F (Ay+r pag) + F (A2 Ay pag1)].
b4 P
We shall estimate separately the two terms in the right-hand side of (20).
We have

1) Z Az pig J (Aeg+1 pag) = z Az (uyy A¢;+1 wg) +

Big+1 Ay pig a1 — g Au+z ,uu+1
+ 27

Denoting #(j) = Z M v’(J) Z 43, we obtain

A a4 -
z A, (,“u Au+1 /m) = Z o Zipt Pip +2,u;p 1501 Pet
Q2

pi Aez pa + oo Aa oo tip Asp piip + pip -1 Aip-1 pup
- 2 = 2t +

H T
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A Ap— Aip-
+z Wzr e ”“’+Z paps g s —

. z pa Aez par + poo Aa po
27 :

According to the assumptions («) on A the following inequalities hold

A _ _ _ C
(22) Z Mip lp/‘lp+,;¢: 1 Aip-1 pip1 27(0(1,)_{_,9(?_1)),

P
Aipin— A Aipr — Aip
(23) ’z pop L= Ain z pip Bpt Aot

. Z ix Az pa -I- w0 Aa o

<L (0(P)+0(?—1)+~—(0(1)+0(0)),

where L; are positive constants.
Let us estimate now the second term in the nght-hand side of (21). By the sym-
metry of A we derive simillarly as in the proof of the theorem 1 the inequality

A a—upya A
z pig1 Aty peg1 — piga Ao pyna sLaz"(ﬁ'

27
. Qp J=0

Now, we estimate the second term in the right-hand side of (20). We shall use the
obvious identity

(24)

2 Az (wy vig) = Juyy B2 vy + Fvig Az ug,
which is true for arbitrary mesh functions %, v. Using this formula, we get

(25) Z Ag pug J (D2 Ay peg-1) = 2 Z Ag (pig Do Aoy uig1) —
- Z Fues (A2 Ay uy + Bz Aty peg1)-

First, we transform the ﬁrst term of the right-hand side of (25):
(26) 2 Z Aa (uiy Mg Ay uyg-1) = 2 Z tp Bo Ay iy 1 + pup1 B2 Aiprthp-2

2T

—2 Z pi1 A Au w0 + pio Az Ao ui
. o .

Using the inequality 2 |ab| < a?%e? + - (a, , ¢ arbitrary real numbers), we
obtain

<P em+eo—1+

‘ 2 z Ag (ues Ao Ay ug1) | <
o
2 L4

W=D +9(. 2+ 2@+ +y©)+p(=D)
(with ¢ arbntrory smallj.

«
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The second term in the right-hand side of (25) oan be estimated as follows:
. ? p—1

@7) |2 Jpu (A3 Ayuy + A2 Ayapsa) | < Ls > 9(5) + Le ZI'P@-
2p j=0 j= .

We obtain similarly as in the proof of the theorem 1
DMy Fey =73 Ephibipa+ D Ewhiba =
o i 7

= z (Asprrip + A2 Aiprip 1) A1 (Aippsp-1) +
+ 3 (Awnpup + BeAipttip 1) Ax (BeAipauip2) +
+ z (A pso + A2 Awous1) Ay (Aezpar) +

+ Z (Ao pio + Az Awous1) Ay (As Air uo).

Z A&y FEy | <
2

+ 3@ +v—D+yv@—2)+v()+y (1]
It is easility to prove that

It follows.

(28)

—14+ 0+

(29) Z Buji1 s Féu | < L [Z 20+ =Z_ dOF

(30) Z BafyFéy | < Z [ Aafiy |2+ Lo [Z CX6)) +J§Z_'P €))P
@31) Z A2 Byugy1 Jéi5 | < Lo [Z ? () +}=Z_1P -
Suppose now x < 427 JT< 1 6CL1

and substitute (22) — (31) in (19). We obtain
@2 @) <Lu{d()+40@+yv0@+y—D+y@—D+v(E—2

+ 7 [Z (A2 fy)? + Z 3() + Z 'P(D]}
It follows by (7) and (16) =
(33) PO<InPO+0@+v@+ |
+7 [Z (Aefu)® + 2, an]z} +Ln fz (]

i j=0

From (33) we derive by the same arguments as in the proof of the theorem 1 the
mequahty anm.
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Theorem 3. There exists a constgnt M such that under the assumptions of the
theorem 2

(34 Th z Z (AL vy < M{h Z [uip + ufy + (A uio)? + (A2 un)?] +

i j=1

+ [ Zf,, + Z Az f1)?1}

i j—-
holds for an arbitrary integer p, 1 g p < % .
Proof. (34) follows immediately from (4) using the theorems 1,2.

2. EXISTENCE THEOREM
Let the matrices 4, B and functions f, ¢ satisfy the conditions («) and ()
respectively. Let us define, for an arbitrary mesh function ui;, the function
£ (x, £) by
(36) B =pyforki<x< h(G+1jr<t<(G+ 1D
Theorem 4. There exists a constant K independent on 7, 4, ¢, f such that for
sufficiently small <, A, —;— = x

(37) 1% lleuany < KO, || Aqu | < KO, || &0 || < KO
holds with 6 = 7h Z [fi+ Qfi)’] + 1 Z @ (th)?2 + h Z [A1 (Ao ¢(10))]2.
Proof. Since the expresmns h Z(Az 10)2, h Z(Az ui1)? may be estimated by (4),

we get the statement easily by theorems 1-3.
For instance ,

2 (Bzun)? < C3 {(ArAug (h)|2 + (Bog ()2 + fii} <

Aun — Aw
T

< clz {(m Augp @)+ o @] + Bop () + fa}

We also use the obvious estimate / Z (fio +f4) < Coth Z (f3 + (A2 fy)?).
Let 7y, hn be sequences of suﬂic1ently small posmve numbers such that 4, A, — 0

as n — oo and x, = T satisfy (*). Let u%n, v, be the respective functions. The
n .

weak compactness (in Lz (M)) of the sequences #n, A:‘u,,, Ayon follows by the theo-

rem 4. Hence we may choose weakly convergent subsequences which will be de-

noted by

4

(38) ‘ * ;llv, A;;‘P, A;)v:
Let
(38’) . u, uz, v1 € Ly (M),

be the respective limits and v = Au
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It holds:
Theorem 5.
Ou
7 = U2, a—x =1,
where the derivatives are to be taken in the sense of distributions.
Proof: Let y = (pW, p®@, ..., p®@) e ¢® (Mo)

(Mo is the interior of M). Let v™, f™, a¥, b¥s m, k, 1 =1, 2, ..., r be the
functions coinciding with yp@), fm) gkl bkl respectively at the points of the nets
(with mesh sizes 7,, k) and defined in the other points by the formula (36). It is
easy to prove

(39) @ Bat)ran = — Koy, ).
(40) (@ A0ty = — (Baprs B).ot)-

Now, limiting the equalities (39), (40 we get the statement of the 'theorem.
Theorem 6. It holds

1. u, aa“ e Ly (M), v € W (M).

2. The functions u, v have a compact support with respect to x in M.

Proof. The assertion 1. is an immediate consequence of the for (38), (38') and
theorem 5. The assertion 2. follows by the lemma 1,2.
In the following, we shall use the embeding

Theorem 1. Let u, % € Ly (M). Then there exists # (x, t) such that 4 (x, ¢) =

= u (x, t), _aa% = g : allmost every where in M, and for every ¢ € <o, T)

f(zi (x,2)—d (x,7))2dx —>0as 7 - tand

E,
L-(M)}

f(u (% t))2 dx < K {” u ”L.(M)

where K depends only on t.
(A similar theorem may be found e. g. in (1) p. 35).
Theorem 8. The function u is a generahzed solut:on of (1), (2) in M.

Proof. Let @ = @0, ..., dM € ¢! (Mo) Mult1plung the equation (4) by 4. @,
and summing over the net-pomts in M, we get

(41) (AZ;"V + A’;’r + §in —'ﬁ, @)L,(M) =0..
Limitting in (41) gives:
(A
( 3t + ( u) + Bu—f, D)1,y = 0.
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LY

Since the @ was arbitrarily chosen in ¢! (M?), and since ¢! (M?) is dense in Lz (M),
we get

a(Au)

at + + Bu = f almost everywhere in M.

Let us, to prowe that the functlon u satisfies the condition (2), define the functions

. tp,fortgo
* = lu, fort >0

where u, are the functions of (38) and @, (x) = ¢ (kh,) for x € <k hs, (k ) A,
k integer.
As Asuy = 0 for ¢ < 0, we have (by (38) and the theorem 5)

*

ai in Ly (N), where N = E; x (— 1, T>.
Obviously #* = u for t >0, 4* = ¢ for ¢ <0. By the embedding theorem 7
there exists y (x) € Lz (E1) such that

_[(“ (x, ) — )de—>0fort—>0+.
E,

u = u*y Aouy —

As u* = ¢ for t < 0 it follows y = ¢ allmost everywhere. Hence u satisfies the
condition (2).

3. GENERAL EXISTENCE THEOREM

We shall prove in the present section the existence theorem for the problem (1),
(2) under more general assumptions. We suppose that

)
» £T e L2 )
A (0, x) p (x) € Wz (M)
Than there exist sequences f», @x satisfying the condition () such that_
oty of
(8) ”f'n —f |2 i —> 0 at 7{ 0 -0
| 4 (5 0) pn (x) — A (x,0) @ (x) Iwiey) = 0, | on — @ llz,0n — 0asn — oco.
Let 5, ks be two suquences of positive numbers such that 7, ks — 0 such as n—>co

and such that % = x, satisfies the condition (*) and finally that

s ~ 2
(77)’ I fo —f llz,an = 0, || Az fn — o |leon -0
- ~ ~ d(A0,x)p(x
| pn — @ liz,an = 0, || A1 Aogn — (e dx)q)( 2 Ly(By) >0

with n — oo,

Here fu, @n, Ao on are piecewise constant functions which coincide in the points
of the net with mesh sizes 75, h, with the functions fu, ¢, 4 (x, 0) @» respectively,
and defined in the other points by the formule (36).
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Now we are ablé to prove the

Theorem 9. There exists, under the assumptions («), (¥) a generalized solution

(solution almost everywhere) of the probleme (1), (2). Moreover, if u, is the solu-

tion of the difference equations (3), (4) on the net with mesh sizes tn, ha, With fa,

@n defined by (d) and (%), than
p :

0Au
Ox

~ ~ ou ~
Un —~ U, Azu,. - = AlAun -

ot
where u is a solution of (1), (2).

Proof: The weak compactness of the sets of functions us, Asttn, A14 #s = A1vs in
Ls (M) follows from the assumptions (6), () by the theorem 4. Let us denote by u,
u3, v2 the limits of some convergent subsequences.

We get

_ Ou _ 0(Au)
uz—Tt,Ul———arand

u | AAw) | ,
74_ ox +Bu=f

almost everywhere in M, similarly as in the proof of the theorems 5, 8. It can be
proved in the same manner that « satisfies the condition (2). The convergence of

the whole sequences %, Astn, A1Au, follows from the uniqueness theorem, stated
in the next section. Co

4. UNIQUENESS THEOREM

Theorem 10. Let A, B and f, ¢ satisfy the assumptions («) a.t'nd (p) respectively.’
Than the generalized solution of (1), (2) is unique.

Progf: Suppose u; and u2 be two solutions of (1), (2) with the same values f, ¢.
The difference v = u; — u3 satisfies the conditions

v 9(Av) .
(42) —aT'i" o + Byv=0
(43) [v2(x, ) dx >0asz—>0+,
E,

v,% e Ls (M), Av e W3 (M).

Put w = Av. There exists a sequence w, € &2 (M) such that
(49 I wn — w llwian — 0.
If v, = A-! wn, we get

oo
-0t ot L,(M)

according to the boundedness 4, 4! and their first derivatives with rsepect to t,
Using also the theorem 7, we obtain from (42)—(45)

avn a(Avn)
(46) at + ax + Bvﬁ =fn

45) | vn — v l|lL,00 — 0, -0

31



where

(47) 1 fa lz,an — 0
and
(48) o | on (x, 0) llz &) — 0 as n — oo,

Agul;iplying (46) by Av, and integrating over Mt = E1x <o, t) 0 <t X T, we
obtain

fa;’: Av,.dxdt—l—fz(g%")/lvndxdt'—l— vanAv,.dxdt=
M M M,

= [ fu Ava dx dr.

M
Integration by parts leads to the equation

2

E,

+M[f,,Av,,dxdt—vanAvndxdt
t M

% [ A, 1) 9(xy 1) . 0a(, 1) dx = —— [ A (x, 0) 9a(x; 0) . wa(, 0) dx +

and we get (using the positivity of A)

t
faso < K {||on|icsy + f || o
0

i.(S‘l) dt + ”f“ix(Mt)}’

lon]

where S7 is the plane ¢ = 7.
Hence, we get by the well known lemma, the inequalities

(49) NonllE sy < Ka{|| 2 |[Liso + [|fn [[Zacato}

o ||z < Ke{ | on|Zisy + | /o |.can}- ,
Now, if n — oo, the left-hand side of (49) tends to || v ||, 4, and the right-hand
side tends. to zero, which proves the theorem. -
Remark. The results of the paper holds if 4 admits finite number of discontinuity
lines x = x; = const. Also B can be taken more general.
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SOUHRN
Pro fe$enf Cauchyovy ulohy pro squstavu
Ou 0(Au) _
(1)3;‘}' % +Bu=f

(2) u(x0) =9

voblasi M = Eix <0, T),0 < T < + o,

kde 4 mé kone¢ny polet piimek nespojitosti, rovnobéZnych s osou x = 0, —aa‘;l— spliiuje Lipschi-
tzovu podminku podle ¢, 4 je symetrické a positivné definitivni, je pouZito nisledujiciho diferen&ni- -
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ho schématu. Na siti s kroky 7 = At, h = Ax s x = —— dostatetnd malym urtime v uzlovych
bodech sité funkci uyy = u (ih, j7) z rovnic
U0 = Uyl = @ (ih) N
Aguyy + A1 (A + Biywy = fiy
pro libovoln4 celéd i a celd H0<Zi< [—z—‘—] 5 kde A; resp. A3 jsou symetrické diferenéni operatory

Ug41j — i1 j Vij+1 — Vij-1
2h 27 :

Je dokdzéna stabilita tohoto schématu a existence a jednozna¢nost zobecnéného fefeni u lohy (1),

Ay = resp. Asuyy =

(2), spliujiciho podminky u, % R a(:u) € La(Mm), které nabyva polite¢nich hodnot (2) v pru-
méru.
PE3IOME
JIJm petuenus 3agauu Kowm ansa cucremer
R

2 u (x, 0) = ¢ (x),
Bobmacru M =E1 X0, T) 0< T < + oo, _
rae A uMeeT KOHEWHOE UMCJIO JIMHHUII pasphbIBa, NapasulesbHBIX ocH x = 0, -a%ynonne'mop-
sieT ycsoBuIo JInmumaa no ¢, A cCUMMeTpUuecKas M I0JIOXKHMTEIIbHO-ONpeAeSIeHHas, IPEAJIaraeTcsa
CJIeAyIOIIasa siBHAsA pasHOCTHasi cxema. Ha cetke c maramu v = At, h = Axcx =Jh—1xoc1'a'roq—
HO MaJIbIM OINpefensaeTca ceTrouHasi GyHKuus wi; = u (ih, jT) U3 ypaBHeHuUiA
ui0 = uin = @ (th)

Asusy + A1 (Au)is + Bijtys = fis
ANA JOOBIX LEJbIX { ¥ LeJIbIX j, YOOBJIETBOPAIOMIMX HepaBeHCTBam 0 <j < [—f—] , rae A,
Az cumMmeTpHuHBbIE .paSHOCTHbIC onepaTopbl

Uij+1 — Uij-1 Uij+1 — Uif-1
—_ Asuu =" 7

Ay = 2h 27

COOTBETCTBEHHO.

JIoKa3bIBaeTCsA YCTOMYMBOCTE 3TOM CXEMBI M CYLECTBOBaHHE H eunncmennocu 060061eHHOrOo
pelueHus 3agauu (1), (2), YIOOBJIETBOPSIIOLIETO YCIIOBUAM

ou O0Au
Yo Tax

M MPHHUMAIOLIErO HavaslbHble JaHHbIE (2) B CPEOHEM.

€ Lz (M),

33
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