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On the Method of Least Squares on the Boundary 

K. REKTORYS 
Depar tment of Mathemat ics, The Faculty of Civil Engineering, Prague 

The method of least squares on the boundary for solving problem (1), (2), based on mini-
malization of functional (4), is treated. 

Let the biharmonic problem 
A2[/ = 0 in G , (1) 

U = go(s)^=gi(s) on r (2) 

be given, where G is a bounded simply connected region in E2 with a Lipschitz 
boundary r, go e U^2(1)(-0> £1 e ^(F). (These assumptions are sufficiently general 
to include regions and loadings which we meet most frequently in problems of plane 
elasticity, single loads including.) Many methods have been developed for solution 
or approximate solution of problem (1), (2) (classical variational methods, methods 
based on the theory of functions of a complex variable, the method of finite dif­
ferences, the finite element method, etc.), having their specific preferances and dis­
advantages. The method of least squares on the boundary is closely related with 
the method given in [4], p. 285 and with variational methods explained in [2] 
or [3]. An approximate solution of the problem (1), (2) is assumed in the form 

An—2 

Un(x>y) = 2 amzi(x>y\ n ̂  2 , (3; 
» = i 

where {zi(x, y)} is the well known system of biharmonic polynomials (for details 
see [1]; in (3) just polynomials of degree ^ n are included) and the coefficients 
Qui (i = 1, ...5 4 n — 2) are determined from the condition that the functional 

ЯК.,= /[ ( ,.- ř л ) » + (^-^)"+(i--řl)> (4) 
0 

considered on the set of functions 
An—2 

vn = 2 bni **(*> y) 
» = 1 

be minimal for the function (3). Thus for the function (3) the boundary conditions 
(2) are best approximated in the sense of least squares on the boundary. 
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The just mentioned condition leads to the solution of a system of An — 2 linear 
algebraic equations for An — 2 unknowns ani. In [1] it is shown that this system 
is uniquely solvable and that, for n -> oo, the sequence {Un(x, y)} converges, 
in L2(G), to the so called very weak solution of the problem (1), (2). The proof 
of this assertion is not easy, because the density of traces of all linear combinations 
of functions zt(x, y), i = 1, 2, ..., in the space U7|1}(F) x Ẑ C-O is to be shown. 
In [1] also a numerical example is presented. The presence of the middle term in 
functional (4) is substantial both of theoretical and numerical reasons. 

Applied to the solution of problem (1), (2), the method essentially takes use 
of the form of equation (1). As to the idea itself, this method, properly modified, 
can be applied also to the solution of other problems. 
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