Acta Universitatis Carolinae. Mathematica et Physica

Luong Dinh Tin
The comparison of spectrum of normalizable matrices

Acta Universitatis Carolinae. Mathematica et Physica, Vol. 19 (1978), No. 2, 69--74
Persistent URL: http://dml.cz/dmlcz/142425

Terms of use:

© Univerzita Karlova v Praze, 1978

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

The Comparison of Spectrum of Normalizable Matrices

LUONG DINH TIN
Institute of Mathematics, Czechoslovak Academy of Sciences, Prague ${ }^{\star}$)

Received 25 February 1977

The author studies a class of normalizable operators and proves the theorem about the comparison of spectrum between a normalizable operator A and a linear operator T in the finite dimensional space

$$
\sigma(T) \subset V(\sigma(A),|A-T| \delta(A))
$$

where by $\sigma(A)$ we denote the spectrum of operator $A, V(M, r)$ and $\delta(A)$ will be defined in $\llbracket 2$
Сравнение спектров нормализуемых матриц. Автор изучает здесь класс нормализуемых операторов и доказывает теорему о сравнении между спектром нормализуемого A и линейного оператора T в конечномерн эм пространстве.

$$
\sigma(T) \subset V(\sigma(A),|A-T| \delta(A)),
$$

где $\sigma(A)$ означает спектр оператора $A, V(M, r)$ и $\delta(A)$ будут определены в $\S 2$
Porovnáni spektra normalizovaných matic. Autor studuje třídu normalizovatelných operátorů a dokazuje větu o porovnání spektra mezi normalizovatelným operátorem a lineárním operátorem v konečně dimenzionálním prostoru

$$
\sigma(T) \subset V(\sigma(A),|A-T| \delta(A))
$$

kde $\sigma(A)$ značí spektrum operátoru $A, V(M, \mathrm{r})$ a $\delta(A)$ budou definovány $\mathrm{v} \S 2$.

I. Introduction

In the paper [1] V. Pták and J. Zemánek considered the relation of the spectrum between two normal operators and between a normal operator and a linear operator in the Hilbert space. In the present paper we generalize the results of [1] in a wider range of the normalizable operators. The results are formulated for the matrices.

[^0]
2. Definitions and Notations

Let A be an $n \times n$ matrix. The matrix A is said to be a normalizable matrix if and only if there exists a non-singular matrix X_{A} such that

$$
\begin{equation*}
X_{A} A X_{A}^{-1}=N \tag{1}
\end{equation*}
$$

where N is normal matrix.
where N is a normal matrix.
Lemma. A is a normalizable matrix if and only if there exists a non-singular matrix X_{A} such that

$$
\begin{equation*}
X_{A} A X_{A}^{-1}=D \tag{2}
\end{equation*}
$$

where D is a diagonal matrix.
Proof. If A is normalizable then there exists a non-singular matrix Y_{A} for which

$$
Y_{A} A Y_{A}^{-1}=N,
$$

where N is a normal matrix. As N is normal, there exists a unitary matrix U such that

$$
U N U^{*}=D
$$

where D is a diagonal matrix. Set $X_{A}=U Y_{A}$.
Then $X_{A} A_{A}^{-1} X=U Y_{A} A Y_{A}^{-1} U^{*}=U N U^{*}=D$. The part "only" is evident. The proof of the lemma is complete.

Put

$$
\begin{equation*}
\delta(A)=\underset{X_{A}}{\min }\left|X_{A}\right|\left|X_{A}^{-1}\right| \tag{3}
\end{equation*}
$$

where the minimum is taken with respect to all matrices X_{A} satisfying (2).
It follows from the definition of the normalizable matrix that if A is a normal matrix then A is also a normalizable matrix and $\delta(A)=1$.

Let M, M_{1}, M_{2} be the sets in the complex plane x be a complex number, r be a non-negative real number we shall introduce the following notations

$$
\begin{gather*}
d(x, m)=\inf d(y, x) \tag{4}\\
y \in M
\end{gather*}
$$

where $d(y, x)$ is the distance between x and y.

$$
\begin{gather*}
V(M, r)=\{y ; d(y, M) \leq r\} \tag{5}\\
\operatorname{dist}\left(M_{1}, M_{2}\right)=\inf \left\{r ; M_{1} \subset V\left(M_{2}, r\right) \text { and } M_{2} \subset V\left(M_{1}, r\right)\right\} \tag{6}
\end{gather*}
$$

We shall denote by $\sigma(A)$ the spectrum of the matrix A and by $|A|$ we denote the norm. of A.

3. The Comparison of Spectrum

Theorem 1. Let A and T be two $n \times n$ matrices, let A be a normalizable matrix. Then:

$$
\begin{equation*}
\sigma(T) \subset V(\sigma(A),|A-T| \delta(A)) \tag{7}
\end{equation*}
$$

If A Tand bother a normalizable, then

$$
\begin{equation*}
\operatorname{dist}(\sigma(A), \sigma(T)) \leq|A-T| \max (\delta(A), \delta(T)) \tag{8}
\end{equation*}
$$

where $\delta(A)$ is defined in (3).

Proof:

(1) Let A be normalizable and λ be a complex number such that doesn't belong to the right-hand side of (7), i.e.

$$
\begin{equation*}
d(\lambda . \sigma(A))>|A-T| \delta(A) \tag{9}
\end{equation*}
$$

According to the lemma there is a non-singular matrix X_{A} with $X_{A} A X_{A}^{-1}=D$ where D is a diagonal matrix. We shall write simply $(A-\lambda)$ for $(A-\lambda I)$ where I is the unit matrix.

Evidently,

$$
\left|(A-\lambda)^{-1}\right|=\left|\left(X_{A}^{-1} D X_{A}-\lambda\right)^{-1}\right|=\left|X_{A}^{-1}(D-\lambda)^{-1} X_{A}\right| \leq\left|X_{A}\right|\left|X_{A}^{-1}\right|\left|(D-\lambda)^{-1}\right| .
$$

This inequality holds for every matrix X_{A} satisfying (2). So it follows that

$$
\left|(A-\lambda)^{-1}\right| \leq \delta(A)\left|(D-\lambda)^{-1}\right|
$$

Since $(D-\lambda)^{-1}$ is a diagonal matrix, we have

$$
\begin{gather*}
\left|(D-\lambda)^{-1}\right|=d(\lambda, \sigma(D))^{-1}=d(\lambda, \sigma(A))^{-1} . \text { Hence } \\
\left|(A-\lambda)^{-1}\right| \leq \delta(A) d(\lambda, \sigma(A))^{-1} \tag{10}
\end{gather*}
$$

By (9) and (10) we have

$$
\begin{equation*}
\left|(A-\lambda)^{-1}(T-A)\right| \leq d(\lambda, \sigma(A))^{-1}|A-T| \delta(A)<1 \tag{11}
\end{equation*}
$$

from (11) and the fact that

$$
(\lambda-T)=(\lambda-A)-(T-A)=(\lambda-A)\left(I-(\lambda-A)^{-1}(T-A)\right.
$$

it follows that there exists $(\lambda-T)^{-1}$, i.e. $\lambda \bar{\in} \sigma(T)$.
(2) If both A and T are normalizable, according to the proof of the first part yields:

$$
\begin{aligned}
\sigma(T) & \subset V(\sigma(A),|A-T| \delta(A)) \\
\cdot \sigma(A) & \subset V(\sigma(A),|A-T| \bar{\delta}(A, T)) \\
\cdot \sigma(T),|A-T| \delta(T)) & \subset V(\sigma(T),|A-T| \overline{\delta(}(A, T))
\end{aligned}
$$

where $\bar{\delta}(A, T)=\max (\delta(A), \delta(T))$.
By the definition of the function dist we obtain

$$
\operatorname{dist}(\sigma(A), \sigma(T)) \leq|A-T| \bar{\delta}(A, T)
$$

The proof is complete.

Remarks:

(1) If A is normal, then $\delta(A)=1$ and we obtain, therefore, the Theorem 1 in [1].
(2) If A is normalizable, then for every μ

$$
\sigma(T) \subset V(\sigma(A-\mu),|A-T-\mu| \delta(A))
$$

The proof follows from the fact that $(A-\mu)$ is normalizable and $\delta(A-\mu)=\delta(A)$ for every μ.

Theorem 2. Let A be a normalizable $n \times n$ matrix partitioned in the form:

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]
$$

where A_{11}, A_{22} are square and the dimension of A_{11} is equal to $m(1 \leq \mathrm{m} \leq \mathrm{n})$. Ler P be a matrix of projector transforming an n-dimensional vector x with the coordinates x_{i} into the vector y with the coordinates $y_{i}=x_{i}$ for $i=1, \ldots, \mathrm{~m}$ and $y_{j}=0$ for $\mathrm{j}=\mathrm{m}+1, \ldots, \mathrm{n}$, $\mathbf{Q}=\mathbf{I}-\mathbf{P}$.

If λ belongs to $\sigma\left(A_{11}\right) \cup \sigma\left(A_{22}\right)$ then the disk

$$
K(\lambda,|P A Q+Q A P| \delta(A))=\{\alpha ;|\alpha-\lambda| \leq|P A Q+Q A P| \delta(A)\}
$$

contains at least one proper value of A.
Proof. According to the theorem 1 we have
$\sigma(P A P+Q A Q) \subset V(\sigma(A),|A-P A P-Q A Q| \delta(A))=V(\sigma(A),|P A Q+Q A P| \delta(A)).$.
From the fact that $\sigma(P A P+Q A Q)=\sigma\left(A_{11}\right) \cup \sigma\left(A_{22}\right)$, it follows that if $\lambda \in \sigma\left(A_{11}\right) \cup$ $\cup \sigma\left(A_{22}\right)$, then $K(\lambda,|P A Q+Q A P| \delta(A))$ contains at least one proper value of A. The proof is complete.

Remark. If A is normal, A_{11} is a matrix of dimension 1 and of we use the Euclidean norm, then we obtain the Theorem 2 in [1]. The result of this theorem, when A is normal, was obtained in the paper [2].

Theorem 3. Let A be an $n \times n$ matrix paritioned as in Theorem 2

$$
\begin{gather*}
A_{11}, A_{22} \text { and } P A Q+Q A P \text { be normalizable, then } \\
\sigma(A) \subset V\left(\sigma(P A Q+Q A P), \delta(P A P+Q A Q) \delta(P A Q+Q A P) \max \left|\lambda_{j}\right|\right) \tag{12}
\end{gather*}
$$

where $\lambda_{j} \in \sigma\left(A_{11}\right) \cup \sigma\left(A_{22}\right)$.
Proof. First, we shall prove that $P A P, Q A Q, P A P+Q A Q$ are normalizable. Indeed, since A_{11} and A_{22} are normalizable there are X_{1} and X_{2} such that

$$
\begin{aligned}
& X_{1} A_{11} X_{1}^{-1}=D_{1} \\
& X_{2} A_{22} X_{2}^{-1}=D_{2}
\end{aligned}
$$

where D_{1} and D_{2} are diagonal. Put X, Y, Z the $n x n$ matrices for which

$$
X=\left[\begin{array}{ll}
X_{1} & 0 \\
0 & I_{m-n}
\end{array}\right] \quad Y=\left[\begin{array}{ll}
I_{m} & 0 \\
0 & X_{2}
\end{array}\right] \quad Z=X+Y-I_{n}
$$

where by I_{k} we denote the unit matrix of the dimension k . It is not difficult to verify that:
$X P A P X^{-1}, Y Q A Q Y^{-1}, Z(P A P+Q A Q) Z^{-1}$ are the diagonal matrices. Since $P A P+Q A Q$ is normalizable, $P A P+Q A Q=T^{-1} \Lambda T$ with some nonsingular matrix T and diagonal matrix Λ.

Hence $|P A P+Q A Q| \leq|T|\left|T^{-1}\right||\Lambda|$.
This inequality holds for every matrix T satisfying

$$
P A P+Q A Q=T^{-1} \Lambda T
$$

We obtain, therefore:

$$
|P A P+Q A Q| \leq \delta(P A P+Q A Q)|\Lambda| \leq \delta(P A P+Q A Q) \max \left|\lambda_{1}\right|
$$

where $\lambda_{j} \in \sigma(P A P+Q A Q)$ i.e. $\lambda_{j} \in \sigma\left(A_{11}\right) \cup \sigma\left(A_{22}\right)$.
By Theorem 1 we obtain

$$
\begin{gathered}
\sigma(A) \subset V(\sigma(P A Q+Q A P),|P A P+Q A Q| \delta(P A Q+Q A P)) \\
\subset V\left(\sigma(P A Q+Q A P), \delta(P A Q+Q A P) \delta(P A P+Q A Q) \max \left|\lambda_{j}\right|\right)
\end{gathered}
$$

Corollary. Let $A_{i j}$ be square and normalizable, A_{12} and A_{21} be regular and $A_{12} A_{21}=$ $=A_{21} A_{12}$ then (12) holds.
Proof. Since A_{12}, A_{21} are normalizable and $A_{12} A_{21}=A_{21} A_{12}$ there exists (see [3]) a non-singular matrix X such that

$$
X A_{12} X^{-1}=D_{1}, X A_{21} X^{-1}=D_{2}
$$

where D_{1} and D_{2} are diagonal.

$$
\left.\begin{array}{rl}
\text { Set } T= & {\left[\begin{array}{cc}
0 & X \\
X & 0
\end{array}\right] \text { then } T^{-1}=} \\
& T(P A Q+Q A P) T^{-1}=\left[\begin{array}{ll}
0 & X^{-1} \\
X^{-1} & 0
\end{array}\right] \text { and } \\
D_{1} & 0
\end{array}\right]
$$

Since A_{12} and A_{21} are regular, there exists a diagonal nonsingular matrix M such that

$$
M^{2}=D_{2}^{-1} D_{1}
$$

$$
\text { Set } Y=\left[\begin{array}{rr}
I & M^{-1} \\
I & -M^{-1}
\end{array}\right] ; Z=Y T \text { then } Y^{-1}=\frac{1}{2}\left[\begin{array}{cc}
I & I \\
M & -M
\end{array}\right]
$$

and
$Z(P A Q+Q A P) Z^{-1}=Y\left[\begin{array}{ll}0 & D_{2} \\ D_{1} & 0\end{array}\right] Y^{-1}=\frac{1}{2}\left[\begin{array}{cr}M^{-1} D_{1}+D_{2} M & M^{-1} D_{1}-D_{2} M \\ -\left(M^{-1} D_{1}-D_{2} M\right) & -\left(M^{-1} D_{1}+D_{2} M\right)\end{array}\right]$
Where evidently $M^{-1} D_{1}+D_{2} M$ is a diagonal matrix; $M^{-1} D_{1}-D_{2} M$ is a null matrix. Hence $Z(P A Q+Q A P) Z^{-1}$ is a diagonal matrix. That means $P A Q+Q A P$ is normalizable. We can, therefore, apply Theorem 3 to obtain (12).

Theorem 4. Let $A=B+C, B$ and C be normalizable and $B C=C B$ then

$$
\operatorname{dist}(\sigma(A), \sigma(B)) \leq \delta(C) \max (\delta(B), \delta(A)) \max \left|\lambda_{j}(C)\right|
$$

where by $\lambda_{j}(C)$ we denote the eigenvalues of C.
Proof. First we prove that A is normalizable. Indeed, from the fact $B C=C B$
and the fact B, C are normalizable, it follows that there exists a non-singular matrix \mathbf{X} such that

$$
\begin{aligned}
X B X^{-1} & =D_{1} \\
X C X^{-1} & =D_{2}
\end{aligned}
$$

where D_{1} and D_{2} are diagonal.
We have, therefore

$$
X A X^{-1}=X(B+C) X^{-1}=D_{1}+D_{2}
$$

That means A is a normalizable matrix and by the Theorem 1 we obtain

$$
\operatorname{dist}(\sigma(A), \sigma(B)) \leq|A-B| \max (\delta(A), \delta(B))=|C| \max (\delta(A), \delta(B))
$$

Matrix C is normalizable, hence, there exists a non-singular matrix X_{C} such that

$$
X_{C} C X_{C}^{-1}=D, \text { or } C=X_{C}^{-1} D X_{C}
$$

where D is a diagonal matrix, whose diagonal elements are eingevalues of C. So $|C| \leq$ $\leq \delta(C) \max \left|\lambda_{j}(C)\right|$

Finally, we have

$$
\operatorname{dist}(\sigma(A), \sigma(B)) \leq \delta(C) \max (\delta(A), \delta(B)) \max \left|\lambda_{j}(C)\right|
$$

Acknowledgments. The author would like to thank Professor V. Pták and Dr. H. Petzeltová of the Czechoslovak Academy of Sciences for their careful reading of the manuscript.

References

[1] V. Pták, J. Zemánek: Continuité lipschnitzienne du spectre comme fonction d'un opérateur normal. Comment. Math. Univ. Carolinae 17 (1976), p. 507-512.
[2] V. Pták: An inclusion theorem for normal operators, Acta. Sci. Math. Szeged 38 (1976), p. 149-152.
[3] J. H. Wilkinson: The algebraic eigenvalue problem. London, Oxford University Press 1965.

[^0]: *) 11000 Praha 1, Žitná 25, Czechoslovakia

