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The Comparison of Spectrum of Normalizable Matrices 

LUONG D I N H T I N 

Institute of Mathematics, Czechoslovak Academy of Sciences, Prague*) 

Received 25 February 1977 

T h e author studies a class of normalizable operators and proves the theorem about the com-
parison of spectrum between a normalizable operátor A and a linear operátor T in the finite di-
mensional space 

o(T)cz V(o(A),\A-T\ó(A)) 
where by o(A) we denote the spectrum of operátor A, V (M, r) and ó(A) will be defined in § 2 

CpaBHeHHe cneKTpoB HopMajra3yeMbix MaTpHii. ABTOP H3y*iaeT 3flecb kjiacc HopMajra3yeMbix 
onepaTopoB H AOKa3breaeT TeopeMy o cpaBHeHHH Me>K,n.y cneKTpoM HopMajiH3yeMoro A H jraHeň-
Horo onepaTOpa T B KOHe^moMepH DM npocTpaHCTBe. 

o(T) a V(o(A),\A—T\ó(A)), 
r,ne o(A) 03HanaeT cneKTp onepaTopa A, V (M, r) H $(A) 6yjjyT onpeAejieHbi B § 2 

Porovnání spektra normalizovaných matic. Autor studuje třídu normalizovatelných operá­
torů a dokazuje větu o porovnání spektra mezi normalizovatelným operátorem a lineárním operá­
torem v konečně dimenzionálním prostoru 

a(r) o V{o{A), \A-T\ KA)), 
kde o(A) značí spektrum operátoru A, V (M, r) a ó(A) budou definovány v § 2. 

I. Introduction 

In the paper [1] V. Ptak and J. Zemanek considered the relation of the spectrum 
between two normal operators and between a normal operator and a linear operator 
in the Hilbert space. In the present paper we generalize the results of [1] in a wider 
range of the normalizable operators. The results are formulated for the matrices. 

*) 110 00 Praha 1, Žitná 25, Czechoslovakia 
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2. Definitions and Notations 

Let A be an n x n matrix. The matrix A is said to be a normalizable matrix if and 
only if there exists a non-singular matrix XA such that 

XAAX~/ = N (1) 
where N is normal matrix. 
where N is a normal matrix. 

Lemma. A is a normalizable matrix if and only if there exists a non-singular matrix 
XA such that 

XAAXj = D (2) 

where D is a diagonal matrix. 
Proof. If A is normalizable then there exists a non-singular matrix YA for which 

YAAYA
l=N, 

where 1ST is a normal matrix. As N is normal, there exists a unitary matrix U such that 

UNU* = D, 

where D is a diagonal matrix. Set XA = UYA. 
Then XAAA

lX = UYAAY^U* = UNU* = D. The part "only" is evident-
The proof of the lemma is complete. 

Put 
( J ( i 4 ) = m i n | ^ | | ^ 1 | (3) 

XA 

where the minimum is taken with respect to all matrices XA satisfying (2). 
It follows from the definition of the normalizable matrix that if A is a normal 

matrix then A is also a normalizable matrix and d(A) = 1. 
Let Af, Afi, M2 be the sets in the complex plane x be a complex number, r be 

a non-negative real number we shall introduce the following notations 

d(x, m) =infd (y, x) (4) 

yeM 

where d(y, x) is the distance between x and y. 

V(M,r) = {y;d(y5M)<r} (5) 

dist (Afi, M2) = inf {r; Mi <= V(M2, r) and M2 <= V(MU r)} (6) 
We shall denote by a(A) the spectrum of the matrix A and by \A\ we denote the norm, 
of-4. 

3. The Comparison of Spectrum 

Theorem 1. Let A and T be two n x n matrices, let A be a normalizable matrix. 
Then: 

a{T) c V(a{A), \A - T\ 8(A)) (7) 

70 



If A Tand bother a normalizable, then 

dist (o(A), o(T)) < \A- T\ max (6(A), d(T)) (8) 

where 6(A) is defined in (3). 
Proof: 
(1) Let A be normalizable and X be a complex number such that doesn't belong 

to the right-hand side of (7), i.e. 

d(X . o(A)) > \A - 71 6(A) (9) 

According to the lemma there is a non-singular matrix XA with XAAX'A = D where D 
is a diagonal matrix. We shall write simply (A — X) for (A — XI) where I is the unit 
matrix. 

Evidently, 

\(A - X)-i| = \(XjDXA - X)-i| = \Xj (D - X)-iXA I < \XA\ \Xj\ \(D - X)--|. 

This inequality holds for every matrix XA satisfying (2). So it follows that 

\(A-\)-i\<d(A)\(D-\)-i\ 

Since (D — X)-1 is a diagonal matrix, we have 

\(D - X)-i| = d(k, (T(D))"1 = J(X, o(A))~\ Hence 
\(A-\)-i\<d(A)d(k,o(A))-i (10) 

By (9) and (10) we have 

\(A - X)-i (T- A)\ < d(\ o(A))~i \A - T\ 6(A) < 1 (11) 

from (11) and the fact that 

(X - T) = (X - A) - (T- A) = (k-A) (I- ( X - A)-* (T- A) 

it follows that there exists (X — T)-\ i.e. X eo(T). 

(2) If both A and T are normalizable, according to the proof of the first part yields: 

o(T) <= V(o(A\ \A - T\ 6(A)) c= V(o(A), \A - T\ d(A, T)) 

.o(A) c: V(o(T), \A - T\ d(T)) <= V(o(T), \A - T\ 6(Ay T)) 

where d(A, T) = max(6(^), d(T)). 
By the definition of the function dist we obtain 

dist(<r(,4), o(T)) < \A - T\ ~d(A, T) 

The proof is complete. 
Remarks: 
(1) If A is normal, then d(A) = 1 and we obtain, therefore, the Theorem 1 in [1], 
(2) If A is normalizable, then for every [i 

o(T) a V(o (A -y.),\A-T- p| 6(A)). 
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The proof follows from the fact that (A — \i) is normalizable and d(A — \i) = 6(A) 
for every \i. 

Theorem 2. Let A be a normalizable n X n matrix partitioned in the form: 

Г AtíAvtЛ 
A ~ l Ati Aгг J 

where An, A22 are square and the dimension of An is equal to m (1 < m < n). Ler P be 
a matrix of projector transforming an n-dimensional vector x with the coordinates x% into 
the vector y with the coordinates y% = xt for i = l . , . , ,m and yj = Ofor j = m + 1,..., n, 
Q = I - P. 

If X belongs to o(A11} \j o(A22) then the disk 

K(\, \PAQ + QAP\ 6(A)) = {a; |a - X| < \PAQ + QAP\ 6(A)}, 

contains at least one proper value of A. 

Proof. According to the theorem 1 we have 

o(PAP + QAQ) c V(o(A),\A - PAP - QAQ\ 6(A)) = V(o(A), \PAQ + QAP\6(A).). 

From the fact that o(PAP + QAQ) = o(Au) [j o(A22), it follows that if X e o(Au) (J 
U ff(-422), then K(X, \PAQ + QAP\ 6(A)) contains at least one proper value of A. The 
proof is complete. 

Remark. If A is normal, An is a matrix of dimension 1 and of we use the Euclidean 
norm, then we obtain the Theorem 2 in [1], The result of this theorem, when A is nor­
mal, was obtained in the paper [2]. 

Theorem 3. Let A be ann X n matrix paritioned as in Theorem 2 

An> A22 and PAQ + QAP be normalizable, then 
o(A) cz V(o(PAQ + QAP), 6(PAP + QAQ) 6(PAQ + QAP) max |X,|) (12) 

where X; e o(A11) (J o-(.̂ 22). 

Proof. First, we shall prove that PAP, QAQ, PAP + QAQ are normalizable. 

Indeed, since An and .^22 are normalizable there are X1 and X2 such that 

Xi^nXr 1 = D1 

X2A22X? = D2 

where D1 and D2 are diagonal. Put X, Y, Z the n x n matrices for which 

'-[f'Ll -U"*J *-***->• 
where by h we denote the unit matrix of the dimension k. It is not difficult to verify that: 

XPAPX1, YQAQY1, Z(PAP + QAQ)ZX are the diagonal matrices. Since 

PAP + QAQ is normalizable, PAP + QAQ = T1 AT with some nonsingular matrix 

T and diagonal matrix A. 
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Hence \PAP + QAQ\ < \T\ |r-*| |A|. 

This inequality holds for every matrix T satisfying 

PAP + QAQ = T1AT 

We obtain, therefore: 

\PAP + QAQ\ < d(PAP + QAQ) |A| < d(PAP + QAQ) max |X,| 
where X; e a(PAP + QAQ) i.e. X, e a(An) (J <r(__22). 

By Theorem 1 we obtain 

a(A) a V(a(PAQ + QAP), \PAP + QAQ\ d(PAQ + QAP)) 
e V(a(PAQ + QAP), d(PAQ + QAP) d(PAP + QAQ) max |Xy|) 

Corollary. Let Ay be square and normalizable, A12 and A21 be regular and A12A21 = 
= A21A12 then (12) holds. 
Proof. Since __i2, A21 are normalizable and A12A21 = A21A12 there exists (see [3]) 
a non-singular matrix X such that 

XA12X~i = Du XA21X-1 = D2 

where Z>i and D2 are diagonal. 

_-.[j0-l ,».-.= [^.,f]_ 
T(PAQ + QAP)T-Í 

[0 _ 2 ] 
Löi oj 

Since __12 and __2i are regular, there exists a diagonal nonsingular matrix M such that 

Af2 = Z#_»i. 

* - * = [ ' - f ! l ; z = y r t h e n y - i = 1 - [ i ' 1 
U —Af"1] 2 [Af — A*J 

and 

zrp_4o + O_P_-I - yI" ° °21 y-i - J [ Af_1Z)l + D2M M'1Dl ~ DtM\ 
Z(PAQ + QAP)Z - - ' [ - i 0 jy -_[_(M-__-_Vt«)-(A---D_+_wJ 
Where evidently M~XD\ + D2M is a diagonal matrix; M~xDi — Z>2-Vf is a null matrix. 
Hence Z(PAQ + QAP)ZX is a diagonal matrix. That means PAQ + QAP is normal­
izable. We can, therefore, apply Theorem 3 to obtain (12). 

Theorem 4. Let A = B + C, B and C be normalizable and BC = CB then 

dist(o-(/_), a(B)) < (5(C)max (6(B), _(/_))max |Xy(C)| 

wfere by X;(C) we denote the eigenvalues of C. 
Proof. First we prove that A is normalizable. Indeed, from the fact BC = CB 
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and the fact .5, C are normalizable, it follows that there exists a non-singular matrix X 
such that 

XBX-i = Di 
XCX-i = D2 

where D\ and D2 are diagonal. 
We have, therefore 

XAX-1 = X(B + C)X-i = Di + D2 

That means A is a normalizable matrix and by the Theorem 1 we obtain 
dist (a(A\ a(B)) <\A-B\ max (6(A\ 6(B)) = \C\ max (6(A), 6(B)) 

Matrix C is normalizable, hence, there exists a non-singular matrix Xc such that 

XcCXc1 = D, or C = X^DXc 

where D is a diagonal matrix, whose diagonal elements are eingevalues of C. So |C| < 
< d(C) max |fy(0| 

Finally, we have 

dist (cr(,4), o-(_5)) < <5(C) max (6(A), 6(B)) max |X,(C)| 
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