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The Comparison of Spectrum of Normalizable Matrices
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Institute of Mathematics, Czechoslovak Academy of Sciences, Prague*)
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The author studies a class of normalizable operators and proves the theorem about the com-
parison of spectrum between a normalizable operator 4 and a linear operator T in the finite di-
mensional space

o(T) < V(o(A), | A— T | 8(4))
where by o(A4) we denote the spectrum of operator 4, V (M, r) and d(A4) will be defined in § 2

CpaBHEHHE CNIEKTPOB HOPMAJIU3yEMbIX MaTpHil. ABTOp H3y4aeT 34eCh KJlacC HOpMaJM3yeMbIX
ONEpaTopPOB M JOKAa3bIBAET TEOPEMY O CPABHEHHMH MEXAY CIIEKTPOM HOopmanudyemoro A v jmHei-
Horo onepartopa ' B KOHEYHOMEPH )M IIPOCTPAHCTBE.

o(T) c V(s(A4),| A—T| 6(A4)) »
rae o(A) o3navaer cnekTp oneparopa A, V (M, r) u §(4) GyayT onpenenens: B § 2

Porovnani spektra normalizovanych matic. Autor studuje tfidu normalizovatelnych opera-
toru a dokazuje vétu o porovndni spektra mezi normalizovatelnym operitorem a linedrnim opera-
torem v kone¢né dimenziondlnim prostoru

o(T) < V(o(4), | A—T | (A4,
kde 0(A) znadi spektrum operitoru 4, V (M, r) a 6(A4) budou definovany v § 2.

f. Introduction

In the paper [1] V. Ptdk and J. Zemének considered the relation of the spectrum
between two normal operators and between a normal operator and a linear operator
in the Hilbert space. In the present paper we generalize the results of [1] in a wider
range of the normalizable operators. The results are formulated for the matrices.

*) 110 00 Praha 1, Zitna 25, Czechoslovakia
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2. Definitions and Notations

Let A be an n X n matrix. The matrix A is said to be a normalizable matrix if and
only if there exists a non-singular matrix X 4 such that

X4AX} =N (1)
where N is normal matrix.
where N is a normal matrix.
Lemma. A is a normalizable matrix if and only if there exists a non-singular matrix
X4 such that
X4AX} =D )

where D is a diagonal matrix.
Proof. If A is normalizable then there exists a non-singular matrix Y 4 for which

Y4AYZF =N,
where N is a normal matrix. As N is normal, there exists a unitary matrix U such that
UNU* = D,

where D is a diagonal matrix. Set X4 = UY 4.

Then X4A1X = UY.AYU* = UNU* = D. The part “only” is evident-
The proof of the lemma is complete.

Put

8(A) = min | X |X7| ©)
X4

where the minimum is taken with respect to all matrices X 4 satisfying (2).

It follows from the definition of the normalizable matrix that if 4 is a normal
matrix then A4 is also a normalizable matrix and d(4) = 1.

Let M, M, M> be the sets in the complex plane x be a complex number, r be
a non-negative real number we shall introduce the following notations

d(x,m) = inf d (y, ) @
yeM
where d(y, x) is the distance between x and y.
VM, 1) = {y;d(3, M) < 1} ©)
dist (M1, M2) = inf {r; M1 = V(M2,r) and M2 = V(Mi, )} (6)

We shall denote by o(A4) the spectrum of the matrix 4 and by |4| we denote the norm.
of 4.
3. The Comparison of Spectrum

Theorem 1. Let A and T be two n X n matrices, let A be a normalizable matrix.
Then:
' o(T) < V(a(A4), |4 — T| 6(4)) )
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If A Tand bother a normalizable, then
dist (o(4), o(T)) < |A— T max (§(4), 6(T)) ®)

where 0(A) is defined in (3).
Proof:
(1) Let A be normalizable and A be a complex number such that doesn’t belong
to the right-hand side of (7), i.e.
d(\ . a(A)) > |A — Tl A4) 9)
According to the lemma there is a non-singular matrix X4 with X44X;' = D where D
is a diagonal matrix. We shall write simply (4 — A) for (4 — AI) where I is the unit

matrix.
Evidently,

I(4 — N1 = (X4 DXa— N7 = |X3 (D — N7 Xa| < |Xa| | XL (D — V.
This inequality holds for every matrix X4 satisfying (2). So it follows that
(4 — N7 < 6(4) (D — N
Since (D — A)-! is a diagonal matrix, we have
(D — 21| = d(r, o(D))1 = d(h, o(A))-. Hence
(4 — )| < 6(4) A, o(A))? (10)
By (9) and (10) we have i
[(4— N2 (T— A)| < d, o(A) A — T|6A4) <1 (11)
from (11) and the fact that
A—T)=A—A)—(T—-—A)=QA—AT—-Q—AD(T— A4
it follows that there exists (A — T)L, i.e. A € o(T).
(2) If both A4 and T are normalizable, apcording to the proof of the first part yields:
oT) < V(o(A), |4 — T|8(4) < V(o(d), |4 — T| ¥4, T)
«0(A) < V(o(T),|A — T|&(T)) < V(o(T),|A— T| &4, T))
where 8(4, T) = max(6(4), &(T)).
By the definition of the function dist we obtain
dist(a(A), o(T)) < |A — T| 8(4, T)

The proof is complete.
Remarks:
(1) If A4 is normal, then §(4) = 1 and we obtain, therefore, the Theorem 1 in [1].
- (2) If A4 is normalizable, then for every @

o(T) < V(o (A— w), |[4— T — p| §4)).
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The proof follows from the fact that (4 — ) is normalizable and (4 — p) = 6(4)
for every p.
Theorem 2. Let A be a normalizable n X n matrix partitioned in the form:

An Are
4= [ A2 Azz]
where A1, Az2 are square and the dimension of Ay is equal tom (1 < m < n). Ler P be
a matrix of projector transforming an n-dimensional vector x with the coordinates x; into
the vector y with the coordinates y; = x;fori =1,...,mandy; =0forj =m + 1,...,n,

Q=I—P.
If A belongs to o(A11) ) o(Asz) then the disk

K, |PAQ + QAP| §(4)) = {x; |« — A| < |PAQ + QAP| &(A)},

contains at least one proper value of A.
Proof. According to the theorem 1 we have

o(PAP + QAQ) < V(o(A),|d — PAP — QAQ| &(A)) = V(a(4), |PAQ + QAPlﬁ(A)-)-

From the fact that o(PAP + QAQ) = o(A11) | 0(Az22), it follows that if A € 6(A411) Y
U 0(A422), then K(7, |[PAQ + QAP| 6(A)) contains at least one proper value of 4. The
proof is complete.

Remark. If 4 is normal, A1 is a matrix of dimension 1 and of we use the Euclidean
norm, then we obtain the Theorem 2 in [1]. The result of this theorem, when 4 is nor-
mal, was obtained in the paper [2].

Theorem 3. Ler A be an n X n matrix paritioned as in Theorem 2

A1, Age and PAQ -+ QAP be normalizable, then
o(d) < V(a(PAQ + QAP), S(PAP + QAQ) d(PAQ + QAP) max |Ny) (12)
where Ny EO'(Au) U O‘(Azg).
Proof. First, we shall prove that PAP, QAQ, PAP + QAQ are normalizable.
Indeed, since A1 and Asp are normalizable there are X; and X5 such that
){1:411}{_1 = D1
X2A22X§1 = Dy

where D; and D, are diagonal. Put X, Y, Z the n x » matrices for which

[xi0 [Ino ] B B
X—[o Im_n] Y—[o x, | Z=X+Y-1L

where by I we denote the unit matrix of the dimension k. It is not difficult to verify that:

XPAPX-', YQAQY-!, Z(PAP + QAQ)Z-1 are the diagonal matrices. Since
PAP + QAQ is normalizable, PAP + QAQ = T-1 A T with some nonsingular matrix
T and diagonal matrix A.
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Hence |PAP + QAQ| < |T||T1| |Al.
This inequality holds for every matrix T satisfying

PAP + QAQ =T1AT
We obtain, therefore:

|PAP + QAQ| < (PAP + QAQ) |A| < d(PAP + QAQ) max M|
where N € 6(PAP + QAQ) i.e. Aj € 6(A11) | a(A22).

By Theorem 1 we obtain

o(A) < V(o(PAQ + QAP), |PAP + QAQ| d(PAQ + QAP))
< V(o(PAQ + QAP), (PAQ + QAP) 8(PAP + QAQ) max |A|)

Corollary. Let Ay be square and normalizable, A12 and A21 be regular and A12A421 =
= A21A12 then (12) holds.
Proof. Since A1z, As;1 are normalizable and Aj2421 = As21412 there exists (see [3])
a non-singular matrix X such that

XA12X‘1 = D1, XA21X‘1 = Dz

where D; and D; are diagonal.

0 X 0 X1
— -1 —
Set T—[X 0] then T-1 = [X‘l 0 ]and

0 Dz]

T(PAQ -+ QAP)T-! = [ Dy 0

Since Ai12 and Az; are regular, there exists a diagonal nonsingular matrix M such that

M? = D3'D.
I M1 1 [ 1 I
== M == -1 = —
Set Y [1 —M—l] 3y Z=YT then Y 2[M —M]
and
0 Dy 1 [ M-1D; + DM M-1D, — DzM]

-1 — -1 —__

ZPAQ + QAP)Z Y[ Dy 0 ]Y 2 | — (M-Dy— DoM) —(M-D, +-DoM)

Where evidently M-1D; + DoM is a diagonal matrix; M-1D; — DM is anull matrix.
Hence Z(PAQ + QAP)Z-! is a diagonal matrix. That means PAQ + QAP is normal-
izable. We can, therefore, apply Theorem 3 to obtain (12).

Theorem 4. Let A = B -+ C, B and C be normalizable and BC = CB then

dist(o(4), o(B)) < 6(C)max (5(B), 8(A))max [3;(C)|

where by N(C) we denote the eigenvalues of C.
Proof. First we prove that A is normalizable. Indeed, from the fact BC = CB
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and the fact B, C are normalizable, it follows that there exists a non-singular matrix X
such that

XBX-1 =D

XCX-1 =D,

where D; and D are diagonal.
We have, therefore

XAX1=X(B + C)X1=D1+ D

That means A is a normalizable matrix and by the Theorem 1 we obtain
dist (o(4), o(B)) < |4 — B| max (6(A4), 6(B)) = |C| max (6(4), 6(B))
Matrix C is normalizable, hence, there exists a non-singular matrix X¢ such that

‘XcC)(—c1 = D,or C = X(_;lDXc

where D is a diagonal matrix, whose diagonal elements are eingevalues of C . So |C| <
< 4(C) max [}4(C)|
Finally, we have

dist (o(A), o(B)) < §(C) max (§(4), 4(B)) max |}4(C)|
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