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A Method of BAZLEY-FOX Type for the Eigenvalues 
of the LAPLACE Operator 

W. WEINELT 
Technical University, Department of Mathematics, Karl-Marx-Stadt 

For determining lower bounds to eigenvalues of the Laplacian in bounded domains of the 
Euklidian space Rm(m ^ 2) with boundary conditions of the first kind there will be given a method 
of intermediate problems. The method leads to an eigenvalue problem for matrices. 

1. Let be G C. Rm (m ^ 2) a bounded domain with a piecewise smooth 
boundary r. We consider the eigenvalue problem 

m 

—Au = — ^ -£r = *<*) (* = (**> " ' xm) e G), u(x) = 0(xe T). (V) 

With the selfadjoint extension A of the negative Laplacian in the Hilbert space 
H = L2(G) we describe (1') by 

Au = Xu . (1) 

The eigenvalues of A (each according to its multiplicity) let by designed by 

0 < h^ h^ ... ^ A n ^ . . . . (2) 

In comparison with other methods [6], [7], [1], [2], [5], [4] our device will be 
applicable not only for special domains G, do not need special series of functions 
from the range of definition D{A) and will lead to a finite matrix eigenvalue problem. 

2. First we construct a bounded domain GQ^> G with the boundary TV 
The only demand is, that the eigenvalue problem (V) for the domain Go is solvable 
(we can take as Go, for instance, a sphere or a cube of dimension m). Let be^o the 
corresponding selfadjoint operator in Ho = L2(Go)y its eigenvalues 

0 < A ? ^ A < > ^ . . . ^ A 2 ^ . . . (3) 

and its orthonormed in Ho eigenfunctions 

< ! & - . • & - . (4) 

We have (see, for instance, [3]) 

V^h ( f = l , 2 , . . . ) . (5) 
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Instead of the operator A we now consider the operator 

AW = A0 + (l +k6(x))I = A0+A', I^A'^(l+k)I (6) 

in Ho. Here are k = const > 0, / the identical operator and 

C 1 Go — G 
0(x) = I for x e 

{ 0 G. 

Theorem 1. For any k> 0 the operators A(k) are symmetric and positive 
definite in Ho and have a point spectrum only. If AJ*' denote the eigenvalues of 
A»)(i= 1,2,...), then hold 

aj« -g Af > ^ A< + I (* ^ *', i = 1, 2, .. .), 

lim A$*> = A. + 1 ( i = l , 2 , . . . ) . (7) 

Now we construct, as in the work [1], from (6) the intermediate operators 

Ap=Ao+A'Pn, (8) 

where Pn are the orthogonal projectors in the energetic Hilbert space HA, (see, for 
instance, [5]) onto the span of linearly independent elements pi, p2, ---ypn EHA*. 

If we choose A'pi = u°0 that is 

9
 Pi(x) = u%x)(l +*©(*)) - ! , (9) 

then holds 

Theorem 2. The eigenvalues A$ of An
k) from (8) with fulfilling (9) are 

(i) the eigenvalues of the symmetric matrix 

^ T W ) - 1 , (10) 

where 

^2 = W^)?,,--i, sp=(s%%_lB 

SW = T~+k di} + T+k (M*'u^Li{G)' 
(ii) the values A°+1, A°+2, . . . . 

These eigenvalues A$ are lower bounds to h + 1 (i = 1, 2, ...). Since for 
fixed i and w, A($ increases with k, this parameter & may be choosen as large as 
possible, especially k -> oo. 

In relation to the convergence of the method, we have 

Theorem 3. For any i = 1, 2, ... and any e > 0 there exist a ko(e) and 
a no(k, e) such that 

0 <: A* + 1 — A$ < £ for A > *0(c) and n > «0(A, e) . 
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