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Every countable quasigroup with at least three elements is isotopic to a quasigroup without 
pгopeг subquasigroups. 

Bcякaя cчcгнaя квaзигpyппa имeющaя пo кpaйнeй мepe тpи элeмeнтa, изoтoгшa квaзи-
гpyгme, кoтopaя нe имeeт никaкиx coбcтвeнныx пoдквaзигpyпп. 

Každá kvazigгupa o aspoň třech prvcích je izotopní kvazigrupě, která nemá žádné vlastní 
podkvazigrupy. 

Let Q be a quasigroup. We shall say that Q is a 1-simple quasigroup if Q has no 
non-trivial normal congruences. Further we shall say that Q is a 2-simple quasigroup 
if Q has no proper subquasigroup. Finally, we shall say that Q is a 3-simple quasigroup 
if Q has no proper subquasigroup containing at least two elements. 

The following lemma is obvious. 
Lemma 1. (i) Every 2-simple quasigroup is 3-simple. 

(ii) Every 3-simple quasigroup containing at least one idempotent is 1-simple, 
(iii) Every 3-simple quasigroup is countable. 

Let Q be a left loop with left unit j . Suppose that Q is 3-simple and contains at 
least three elements. Let j' =£ x e Q, g(j) = x, g(x) = j and g(a) = a for every a e Q> 
a ^ x,j. Put a * b = a . g(b) for all a, b e Q. Finally, we shall assume that xj 7-= x. 

Lemma 2. Q(*) is a 2-simple quasigroup. 
Proof. Let P(*) be a subquasigroup of <2(*). If x e P then xj = x * x e P. However, 

as it is easy to see, xj -7-- *andx/ ^j. IfceP and a =£x,j then be P, where b * a = a. 
But b * a = ba and b =j. Finally, if j eP then j * / = x is contained in P. We have 
proved that/, xeP. Now it is easy to check that P is a subquasigroup of Qy and conse
quently P = Q. 

Proposition 3. Let Q be a 3-simple countable left loop such that Q is not a right 
loop. *Then Q is isotopic to a 2-simple quasigroup. 
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Proof. It is evident that Q contains at least three elements and there is x e Q with 
x^fij and xj ^ x. Now we can apply Lemma 2. 

Let Q be a countable loop containing at least three elements. Let / be the unit of Q 
and P = { a e Q | a =£j}. We shall define a permutation/of the set Q. 

First, let Q be finite. Then there are an integer n > 2 and a biunique mapping h 
of {1, 2,...,w} onto P. Pu t /0 ) = / , /(a) = h(h^ (a) + 1) if aeP and A"1 (a) < n and 
/(a) = A(l) if a e P and a = h(n). 

Next, let Q be infinite and P = {ai, a2,...}. We shall define a biunique mapping A 
of the set of all integers onto P. Put h(Q) = a± and h(l) = a^. Since P is infinite, there 
is a natural number i > 3 such that aia* <£ {/, ai, a2, a$}. Then we put A(2) = at and 
h(— 1) = a\ at. Further, h(3) = aj, where/ is the least natural number with aj $ {ai, a2, a*, 
ai at}. Similarly, there is a natural number k such that k =£ 1,2, *',/, a* -?-- aia*, a*a* £ 
£ {/, aia*, ai, a2, a*, a*} and we put h(4) = a*, h(—2) = ata*. Further, h(5) = am, where 
m is the least natural number with am $ {ai, a2, a$, a;, a*, aia*, atajc}. We can proceed 
further in a similar way and we get a biunique mapping h. Now /(/) -= / and f(a) = 
= h(h-\a) + 1) for every aeP. 

We shall define a new binary operation on Q by a o b = f(a). b for all a>b eQ. 
The following lemma is obvious. 

Lemma 4. Q(o) is a left loop and Q(o) is not s right loop. 
Lemma 5. If K(o) is a subquasigroup of Q(o) then f(K) c K. 
Proof. <2(o) is a left loop, and hence jeK. If aeK then /(a) = aoj is con

tained in K. 
Lemma 6. Q(o) is a 3-simple quasigroup. 
Proof. Let K(o) be a proper subquasigroup of Q(o) such that _rv(o) contains at 

least two elements. With respect to Lemma 5 and the definition of/, we can assume that Q 
is infinite. Similarly we can assume that there exists x e K f] P such that h~x(x) < h~x(a) 
for every a e K f] P. However, this is contradiction with the construction of h. 

Corollary 7. Every countable quasigroup containing at least three elements is 
isotopic to a 2-simple quasigroup. 

Remark. The preceding corollary gives a positive solution of the problem 1.7 
formulated in [1]. 

Corollary 8. Every countable quasigroup is isotopic to a 3-simple quasigroup. 
Corollary 9. Every countable quasigroup is isotopic to a 1-simple left loop. 
Remark. As it is easy to see, every quasigroup isotopic to a 1-simple loop is 1-simple. 

On the other hand, the author does not know whether the preceding corollary remains 
true for arbitrary quasigroups. 
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