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Direct Iterative Methods for Linear Systems 
Using Weak Splittings 

R. J. P L E M M O N S * 

Depar tments of Mathematics and Computer Science, 
The Universi ty of Tennessee , Knoxville 

The splitting A = M — N of a rectangular matrix A is called proper if the range and null 
spaces of A and M are equal. This idea was developed as a means of extending to the general case 
the usual splitting of a nonsingular matrix. For the linear system Ax = b the iterative method 
x(k+i) = M+NxW + M+b, where A = M — N is a proper splitting, converges to the least 
squares solution of minimum norm, A+b> if and only if Q(M+N) < 1. Here A+ and M+ denote 
the usual Moore-Penrose pseudoinverses of A and M. The method avoids the use of the normal 
system ATAx = ATb. 

This paper extends these results in two ways: (1) by considering the least squares and the 
minimum norm solutions separately so that the pseudoinverses are easier to calculate, and (2) 
by weakening the conditions of a proper splitting to requiring only equality of the ranges of A 
and M when Ax = b may be inconsistent and only equality of the null spaces of A and M when 
Ax = b is consistent. In addition, convergence theorems are obtained in terms of matrices leaving 
positive cones invariant. 

I . Introduction 

Consider the rectangular system of linear equations . 

Ax = b (1.1) 

where A is a real m X n matrix and b is a real m-vector. In the special case where 
m = n and A is nonsingular, iterative methods of the form #(*+--) = Gx^ + c 
are usually employed to obtain the solution whenever m is large and the matrix A 
is sparse. This iterative formula is obtained by splitting A into the form A = 
= M — N where M is itself nonsingular and then letting G = M~XN and 
c = M'ty. The sequence {xk} then converges to the solution to (1.1) for every 
*<°>, if and only if the spectral radius gtM^N), of M~XN is less than one. Con­
ditions under which Q(M~1N) < 1 have been described by VARGA [10], COLLATZ [2], 
FIEDLER and PTAK [3], ORTEGA and RHEINBOLDT [6], MAREK [5], YOUNG [11], 
and others. In such studies the concept of matrix monotonicity plays a funda­
mental role. 

* A portion of the author's research was supported by the NSF Grant 15943. 
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In the more general case where A may be singular and in particular rectangular, 
the system (1.1) may be under- or over-determined. Here one normally wishes to 
compute the solution x of minimum Euclidean norm if (1.1) is underdetermined 
and some vector y that minimizes the Euclidean norm of b — A x when (1.1) is 
over-determined. In the first case x is called the minimum norm solution to (1.1) 
and in the second case y is called a least squares solution. In the general case then, 
there is exactly one least squares solution of minimum norm. Such a vector y 
is called the best least squares solution to (1.1) and is given by y = A+b where A+ 

is the pseudo-inverse of A; that is, A+ satisfies A = AA+Ay A+= A+AA+> with 
AA+ and A+A symmetric. More generally Xb provides a least squares solution 
to (1.1) where AX = AA+. Such n x m matrices are known as least squares 
inverses of A and are denoted by Aj. Moreover if (1.1) is consistent and XA = A+A, 
then Xb is the solution of minimum norm. These matrices are called minimum norm 
inverses of A and are denoted by A~m. Of course, Aj = A+ if A has full column 
rank, A~m = A+ if A has full row rank and A+ = A'1 if A is square and non-
singular. However, if 0 < rank A < min {m, n) then Aj and Am are not unique. 
Very little use of these particular matrices has yet been made in computational 
methods for singular systems, although they are usually much easier to compute 
than A+. Each of A+> Aj and Am are solutions to A = AX A. Such solutions are 
called generalized inverses (^-inverses) of A and are denoted by A~ [9]. 

In [8] and in a recent joint paper [1], a new method for iterating to the best 
least squares solution has been suggested. The method involves splitting the coef­
ficient matrix A and avoids the use of the often ill-conditioned normal system 
ATAx = ATb. The splitting A = M — N is called a proper splitting of A 
provided that &(A) = 0t{M) and JV(A) = Jf(M\ that is, A and M have the same 
range and the same null space. (If A and M are square and nonsingular then the 
usual splitting is a proper splitting.) More recently [4], these ideas have been 
partially extended to operator equations Tx = f where T is a bounded linear 
operator from a Banach to a Hilbert space. 

In this paper these results are extended in two ways: (1) by considering the 
least squares and the minimum norm solutions separately so that the appropriate 
^-inverses are easier to calculate, and (2) by weakening the conditions of a proper 
splitting to requiring only equality of the ranges of A and M when (1.1) is over-
determined and only equality of the null spaces of A and M when (1.1) is under-
determined. 

The following notation will be used throughout the paper: 
Rn denotes the ^-dimensional real space and 
Rmxn denotes the m x n real matrices. 

For K c Rn, K will be called a positive cone if AT is a pointed, solid, closed, convex 
cone. 

For the sake of brevity the proofs of the results in the following sections are 
omitted. 
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2. Splittings 

Let A = M — N be a proper splitting of A so that &{A) = 0t{M) and 
Jf{A) = J^{M) and let Mr denote any ^-inverse of M. Then it can be shown that 
A = M{I — M~N), I — M~N is nonsingular, A' = {I — M'N^M' is a ^-in­
verse of A and A~b is the unique solution to the system x = MrNx -f- Mrb for any 
b e Rm. In particular then, the iteration x^k+1> = MrNxW + Mrb converges to 
A~b for every x<°> if and only if Q{M~N) < 1. These same facts hold with M~ 
replaced by a least squares ^-inverse Mj> A~ by A~ and also with M~~ replaced 
by a minimum norm ^-inverse Af~ and A~ by A~m. This then provides a method 
for iterating to least squares approximate solutions or accordingly to the minimum 
norm solution to (1.1), whenever A = M — N in a proper splitting and Q{MJN)< 1 
or Q{M~tN)<l, respectively. 

However, except for special cases such as those that arise in a natural way in the 
numerical solution of partial differential equations by finite difference methods, 
proper splittings are not very easy to obtain where o{M~N) < 1. Thus one would 
naturally like to delete one of the requirements that 0t{A) = £%{M) and 
Jf{A) = Jf{M). 

3. Over-Determined Systems 

The purpose of this section is to consider a method of iterating to a least squares 
solution to (1 A), by using a splitting A = M — N with only the requirement that 
&{A) = &{M). The first lemma establishes a condition under which I — M]N 
is nonsingular. 

Lemma 3.1. Let A = M — N in Rmxn with 3t(N) ~Z 0t{M) and let Mj 
be a least squares ^-inverse of M. If 0t{Mj) ''(] Jf{A) = {0}, then St{A) = M{M) 
and / — MjN is nonsingular. 

Lemma 3.2. Let A = M — N in Rm*n satisfy the conditions of Lemma 
3.L Then 

1. Aj = {I — MJN)~1MJ is a least squares ^-inverse of A and 

2. the iteration x(k+U = MjNxW + Mjb converges to the least squares solution 
Ajb to (1.1) for any x<°> eRn, if and only if Q{MJN) < 1. 

Notice that the least squares solution Ajb to (1.1), specified in the preceding 
lemma, depends upon the particular choice of Mjy and that Mj uniquely deter­
mines Aj. The following theorem gives a necessary and sufficient condition for the 
iteration to converge to Ajb. 

Theorem 3.3. Let K be a positive cone in Rn and let A = M — N in Rmxn 

satisfy the conditions of Lemma 3.1, such that MjNK ~~ K. Let Aj = 
= {I — MjN)-*Mj. Then Q{MJN) < 1 if and only if AjNK c K. 
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4. Under-Determined Systems 

Now consider the case where (1.1) is assumed to be consistent. Here we wish 
to obtain the solution 3c to (1 A) having minimum Euclidean norm. For this purpose 
we split A into A = M — N with Jr(A) = Jr(M), iterate to a vector v e Rm, 
and then compute x = Mmv. As pointed out in [7], this problem arises in important 
algorithms used in mathematical programming. 

The following sequence of results parallel those given in Section III . 

Lemma 4.1. Let A = M — N in Rm*n with Jf(M) c Jf(N) and let Mm 

be a minimum norm ^-inverse of M. If m\_(Mm)T] fl Jr(AT) = {0}, then 
Jr(A) = Jf(M) and I — NMm is nonsingular. 

Lemma 4.2. Let A = M — N in R™>*n satisfy the conditions of Lemma 
3.1. Then 
1. Am = Mm(I — NM^)-1 is a minimum norm of ^-inverse of A, 
2. the iteration v(k+V = NMmvW + b converges to a limit v e Rm for each v^°\ 

if and only if q(NMm) < 1 and 
3. x = Mmv is then the minimum norm solution to (\.\) in Rn. 

Theorem 4.3. Let K be a positive cone in Rm and let A = M — N in R™*" 
satisfy the conditions of Lemma 3.1, such that NMmK ^ K. Let Am = 
= Mm(I — NM-J-1. Then Q(NM~) < 1 if and only if NAmK <= K. 
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