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Notes On Left Distributive Groupoids 

T. KEPKA 
Department of Mathematics, Charles University, Prague*) 

Received 5 March 1981 

A groupoid satisfying the identity x . yz = xy . xz is said to be left distributive. In the present 
paper, some basic properties of these groupoids are proved. 

Grupoid splnujici identitu x . yz = xy . xz se nazyva zleva distributive. V dlanku se doka-
zuji nektere zakladni vlastnosti techto grupoidu. 

rpynnoHfl BbinojibHHioinHH Toac^ecTso x . yz = xy . xz Ha3biBaeTCH .neB0flHCTpH6yTHBHMM. 
B craTbe nccjieayioTCfl HeKOTopwe ocHOBHbie CBOHCTBa 3THX rpynnoflOB. 

1. Introduct ion 

A groupoid G is said to be 
— idempotent if aa = a for every a e G, 
— commutative if ab = ba for all a, b e G, 
— left distributive (an LD-groupoid) if a . be = ab . ac for all a, b, ce G, 
— distributive if it is left distributive and ab . c = ac . be for all a, b, c e G, 
— medial if ab . cd = ac . bd for all a, b, c, d e G, 
— a left unar if ab = ac for all a, b, ce G, 
— a right unar if ba = ca for all a, b, ce G, 
— left symmetric if a . ab = b for all a, be G, 
— right symmetric if ba . a = b for all a, b e G, 
— semisymmetric if a . ba = b for all a, be G. 

Let G be a groupoid. For all a, b e G, La(b) = ab and Ra(b) = ba. We shall 
say that G is left (right) cancellative if La (Ra) is injective for every a e G. We shall 
say that G is left (right) divisible if La (Ra) is surjective for every a e G. A left (right) 
cancellative and left (right) divisible groupoid is called a left (right) quasigroup. 

Let G be a groupoid. Define two equivalences pG and qG on G by (a, b) e p iff 
La = Lb and (c, d) e q iff Rc = Ra. We shall say that G is left (right) regular if q = 
= ker La (p = ker Ra) for every a e G. 

Let G be a groupoid and a e G. Then Id G is the set of idempotents of G and 
[a]G the subgroupoid generated by a. A subgroupoid H is said to be left closed in G 

*) 186 00 Praha 8, Sokolovská 83, Czechoslovakia. 
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if ab, a e H implies b e H. For a subgroupoid K, [K]c is the least left closed sub-
groupoid containing K. 

For every n = \,2, ..., define a left unar Cycl(n) as follows: Cycl(n) = 
= {\, 2, ..., n}, ab = b + 1 and an = 1 for all a, b e Cycl(n), b 4- n. Further, 
define a left unar Cycl(co) by Cycl(co) = ( l , 2, ...}, ab = b -{- 1. 

1.1. Lemma. Let A and B be left unars. Suppose that A can be generated by one 
element and there exist surjective homomorphisms f of A onto B and g of B onto A. 
Then these unars are isomorphic. 

Proof. Obvious. 

1.2 Lemma. The following conditions are equivalent for a left unar A: 

(i) Every subunar of A generated by one element is isomorphic to A. 
(ii) A is isomorphic either to Cyc\(n) for some n = 1 or to Cyc/(oo). 

Proof. Obvious. 
1.3 Lemma. Let G be a simple left unar. Then exactly one of the following 

four assertions is true: 

(i) G is isomorphic to Cycl(l). 
(ii) G is isomorphic to Cycl(p) for a prime p ^ 2. 

(iii) G is a two-element semigroup of right zeros, 
(iv) G is a two-element semigroup with zero multiplication. 

Proof. Obvious. 

2. Basic Properties Of Left Distributive Groupoids 

2.1 Lemma. Let G be an LD-groupoid and a e G. Then: 

(i) La is an endomorphism of G and a . aa = aa . aa. 
(ii) If Raa is inejetive then a = aa. 

(iii) If a = aa then LaRa = RaLa. 
(iv) If Lflis surjective and / is a transformation of G such that Laf = idG then ab . c = 

= a . bf(c) for all b, c e G. 
(v) If La is surjective then (a, aa) e p. 

Proof. All the assertions are easy observations ((ii) follows from (i) and (v) 
follows from (iv) for b = a). 

2.2 Proposition. Let G be an LD-groupoid. Then: 

(i) Id G is either empty or a left ideal of G. 
(ii) qG is a congruence of G. 
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(iii) qG is right (left) cancellative, provided G is so. 
(iv) (a, aa) e q for every a e G iff GG s= Id G. 

Proof, (i) For a e G and b e Id G, ab . ab = a . bb = ab. 
(ii) We have q = f] ker La, a e G. 

(iii) If G is left cancellative then q = id. Suppose that G is right cancellative and 
(ba, ca) e q. Then db . da = d . ba = d . ca = dc . da and db = dc for every 
deG. 

2.3 Lemma. Let G be an LD-groupoid. 

(i) If (a, aa) e p for every a e G then the mapping a -> aa is an endomorphism of G. 
(ii) If G is left cancellative then (a, aa) e p iff aa . a = aa. 

(iii) If the mapping a -^ aa is injective then aa . a = aa for every a e G. 

Proof, (i) We have aa .bb = a .bb = ab . ab. 
(ii) Let aa = aa . a. Then aa . ab = (aa . a) (aa. b) = (aa) (aa . b). 

(iii) We have aa . aa = (aa . a) (aa . a). 

2.4 Proposition. Let G be an LD-groupoid. Then pG is a congruence of G, 
provided at least one of the following four conditions is satisfied: 

(1) G is left divisible. 
(2) G is left cancellative and aa = aa . a for every a e G. 
(3) G is right regular. 
(4) G is medial and GG = G. 

Proof. (1) and (3). Let a, b, c, d e G and (a, b) e p. Then ca . cd = c . ad = 
= c . bd = cb . cd and the rest is clear. 
(2) Let a, b, c, d e G and (a, b) e p. Then (c . ac) (ca . d) = (ca . cc) (ca . d) = 

= (ca) (cc . d) = ca . cd = c . ad = c . bd = (c . be) (cb . d) = (c . ac) (cb . d), 
since c . ac = c .be and cc . d = cd by 2.3(ii). 

(4) Let a, b, c, d, e e G and (a, b) e p. Then ca . de = cd . ae = cd . be = cb . de. 
2.5 Proposition. Let G be an LD-groupoid. Then (a, aa) e p for every ae G, 

provided at least one of the following six conditions is satisfied: 

(1) G is left divisible. 
(2) G is left cancellative and aa = aa . a for every ae G. 
(3) G is right regular. 
(4) G is medial and GG = G. 
(5) The mapping a -> aa is a surjective endomorphism of G. 
(6) The mapping a -> aa is an injective endomorphism of G. 

Proof. (1) is proved in 2.l(v), (2) in 2.3(ii) and (3) follows from 2A(i). 
(4) We have a . be = ab . ac = aa . be for all a, b, c e G. 
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(5) and (6). Put f(a) = aa. Then a f(b) = a . bb = ab . ab = aa . bb = aa . f(b) 
and the rest is clear, provided f is surjective. Iff is injective then f(ab) = f(a). 
,f(b) = f(a). bb = f(a) b .f(a) b = f(f(a) b) yields the result. 

2.6 Theorem. Let G be an LD-groupoid satisfying at least one of the conditions 
(1), (2), (3) and (4) from 2.4. Then: 

(i) pG is a congruence of G and G\p is an idempotent LD-groupoid. 
(ii) Every block of pG is a subgroupoid of G and a left unar. 

(iii) For every a e G, [a]G is a left unar. 
(iv) If G is right divisible then the left unars [a] and [6] are isomorphic for all 

a, beG. 
(v) If G is right divisible and left cancellative then any two blocks of p are iso­

morphic left unars. 

Proof, (i), (ii) and (iii). See 2.4 and 2.5. 
(iv) and (v). Let a, beG. There are c, d e G with ca = b and db = a. Hence 

LC(A) = B, Ld(B) = A, where A = [a] and B = [b], and we can use 1A and 
1.2. Finally, let P and Q be blocks of p. There are a, be G with aP c Qy 

bQ = P and the rest is clear. 

2.7 Corollary. Let G be a right divisible LD-groupoid satisfying at least one 
of the four conditions from 2.4. Then there exists n e ( l , 2, ..., oo} such that [a~\G 

is isomorphic to Cycl(n) for every a e G. 

2.8 Proposition. An LD-groupoid G is idempotent, provided at least one of the 
following two conditions is satisfied: 

(i) G is right cancellative. 
(ii) G is right divisible and Id G is non-empty. 

Proof. Use 2.1 (ii) and 2.2(i). 

2.9 Proposition. Let G be an LD-groupoid. Then pG is left (right) cancellative, 
provided G is so. 

Proof Let G be left cancellative, (ca, cb) e p and de G. Then c . ad = ca . cd = 
= cb . cd = c . bd and ad = bd. 

2.10 Proposition. Let G be a left cancellative LD-groupoid such that aa = 
= aa . a for every a e G. Then there exists a groupoid H with the following properties: 

(i) G is a subgroupoid of H and H = [G]CV 
(ii) H is an LD-groupoid and a left quasigroup. 

(iii) G and H generate the same groupoid variety, 
(iv) H is idempotent iff G is. 
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(v) pG = PH J G-
(vi) pH = id iff pG = id. 

(vii) H is right (left) cancellative (divisible), provided G is so. 
(viii) H is simple, provided G is. 

Proof. By 2.4 and 2.5, pG is a congruence of G and (a, aa) e pG for each 
a e G. Now, let ae G. Consider the subgroupoid K = aG of G. Then K := G, K is 
isomorphic to G and K = aa . G. The rest is clear. 

2.11 Corollary. The following conditions are equivalent for an LD-groupoid G: 

(i) G can be imbedded into an LD-groupoid H such that H is a left quasigroup. 
(ii) G is left cancellative and aa = aa . a for each a e G. 

2.12 Proposition. Let G be an LD-groupoid. Define a relation r on G by 
(a, b)e r iff there are n = 1 and a1? ..., ane G such that ax(... (ana)) = ax(... (a„b)). 
Then r is the least left cancellative congruence of G. Moreover, if (aa . a, aa) e r 
for some ae G then bb = bb . b for some b e G. Similarly, if (cc, c)er for some 
c e G then Id G is non-empty. 

Proof. Easy. 

2A3 Proposition. Let G be a finite LD-groupoid. Then there exists at least one 
element ae G with aa = aa . a. 

Proof. Consider the congruence r defined in 2.12. Then Gjr is a left quasigroup, 
and so (aa . a, aa) e r for every ae G. 

2A4 Proposition. Let G be a left cancellative LD-groupoid. Put A = [a e G; 
aa . a = aa] and B = {b e G; bb . b 4= bb]. Then: 

(i) G = A u B and A n J3 = 0. 
(ii) A is either empty or a left ideal of G. 
(iii) B is either empty or a left ideal of G. 
(iv) r = (A x A) u (B x B) is a left cancellative congruence. 
(v) If r =}= G x G then G\r is a two-element semigroup of right zeros. 

Proof. Easy. 

3. Examples Of Left Distributive Groupoids 

3.1 Proposition. Let G be a left unar and letf be the transformation of G such 
that ab = f(b) for all a,beG. Then: 

(i) G is a medial LD-groupoid and G is regular, 
(ii) G is distributive iff f2 = f. 
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(iii) Id G is empty iff f(a) 4= a for every a e G. 
(iv) If Id G is an ideal then f2 = f. 
(v) p = G x G and g = kerf, 

(vi) G is left cancellative (divisible) ifff is injective (surjective). 

Proof. Obvious. 

3.2 Example. The left unar Cycl(2) is an LD-groupoid without idempotents. 
Moreover, this groupoid is a left quasigroup, it is medial, regular and left symmetric 
and it is not distributive. 

3.3 Proposition. Let G be a groupoid such that G = A u B, where A is the set 
of left units of G and B = {a e G; ab = ac e Id G for all b, c e G}. Then: 

(i) G is an LD-groupoid. 
(ii) G is distributive iff either G is a right unar or G is idempotent and contains at 

most one left zero, 
(iii) G is idempotent iff every element from B is a left zero, 
(iv) Id G is an ideal iff either B = G or G is idempotent. 
(v) pG is a congruence of G. 

(vi) The mapping x -> xx is an endomorphism of G iff either G contains just one 
left unit e and aa = e for every a e G or aa e B for every a e B. 

(vii) (x, xx) e /? for every x e G iff aa e B for every a e B. 

Proof, (i) Let a, b, c e G. If a e A then a . be = be = ab . ac. If a e B then 
there is an e e Id G such that ax = e for each x e G and we have a . be = e = ee = 
= ab . ac. 

(ii) Suppose that G is distributive. If B = G then G is a right unar. Let B 4= G 
and e G A. We have a = ea = ee . a = ea . ea = aa for each a e G, and so G 
is idempotent. Moreover, if z E G is a left zero then z = za = ez . a = ea . za = 
= az for evera a e G and z is a zero. The rest is clear. 

(iii) and (iv). These assertion are easy, 
(v) Let (a, b)e p and ce G. Then either c e A and ca = a, cb = b or c e B and 

ca = cb. 
(vi) Suppose that x -> xx is an endomorphism. Let e = aa e B for some a e B. 

For each / ' e A, f = ef = aa . f = aa . ff = af. af = ee = e. Moreover, for 
every b e B, bb = e . bb = aa . bb = ab . ab = ee = e. 

(vii) This is evident. 

3.4 Example. Consider the following groupoid L(1): 

1(1) 0 1 

~0 1 r 

1 | 0 1 
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This groupoid is an LD-groupoid, it is not distributive and the set {1} of idempotents 
is not an ideal. Moreover, (a, aa) $ p = id for a = 0 and the mapping x -» xx is an 
endomorphism of L(l). 

3.5 Example. Consider the following groupoid L(6): 

L(6) 0 1 2 

0 0 1 2 
1 1 1 1 
2 0 0 0 

This groupoid is a simple LD-groupoid, p is a congruence and x -> xx is not an 
endomorphism (see 3.3). 

3.6 Proposition. Let G be an LD-groupoid and 0 £ G. Define a groupoid H(*) 
as follows: H = G u {0}, a * b = ab, a * 0 = 0 * 0 = 0, 0 * a = a for all a, b e G. 
Then: 

(i) //(*) is an LD-groupoid. 
(ii) H(*) is distributive iff G is an idempotent distributive groupoid satisfying the 

identites x = yx . x and xy = >'. xy. 
(iii) pH(«) is a congruence of H(*) iff pG is a congruence of G and the set of left units 

of G is either empty or a left ideal of G. 
(iv) The map a -> a * a is an endomorphism of H(*) iff b -» bb is an endomorphism 

of G. 
(v) (a, a * a) 6 /? for every a e H iff (b, bb) 6 p for every b e G. 

Proof. Easy. 

3.7 Example. Consider the following groupoids: 

Ц2) 0 1 2 

0 0 0 0 
1 1 1 1 
2 1 0 2 

L(3) 0 1 2 

0 0 0 0 
1 1 1 1 
2 0 1 2 

L(4) 0 1 2 

0 
1 
2 

0 0 2 
0 1 2 
0 1 2 

L(5) 

0 
1 
2 

0 1 2 

0 1 2 
0 1 1 
0 2 2 

One may check easily that these are pair-wise non-isomorphic LD-groupoids which 
are idempotent and not distributive. Moreover, p is not a congruence of L(4). 
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4. Non-Distributive Idempotent Left Distributive Groupoids 
With At Most Three Elements 

4.1 Proposition, (i) Every idempotent LD-groupoid containing at most two 
elements is distributive. 

(ii) The groupoids Cycl(2) and L(1) are two-element non-distributive LD-groupoids, 
Moreover, these groupoids are not isomorphic, 

(iii) Every non-distributive two-element LD-groupoid is isomorphic to one of the 
groupoids Cyc/(2) and L(1). 

Proof. Easy. 

4.2 Lemma. Let G be a three-element LD-groupoid such that Id G is non­
empty and G contains no left and no right zero. Then G is distributive. 

Proof. Let G = {a, b, c). Since Id G is a left ideal and G contains no right zero, 
Id G has at least two elements, say a and b. Let us distinguish the following situations: 

(i) Id G = {a, b}. We can assume that cc = a. Further, ab, ba, ca, cb e {a, b} 
and a = a . cc = ac . ac, ac e {a, c}. First, let ac = a. Then ab = b, since a 
is not a left zero. Moreover, a . cb = ac . ab = a . ab = ab = b, cb = b 
and b is a right zero, a contradiction. Hence ac = c and ca = c . cc = cc . cc = 
= aa = a, and so ba = b. On the other hand, be = b . ac = ba . be = b . be, 
be = c and b = ba = b . cc = be . be = cc = a, a contradiction, 

(ii) G is idempotent. Since a is not a left zero, we can assume that ac 4= a. 
(iil) Let ac = b. Then a . ca = ac . a = ba and cb = c . ac = ca . c. If ca — a 

then a = a . ca = ba, a is a right zero, a contradiction. If ca = b then ab = 
= a . ca = ba, cb = ca . c = be and G is commutative. If ca = c then cb = 
= ca . e = cc = c, c is a left zero, a contradiction. 

(ii2) Let ac = c. Since c is not a right zero, be 4- c. 

(ii2a) Let be = a. Then a = a . be = ab . ac = ab . c, and so ab = b. Further, 
a = be = b . ac = ba . be = ba . a, b = b . ab = ba . b and cb #= b. Thus 
ba = a. If cb = c then ca = b (since a is not a right zero and c is not a left 
zero) and c = cb = c . ab = ca . cb = be = a, a contradiction. If cb = a 
then a = ba = b . cb = be . b = ab = b, SL contradiction. 

(ii2b) Let be = b. If ba = a then b = be = b . ac = ba . be = ab, b . ca = 
= be . ba = ba = a and ca = a, a contradiction. Thus ba = c and b = 
= be = b . ac = ba . be = cb, ab = a . be = ab . ac = ab . c and ab = c 
From this, ca = ab . a = a . ba = ac = c and G is commutative. 

4.3 Lemma. Let G be a three-element idempotent LD-groupoid containing 
a zero element. Then G is distributive. 

Proof. Suppose that G = (a, b, c} and a is a zero element of G. Let G be not 
distributive. It is easy to check that then we have either cb = a and be e {b, c) or 
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be = a and cb e {b, c}. In the first case, c. be = cb . c = ac = a, and therefore 
be = b and b = be . b = b . cb = ba = a, a contradiction. In the second case, 
a = c . be = cb . c, cb = b and b = b . cb = be . b = ab = a, a contradiction. 

4.4 Lemma. Let G be a three-element idempotent LD-groupoid containing at 
least two left zeros. Then G is either distributive or isomorphic to one of the groupoids 
L(2),I(3). 

Proof. Let G = {a, b, c) and let the elements a and b be left zeros. Suppose that 
G is neither distributive nor isomorphic to L(2). Then either ca = a, cb = b and G 
is isomorphic to L(3) or ca = a, cb = c or ca = c, cb = b. If ca = a, cb = c then 
c = cb = c . ba = cb . ca = ca = a, SL contradiction. If ca = c, cb = b then c = 
= ca = c . ab = ca . cb = cb = b, a contradiction. 

4.5 Lemma. Let G be a three-element idempotent LD-groupoid containing 
just one left zero and no right zero. Then G is distributive. 

Proof. Let G = {a, b, c} and let a be the only left zero of G. Since a is not a right 
zero, we can assume that ca =1= a. 

(i) Let ca = b. If ba = a then b = b . ca = be . ba = be . a, and hence be = c 
and b = ca = c . ac = ca . c = be = c, a contradiction. Consequently, ba e 
e{b,c}. 

(il) Let ba = b. Then b = ba = b . ac = ba . be = b . be, and so be = a, since b 
is not a left zero. Finally, b = ba = b . ca = be . ba = ab = a, a contradic­
tion. 

(i2) Let ba = e. Then c = ba = b . ab = ba . b = cb and c . be = cb . c = c 
yields be e {b, c). If be = b then G is distributive. If be = c then b = b . ca = 
= ec = c, a contradiction. 

(ii) Let ca = c. Then cb e {a, b}. 
(iil) Let cb = a. We have c . ba = cb . ca = ac = a, hence ba = b and bee 

G {a, e}. But (b, c} is not a subgroupoid of G, and so be = a and c = ca = 
= c . be = cb . c = ac = a, a contradiction. 

(ii2) Let cb = b. If be = b then c . ba = cb . ca = be = b, ba = b and b is a left 
zero, a contradiction. Hence be = c (since {b, c) is a subgroupoid). c . ab = 
= ca . cb = cb = b, ab = b and b = ba = b . ac = ba . be = be = c, a con­
tradiction. 

4.6 Lemma. Let G be a three-element idempotent LD-groupoid containing 
a right zero and no left zero. Then G is either distributive or isomorphic to one of the 
groupoids L(4), L(5). 

Proof. Put G = {a, b, c} and let a be a right zero. We can assume that ac =1= a. 
(i) Let ac = b. Then cb = c . ac = ca . c = ac = b. If be = a then b = bb = 

= b . ae = ba . be = aa = a, a contradiction. If be = b then ab = a . be = 
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= ab . ac = ab . b and either ab = a and b = b . ac = ba . be = ab = a, 
a contradiction, or ab = b and G is distributive. If be = c then either ab = a 
and b = a . be = ab . ac = ab = a, a contradiction, or ab e {b, c} and G 
is distributive, 

(ii) Let ac = c. Then be = b . ac = ba . be = a . be = ab . ac = ab . c and 
a . cb = ac . ab = c . ab. 

(iil) Let ab = a. Then be = c and a . cb = a, cb e {a, b}. If cb = b then G is 
isomorphic to L(4). If cb = a then G is distributive. 

(ii2) Let ab = b. If cb = a then c . be = cb . c = ac = c, and so be = c and G 
is distributive. If cb = b and be = a then G is distributive. If cb = b and be = b 
then G is isomorphic to L(4). If cb = b and be = c then G is distributive. If 
cb = c and be = a then a = c . be = cb . c = cc = c, a contradiction. If 
cb = c and be = b then G is isormophic to L(5). If cb = c and be = c then G 
is isomorphic to L(4). 

(ii3) Let ab = c. Then be = ab . c = cc = c and a . cb = c . ab = cc = c. Con­
sequently, cb e {b, c}. In both cases, G is distributive. 

4.7 Proposition, (i) The groupoids L(2), L(3), L(4) and L(5) are pair-wise non-
isomorphic non-distributive idempotent LD-groupoids. 

(ii) Every non-distributive three-element idempotent LD-groupoid is isomorphic to 
one of the groupoids L(2), L(3), L(4) and L(5). 

Proof. Use 3.7, 4.2, 4.3, 4.4, 4.5 and 4.6. 

5. Simple Left Distributive Groupoids 

Let G be an LD-groupoid. Denote by A(G) the set of all a e G such that the 
translation La is injective and by B(G) the set of all a e G such that ab = aa for 
every b e G. Further, let C(G) = {a e B(G); aa e A(G)} and D(G) = {a e G; aa, a e 
eB(G)}. 

5.1 Lemma. Let G be an LD-groupoid and a e B(G). Then there is an idem-
potent e = e(a) e G such that aa = e = ab for every be G. If a e D(G) then e e 
e D(G) and eb = e. 

Proof. Easy. 

5.2 Lemma. Let G be a non-trivial simple LD-groupoid. Then: 

(i) G = A(G) u B(G) and A(G) n B(G) = 0. 
(ii) B(G) = C(G) u D(G) and C(G) n D(G) = 0. 

Proof. Let a e G. Then r = ker La is a congruence of G, and hence either r = id 
and a e A(G) or r = G x G and a e B(G). The rest is clear. 
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5.3 Lemma. Let G be a non-trivial simple LD-groupoid. Then: 

(i) A(G) is either empty or a subgroupoid of G. 
(ii) D(G) is either empty or a right ideal of G. 

(iii) A(G) B(G) cz B(G), A(G) C(G) <= C(G) and A(G) D(G) c D(G). 

Proof, (i) Let a, b G -4(G), c, d e G, c 4= d. Then ab . ac = a . be 4= a . ba* = 
= ab . ad. By 5.3(i), ab e A(G). 

(ii) If a e D(G) and b e G then ab = e(a) e D(G). 
(iii) Let a e v4(G), c e C(G) and a1 e D(G). For every b e G, ac . ab = a . cb = a e(c) 

and ad . ab = ae(d). Since a, c(c) G ̂ 4(G), ae(c) e A(G) by (i) and ac e C(G). 
Finally, ae(d). ab = a . e(d)b = ae(a'), and so ae(d) e D(G) and ad e D(G). 

5.4 Lemma. Let G be a simple LD-groupoid containing at least three elements. 
Then either A(G) = G or D(G) = G or card A(G) = card C(G) = card D(G) = 1. 

Proof. Put r = (A(G) x A(G)) u (C(G) x C(G)) u (D(G) x D(G)). Then r is 
an equivalence and we are going to show that r is a congruence. Let a, b, c e G and 
(a, b) G r. If c e A(G) then (ca, cb) e r by 5.3(i), (iii). If c e B(G) then ca = cb, and 
so (ca, cb) e r. If a, b, c e A(G) then ac, be e ^4(G) by 5.3(i) and we have (ac, be) e r. 
If a, b G D(G) then ac, be e D(G) by 5.3(h) and (ac, be) e r. If a, b e C(G) then ac -= 
= e(a), be = e(b), e(a), e(b) e A(G), and hence (ac, be) e r. If a, b e ^4(G) and 
c e C(G) (c e D(G)) then ac, be G C(G) (ac, be G D(G)) by 5.3(iii), and therefore 
(ac, be) G r. We have proved that r is a congruence of G. First, suppose r = G x G. 
Then either A(G) = G or C(G) = G or D(G) = G. If C(G) = G then A(G) = 0, 
a contradiction. Finally, let r 4= G x G. Then r = id and card -4(G) = card C(G) = 
= card D(G) = 1, since G contains at least three elements. 

5.5 Example. Consider the following groupoids: 

31) 
0 

0 D(2) 0 1 

0 
1 

0 0 
0 0 

D(3) 

0 
1 

0 1 

0 0 

0 1 

D(4) 0 1 

0 
1 

0 0 
1 1 

D(5) 0 1 

0 
1 

0 1 
0 1 

It is easy to check that these groupoids are pair-wise non-isomorphic simple distribu­
tive groupoids. 

5.6 Theorem. Let G be a simple LD-groupoid. Then exactly one of the following 
three assertions is true: 

(i) G is isomorphic to one of the groupoids D(1), D(2), D(3), D(4), D(5), L(1), 
Cycl(2). 
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(ii) G is isomorphic to L(6). 
(iii) G is a left cancellative groupoid containing at least three elements. 

Proof. If G contains at most two elements then (i) is true. Suppose that G con­
tains at least three elements. If A(G) = G then G is left cancellative. Let D(G) = G. 
Then there is a mapping e : G -> Id G such that ab = e(a) and e(e(a)) = e(a) for all 
a9 b e G. Since ker e is a congruence of G, either ker e = id and e is injective or 
ker e = G x G. If e is injective then a = e(a) for every a e G, G is a semigroup of 
left zeros and consequently G contains at most two elements, a contradiction. If 
ker e = G x G then e(a) = e(b) for all a9 b e G, G is a semigroup with zero multi­
plication, and hence G contains at most two elements, a contradiction. Finally, let 
A(G) 4= G 4= D(G). By 5.4 and 5.2, card G = 3 and card A(G) = card C(G) = 
= card D(G) = 1. Assume G = {a9 b, c}, A(G) = {a}9 C(G) = {c} and D(G) = {b}. 
Then aa = a, ab = b, ac = c9 ba = bb = b, ca = cb = cc = a (use 5.3) and G 
is isomorphic to L(6). 

5.7 Theorem, (i) The groupoids D(l), D(2), D(3), D(4), D(5), L(l), L(6), Cycl(p)9 

p = 2 a prime, are pair-wise non-isomorphic simle LD-groupoids. 

(ii) Every finite simple LD-groupoid G is either isomorphic to one of the groupoids 
from (i) or it is an idempotent left quasigroup with pG = idG. 

Proof. Let G be a finite simple LD-groupoid. With respect to 5.6, we can assume 
that G is left cancellative. Then G is a left quasigroup and by 2.4, p is a congruence 
of G. If p = id then G is idempotent by 2.5. If p = G x G then G is a left unar and 
we can use 1.3. 

5.8 Proposition. Let G be a simple LD-groupoid such that the mapping a -* aa 
is an endomorphism of G. Then G is either isomorphic to one of the groupoids 
D(l), D(2), D(3), D(4), D(5), L(l), Cycl(p), p = 2 a prime, or it is idempotent and 
left cancellative. 

Proof. Taking into account 5.6 and 3.5, we can assume that G is left cancellative. 
Put f(a) = aa. Then kerf is a congruence of G. First, let kerf = G x G. Then 
aa = bb for all a, b e G and aa = aa . aa = a . aa implies a = aa. Now, let 
kerf = id. Then f is an injective endomorphism and (a9 aa)e p for every ae G 
by 2.5(6). By 2.3(i) and 2.4(h), p is a congruence of G and we can proceed similarly 
as in the proof of 5.7. 

5.9 Proposition. Let G be an infinite simple left cancellative LD-groupoid. Then 
either G is idempotent or aa . a 4= aa for every a e G. 

Proof. Apply 2.14 and 5.8. 
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6. Group Constructions Of Left Distributive Groupoids 

6A Proposition. Let / be an endomorphism of a group G. Let x e C(G) ( = the 
centre of G) be such that f(x) = x. Put g(a) = af(a~x) and a * b = g(a)xf(b) 
for all a, be G. Then: 

(i) G(*) is a regular LD-groupoid. 
(ii) G(*) is distributive iff x = 1 and fg(a)fg(b) = fg(b)fg(a) for all a, b e G. 

(iii) G(*) is medial iff fg(a)fg(b) = fg(b)f g(a) for all a,beG. 
(iv) G(*) is idempotent iff x = 1. 
(v) G(*) is left (right) cancellative (divisible) iff/ (g) is injective (surjective). 

Proof. Easy. 

6.2 Example. Let G( + ) be a quasicyclic 2-group. There is an elefent 0 + x e G 
with 2x = 0. Put a * b = 2a — b + x for all a, b e G. Then G(*) is a regular divisible 
LD-groupoid containing no idempotents. 

6.3 Proposition. Let / be an endomorphism of a group G and K = (x e G; 
/(x) = x}. Put a * b = af(ba~x) for all a, b e G. Then: 

(i) G(*) is an idempotent LD-groupoid. 
(ii) G(*) is distributive iff it is medial iff f(G') ~\ K and /(G) is nilpotent of class 

at most 2; these conditions are equivalent to f(G') ~\ K n C(f(G)). 
(iii) If / is either injective or surjective then G(*) is distributive iff G' ~\ K and G 

is nilpotent of class at most 2, 
(iv) G(*) is left symmetric iff/2 = id and af(a) e C(G) for every a e G. 
(v) G(*) is right symmetric iff f(a2) = f2(a) for every a e G and the group f2(G) 

is commutative, 
(vi) G(*) is semisymmetric iff f(a) = a f2(a) = f2(a) a and f2(aba~1b~1) = 

= a~1b~lab for all a, b e G. 
(vii) G(*) is commutative iff/(a2) = a for every a e G and G is commutative, 

(viii) G(*) is symmetric iff G is commutative, a2, = 1 and/(a ) = a2 for every a e G. 
(ix) G(*) is left regular and q = k e r / 
(x) G(*) is left cancellative (divisible) iff/ is injective (surjective). 

(xi) p is a congruence of G(*) and (a, b) e p iff a-1b is contained in K n C(f(G)). 
(xii) G(*) is right regular iff, for all a, b e G, a/(b) = f(ba) implies aeK n C(/(G)); 

in this case, K <= C(/(G)). 
(xiii) G(*) is right cancellative iff, for all a, b e G, a/(b) = f(ba) implies a = 1; in 

this case, K = 1. 
(xiv) G(*) is right divisible iff the mapping a -> af(a~x) is surjective; in this case, 

G(*) is a right quasigroup iff this mapping is a permutation. 

Proof. Only the assertion (ii) needs a proof. First, assume that G(*) is distribu­
tive. Then / ( b " 1 ^ " 1 ^ " 1 ^ = f2(cb~xac~lba~l) for all a, b, c e G. Setting c = 1, 
we get/(b~1aba~1) = f2(b~1aba~1) and the inclusion /(G r) .= K is evident. Conse-
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quently, f(b-xac-xba~xc) = f2(cb~xac-xba~x) = f2(cb-xc~xbb~xcaC-xba-x) = 
= f(cb~xc-xbb-xcac-xba~x) = f(cb-xac-xba~x) for all a,b,ceG. For b = 1, 
f(ac-xa~xc) = f(cac-xa~l), and so conjugated elements commute in the 
group /(G) . Further, f(c-xba-xcab~x) = f(a~xbcb- xac~x) = f(c-xa-xbcb~xa), 
f(ba~xcab-x) = f(a~xbcb~xa), f(b~xaba-xc) = f(cb~xaba-x) and f(G') <= 
c; C(/(G)). Now, conversely, suppose that/(G') = K n C(/(G)). Then / (a _ 1 cb _ 1 . 
. ac^b) = / 2 (a - 1 cb - 1 ac - 1 b ) eC( / (G) ) , and s o / ^ - ^ b - ^ c " ^ / ^ ) ) = f2(da~x 

cb-xac~xb) for all a, b, c, d e G. The rest is clear. 

6.4 Example. As it is well known, there exists a non-trivial torsionfree group G 
such that any two elements a =j= 1 4= b are conjugated in G. Put H = G\{1} and 
a * b = aba~x for all a, be H. Then H(*) is a divisible idempotent LD-groupoid 
and H(*) is a left quasigroup. On the other hand, p = id = q and H(*) is not right 
regular. 

6.5 Proposition. Le t /be an endomorphism of a group G. Put a * b = a f(b~xa) 
for all a, b e G. Then: 

(i) G(*) is an idempotent groupoid. 
(ii) G(*) is an LD-groupoid iff f(a)f2(a~x)f2(b) = f2(b)f2(a~x)f(a) for all 

a, b e G. 
(iii) If/ is either injective or surjective then G(*) is an LD-groupoid iff a~x f(a)e 

e C(G) for every a e G. 
(iv) G(*) is right distributive iff f(abca~xcf(b)) = f(cf(b)f(a)bcf(a~x)) for all 

a, b, ce G. 
(v) G(*) is left symmetric iff / = id. 

(vi) G(*) is right symmetric iff f(a2)f2(a) = 1 for every a e G. 
(vii) G(*) is semisymmetric iff a f(a)f2(a) = 1 and af(a)=f(a)a for every 

a e G. 
(viii) G(*) is commutative iff a f(a2) = 1 for every a e G. 

(ix) G(*) is symmetric iff/ = id and a3 = 1 for every a e G. 
(x) G(*) is left regular and g = ker/. 

(xi) G(*) is left cancellative (divisible) iff/ is injective (surjective). 
(xii) (a, b) e p iff a- xb = f(ab~x) e C(f(G)). 

(xiii) p is a congruence of G(*) iff, for all a, b e G, a~ xb = f(ab~x) e C(f(G)) implies 

f{a2) = f(b2). 

Proof. Easy. 

6.6 Corollary. Let G be a group and a * b = ab~ la for all a, b e G. Then G(*) 
is a left symmetric LD-groupoid. 
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