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Quasitrivial Groupoids and Balanced Identities 

T. KEPKA 
Department of Mathematics, Charles University, Prague*) 

Received 5 March 1981 

Quasitrivial groupoids satisfying a balanced identity are described. 

V článku jsou popsány kvazitriviální grupoidy splňující nějakou balancovanou identitu. 

B craTbe onbicbiBaioTca KBa3HTpHBHajibHi>ie rpynnoHabi BbinojiH5iiomHe HeKOTopoe c6anaH-
C«pOBaHOe TOJK^eCTBO. 

The aim of this paper is to describe quasitrivial groupoids satisfying a non-trivial 
balanced identity. To this purpose, balanced identities are divided into five types and 
the corresponding quasitrivial groupoids are determined in each of these five cases. 

1. A groupoid G is said to be 

— commutative if ab = ba for all a, b G G, 
— idempotent if aa = a for every a e G, 
— medial if ab . cd = ac . bd for all a, b, c, d e G, 
— quasitrivial if ab G {a, b} for all a, b G G, 
— a semigroup if a . be = ab . c for all a, b, c e G, 
— an L-semigroup if ab = a for all a, b G G, 
— an R-semigroup if ab = b for all a, b e G, 
— a semilattice if it is a commutative idempotent semigroup. 

Obviously, a groupoid G is quasitrivial iff every non-empty subset of G is a sub-
groupoid. 

For a groupoid G, define a relation gG by (a, b) G Q iff a, b e G and either a = b 
or ab 4= ba. Further, let <rG designate the least congruence of G such that the cor­
responding factor is commutative. The groupoid G is called anticommutative (contra-
commutative) if Q = G x G (a = G x G). 

1.1 Lemma. Let G be a quasitrivial gropoid. Then: 

(i) (a, b) e QG iff a, b G G and (a, b} = (ab, ba}. 

*) 186 00 Praha 8, Sokolovská 83, Czechoslovakia. 
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(ii) QG = aG. 
(iii) QG = oG iff QG is a congruence of G. 

Proof, (i) This assertion is clear. 
(ii) Let / be the natural mapping of G onto G\G. If ab 4= ba for some a, b e G 

then/(a6) = /(ba) implies/(a) = /(b). 
(iii) Let a, b e G. If ab = ba then (ab, ba) e 0. If ab 4= ba then (ab, ba} = 

= {a, b}, ab . ba 4= ba . ab and (ab, ba) e O. 

1.2 Corollary. Every anticommutative quasitrivial groupoid is contracom-
mutative. 

Let H be a quasitrivial groupoid and Gh i e H, pair-wise disjoint groupoids. 
Define a groupoid K = U(G;, i e H) as follows: K = \JGt; the groupoids G, are 
subgroupoids of K; g^g,- = gtj for all /, j e H, / 4= /, g, e G, and gy e G7. 

1.3 Lemma. Let H be a quasitrivial groupoid and Gi9 / e H, pair-wise disjoint 
groupoids. Then U(Gt, / e H) is quasitrivial iff each G, is. 

Proof. Obvious. 

1.4 Proposition. Let G be a quasitrivial groupoid. Then: 

(i) G\G is a commutative quasitrivial groupoid. 
(ii) Every block of a is a contracommutative quasitrivial groupoid. 

(iii) G = U(/, i e G\G). 

Proof. See [1, Proposition 2.11]. 

1.5 Proposition. Let G be a quasitrivial semigroup. Then Q = G. Moreover, if G 
is contracommutative then G is either an L-semigroup or an R-semigroup. 

Proof. The result is easy and well known (see e.g. [1, Lemmas 3.1, 3.5]). 

1.6 Corollary. A groupoid G is a quasitrivial semigroup iff there exist a quasi-
trivial semilattice H and pair-wise disjoint groupoids Gi9 i e H, such that G = 
= U(Gf, / e H) and each G, is either an L-semigroup or an R-semigroup. 

Let G, H be two groupoids with G n H = Q. Define a groupoid K = G : H 
as follows: K = G u H; both G and H are subgroupoids of K; gh = h = hg for all 
g e G and he H. Clearly, K is quasitrivial iff G and H are so. 

Let G be a groupoid. An element e e G is said to be a left (right) unit if ea = 
= a (ae = a) for every a e G. An element z e G is said to be a left (right) zero if za = 
= z (az = z) for every ae G. Further, for every a e G, we define two transformations 
La and Ra of G by La(b) = ab and Ra(b) = ba. 

Let G be a groupoid. The opposite groupoid Gop = G(0) is defined by a o b = ba 
for all a, b e G. 
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2. Consider the following twelve groupoids defined on a three-element set 
S = {w, v, w). 

Sj : uu = uv = uw = u, vu = vv = vw = v, wu = wv = wv = ww = w; 
52 : uu = uv = u, vu = vv = v, uw = vw = wu = wv = ww = vv; 
53 : uu = uv = uw = wu = u, vu = vv = vw = wv = v, ww = w; 
54 : uu = u, uv = vu = vv = v, uw = vw = wu = wv = ww = w; 
55 : uu = uv = u, vu = vv = vw = v, uw = wu = wv = ww = w; 
56 : uu = uv = u, vu = vv = vw = wv = v, uw = wu = ww = w; 
57 : uu = uv = wu = u, vu = vv = vw = v, uw = wv = ww = w; 
58 : uu = uv = wu = u, vu = vv = vw = wv = v, uw = ww = w; 
59 : uu = uv = vu = u, vv = vw = wv = v, uw = wu = ww = w; 
S10 : uu = uv = vu = wu = u, vv = vw = v, uw = wv = ww = w; 
Sj 1 : uu = uv = vu = u, vv = vw = v, uw = wu = wv = ww = w; 
S12 : uu = uv = vu = wu = u, vv = vw = wv = v, uw = ww = w. 

2.1 Proposition. The groupoids S l5 S2, S3, S4, SJP, S°2
P, S3

P are pair-wise non-
isomorphic three-lement quasitrivial semigroups. Every three-element quasitrivial 
semigroup is isomorphic to one of these seven groupoids. 

Proof. The assertion is an easy consequence of 1.6. 

2.2 Lemma. Let G be a quasitrivial groupoid and a, b, c e G. Then a . be 4= 
=1= ab . c iff at least one of the following two conditions is satisfied: 

(i) a =# b =# c, a =# c and ab = a, be = b, ac = c. 
(ii) 04 -&4=c , a + c and ab = b, be = c, ac = a. 

Proof. Easy. 

2.3 Lemma. Let G be a quasitrivial groupoid and let a, b, c e G be such that 
a . be 4= ab . c. Put H = {a, b, c). Then H is a subgroupoid of G and H is isomorphic 
to at least one of the groupoids S5, ..., S12, S5

P,..., S°f2. 

Proof. Use 2.2. 

2.4 Lemma, (i) The groupoids S5, ..., S9, S5
P , . . . , S°8

P are quasitrivial, non-
associative and pair-wise non-isomorphic. 

(ii) S6 is isomorphic to S1X and S°f29 S8 is isomorphic to S\p
0 and S9 = S9

P. 

Proof. Easy. 

2.5 Proposition. The groupoids Sl9 ..., S9, S?p, S2
P, S3

P, S5
P,..., S°8

P are pair-
wise non-isomorphic three-element quasitrivial groupoids. Every three-element 
quasitrivial groupoid is isomorphic to one of these sixteen groupoids. 

Proof. Apply 2.1, 2.3 and 2.4. 
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2.6 Corollary. The groupoids 5 4 and 5 9 are up to isomorphism the only three-
element commutative quasitrivial groupoids. 

2.7 Proposition. A quasitrivial groupoid G is a semigroup iff no subgroupoid 
of G is isomorphic to one of the groupoids 55 , ..., 59 ,55

p , ..., 5gp. 

Proof. Apply 2.3 and 2.4. 

3. Let X = {xx ,x2 , ...} be an infinite countable set of variables and W the 
absolutely free groupoid of terms over X. For every t e W, define a positive integer 
l(t) and a non-empty set var(t) by l(x) = 1, var(x) = (x} for every x e X and l(rs) = 
= l(r) + l(s), var(rs) = var(r) u var(s) for all r, s e W. Further, for all x e X and 
t e W, define a non-negative integer i(t, x) by i(x, x) = I, i(y, x) = 0 for x 4= y e X 
and i(rs, x) = i(r, x) + i(s, x) for all r, s e W. Finally, put o(x) = x = (x)o and 
o(rs) = o(r), (rs)o = (s)o. 

Let te W and n = l(t). We define an ordered n-tuple v(t) as follows: If n = 1 
then t = Xi for some 1 = i and we put v(t) = (i); if 2 — n then t = rs, r, s e W, 
\(r) = m, l(s) = k, n = m + k, v(r) = (i-, ..., im), v(s) = ( j \ , ..., jk) and we put 
v(t) = ( i i , . . . , im, j i , . . . , jk). 

A term t is said to be balanced if i(t, x) _ 1 for every xeX. 
An identity is an ordered pair of terms. Let (r, s) be an identity and G a groupoid. 

We say that G satisfies this identity iff(r) = f(s) for every homomorphism f of W 
into G. 

An identity (r, s) is called non-trivial if r 4= s. 
An identity (r, s) is called balanced if var(r) = var(s) and both r and s are 

balanced. 
Let 01 (Sf, ST',, ZTX, resp.) denote the fully invariant congruence of W generated by 

the pair (xxx2, x2xx) ((xx . x2x3, xlx2 . x3), (x{ . x2x3, x2 . XjX3), (xxx2 . x3, 
xxx3 . x2), resp.). 

Let (r, s) be a balanced identity. We shall say that (r, s) is 
— of type 1 if (r, s) e $ and r 4= s; 
— of type 2 if (r, s) e 9* and r 4= s; 
— of type 3 if (r, s) e ZTX and r 4= s; 
— of type 4 if (r, s) e ST\ and r 4= s; 
— of type 5 if (r, s) £ 0t u 9 u STx u ^",; 
— strong if (r, s) $ 01. 

Let t be a balanced term. We denote by var,(t) the set of all variables x such that 
xr is a subterm of t for some r e W. Further, we put varr(t) = var(t) \ var,(t). 

Let t be a balanced term and x e X be such that t 4= x. Define a balanced term 
u(t, x) as follows: If x^var(t) then u(t, x) = t; if t = px for some peW then 
u(t, x) = p; if t = xq for some q e Wthen u(t, x) = q\ if t = rs for some r, s e W, 
r 4= x 4= s, then u(t, x) = u(r, x ) . u(s, x). 
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A balanced identity (r, s) is said to be irreducible if t e X whenever t is a subterm 
of both the terms r and s. 

3.1 Lemma. Let r, s G W. Then (r, s) G £# iff every commutative groupoid 
satisfies (r, s). 

Proof. Easy. 

3.2 Lemma. The following conditions are equivalent for a balanced identity 
(r, 5): 

( i ) ( r , s )6 i» . 
(ii) If p is a subterm of r then there exists a subterm q of s such that var(p) = 

= var(^). 
(iii) If q is a subterm of s then there exists a subterm /? of r such that var(q) = 

= var(p). 

Proof, (i) implies (ii) and (iii). Define a relation °ll on W by (p, g) e $f iff for 
every subterm t of p there is a subterm w of q such that var(t) = var(w) and 1(f) = 
= l(w). Put (p, q) e "V iff (p, q) and (q, p) belong to °U. Then 'V is a congruence of TV 
and Wry is a commutative groupoid. Hence ^? _ 1T\ 

(ii) implies (i). We shall proceed by induction on l(r). Let r = rvr2, s = sxs2 

and let / be a homomorphism of W into a commutative groupoid G. Then f(r) = 
= / ( r , ) / ( r 2 ) = / ( r 2 ) / ( r 1 ) , /(s) = f(Sl)f(s2) = f(s2)f(Sl) and either var(rx) = 
= var(sj or var(rx) = var(s2). The rest of the proof is clear. 

3.3 Lemma. The following conditions are equivalent for an identity (r, s): 

(i)(r,s)e<?. 
(ii) Every semigroup satisfies (r, s). 

(iii) v(r) = v(s). 

Proof. Obvious. 

3.4 Lemma. Let (r, s) e ^ r . Then o(r) = o(s), l(r) = l(s), var(r) = var(s) and 
i(r, x) = i(s, x) for every xeX. 

Proof. Easy. 

3.5 Lemma. Let 0 = n, m, r l9 ..., rn, s1,...,smeW, xeX and r = 
= ( ( ( ^ i ) ^ ) . . . ) ^ 5 = (((xs1)s2). . .)sm . Then (r,s)e<TT iff n = m and there 
exists a permutation n such that (ri? s7l(i)) e «̂ ~r for every 1 = i _ n. 

Proof. Define a relation f on W by (p, .])ef iff there are 0 = k, p u ..., Pk, 
gi> •••» gk 6 W» y e_Y and a permutation a such that p = ((yPi) • ••) Pk> g = 
= (y gi) •••) gk and (pi, qff(i)) G ^ r for every 1 = i = k. It is easy to check that V 
is a congruence of JV, V _ ^"r and W/f satisfies the identity (x1x2 .x3, x1x3 . x2). 
Hence iT = /Tr. 
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3.6 Lemma. Let r be a balanced term and y e varf(r). Then there exists a balanced 
term s e Wsuch that y = (s)o and (r, s) e ZTx. 

Proof. By induction on l(r). If l(r) = 1 then r = y and y = (r)o. Let l(r) = 2. 
There are n = 1, xeX and rl9 ...9rneW such that r = ((xrx)...) rn. Since ye 
e varr(r), y 4= x and we can assume that y e var(rn). If l(rn) = 1 then rn = y9 (r)o = 
= y and we put s = r. If l(?*n) _ 2 then y e varr(rn) and (p)o = y for some p e W 
such that (rn, p) e STX and we put s = (((xrj •. •) rn_ {) p. 

3.7 Proposition. Every non-trivial balanced identity is of exactly one of the 
types 1, 2, 3, 4 and 5. 

Proof. Apply 3.2, 3.3, 3.4 and 3.5. 

3.8 Lemma. Let Y, Z be subsets of X and t a balanced term such that Yn Z = 
= 0, var(t) _ 7 u Z and var(t) n Y 4= 0 4= var(t) n Z. Then there exist r, s e IV 
such that rs is a subterm of t and either var(r) _= Y, var(s) _ Z or var(r) - Z, 
var(s) _= Y 

Proof. By induction on l(t). 

3.9 Lemma. Let (r, s) be a balanced identity such that (r, s) e ^ ((r, s) 6 «9") 
and x e X such that r 4= x. Then (u(r, x), u(s, x)) e 0t (e Sf\ 

Proof. By induction on l(t). 

4. 
4.1 Lemma. Let G be a groupoid containing at least two left zeros and satisfying 

an identity (r, s). Then o(r) = o(s). 

Proof. Let o(r) = x 4= y = o(s). Define a homomorphism f of W into G by 
f(x) = a andf(z) = b for every x 4 = z e K , a4=b being left zeros of G. Thenf(r) = 
= a 4= b = f(s), a contradiction. 

4.2 Lemma. Let G be a groupoid containing a left zero a such that ba = b = 
= bb for some a #= b e G. Suppose that G satisfies an identity (r, s). Then o(r) = o(s). 

Proof. Similar to that of 4.L 

4.3 Lemma. Let G be a groupoid satisfying a balanced identity (r, s) such that 
2 ^ l(r). Suppose that G contains a right unit and x 6 varr(r) n varr(s). Then G 
satisfies the identity (u(r, x), u(s, x)). 

Proof. Let f be a homomorphism of Winto G and let e e G be a right unit. There 
is a homomorphism a such that g(y) = f(y) for every x 4= y e K and g(x) = e. 
It is easy to show by induction on 1(0 that f(u(t, x)) = g(t) for every balanced term t 
such that 2 ^ l(t) and x e varr(t). 
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4.4 Lemma. Let G be a groupoid with G = [ab | a, b e G} and (r, s) a balanced 
identity such that G satisfies (r, s). Suppose that a term t is a subterm of both r and s, 
x e var(t) and define an endomorphism / of W by f(y) = >> for every variable y 4= x 
and/(x) = t. Then: 

(i) There exist uniquely determined r', s' e W such that / ( r ' ) = r, /(s') = 
= s, (r', s') is a balanced identity and G satisfies (r'9 s'). 

(ii) If (r, s) is of type 2 then (r\ s') is of this type, 
(iii) If r 4= s then r' =j= s'. 

Proof. Easy. 

4.5 Lemma. Let G be a groupoid containing a right unit and satisfying a balanced 
identity (r, s) of type 2. Suppose that n =-= l(r) _̂  l(r') whenever (r', s') is a balanced 
identity of type 2 such that G satisfies (r', s'). Then 3 ^ n and there exists 1 ^ m ^ 
_̂  n — 2 such that G satisfies (p9 q)9 where p = Xi(x2(... (xn_iXn))) and q = 

= X ^ . f x . , , . ^ . . . (*n-2*n-l)))Xn)))-

Proof. We can assume that v(r) = (V 2, ..., n). Since r 4= s, 3 rg n. Further, 
(u(r, xn), u(s, xn)) e ^ and G satisfies this identity. Consequently, u(r, xn) = u(s, xn). 
On the other hand, there are 1 _ i, j and rl9 ..., ri, sl9 ..., SjG W such that r = 
= r^ . . . (rjXn)) and s = s^.. . (sjXn)). We must distinguish the following two cases: 

(i) 2 g i = j . Then r^... (ri__1ri)) = u(r, xn) = u(s, xn) = s^. . . (sj_1sj)), r1 = 
= sl9 ..., ri.1 = 5i_l5 rj = Si(... (sj_15j)), S j , . . . , SjGX by 4.4, j = n - 1, s1 = 
= x l5 ..., Sn^i = xn_ l 5 s = x1(...(xn_1xn)) and 
r = 4 . . (x^ftxiC-.. (xn-2*n-i))) xn))). Since r 4= s, i ^ n - 2. 

(ii) 1 = i = j . Then ^ = sx(... (sj-isj)), j = n - 1, sx = xx, ..., sn_x = xn_i, 
r = (x1(. . .(xn_2xn_1)))xn and s = xx(... (xn_txn)). 

5. 
5.1 Lemma. The groupoids 5 5 and S5

P satisfy no balanced identity of type 2. 

Proof. Let (r, s) be a balanced identity of type 2 such that S5 satisfies (r, s). 
Put n = l(r) and suppose that r = Xi(... (xn . jx j ) and 
s = *. ( . . . ( x ^ ^ x . X . . (xn_2xn-1)))xn))) where 1 = m = n - 2 (see 4.5). Define 
a homomorphism/ of Winto S5 by/ (x x ) = / ( x 2 ) = ... = / ( x n _ 2 ) = u9f(xn.1) = 
= v and /(xn) = / ( x n + i) = ... = w. Then / ( r ) = u #= w = /(s), a contradiction. 

5.2 Lemma. The groupoids S6, 57 , Sgp, S7
P satisfy no balanced identity of type 2. 

Proof. Similar to that of 5.1. 

5.3 Lemma. The groupoids S8 and S°8
P satisfy no balanced identity of type 2. 

Proof. Suppose that S°s
p satisfies (r9 s)9 1 ^ m = n - 2, r = xx(... ( x ^ ^ J ) 

and s = x1(...((xm(...(xn-2xn-i)))xn))) (see 4.5). Define a homomorphism / 
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of W into 5°8
P by /(*-) = ... = / ( x n _ 2 ) = v, / (*„_.) = w and /(xn) = ... = u. 

Then f(r) = v 4= u = /(s), a contradiction. 

5.4 Lemma. The groupoid S9 satisfies no balanced identity of type 2. 

Proof. We are going to show by induction on l(r) that for every balanced identity 
(r, s) of type 2 there exists a homomorphism / of W into S9 such that f(r) 4= f(s). 
We can assume without loss of generality that 4 ^ n = l(r), v(r) = (1, 2, ..., n), 
r = rlr2 and s = SiS2. 

(i) Let l(rx) = m < k = l(si). Define a homomorphism f of W into S9 by 
Z(*i) = ... = /(*«n) = "> j(*m + i) = ••• =/ (*k) = » and / (x k + i) = ... = w. Then 
f(r) = f(ri)f(r2) = uv = u4-w = Wvv = / (s i ) / (s 2 ) = /(s). 

(ii) Let 1^) = m = l(sj). Then l(r2) = l(s2). Assume first rx =j= sl. Then 
(r_, s j is a balanced identity of type 2 and there is a homomorphism g of IV into 5 9 

with g(rx) 4= g(si). We have [g(rx), g(sj, z} = {u, v, w} = 5 for some z e S. 
Define / by f(xj = g(xj for 1 S - 1= m and / (XJ) = Z for m + 1 ^ j . Then / ( r ) = 
= ^ ( r j z =1= g(sj) z = /(s). If rx = sx then r2 =t= s2 and we can proceed similarly. 

5.5 Theorem. The following conditions are equivalent for a quasitrivial 
groupoid G: 

(i) G satisfies a balanced identity of type 2. 
(ii) G is a semigroup, 

(iii) G satisfies every balanced identity of type 2. 

Proof. Apply 2.7, 5.1, 5.2, 5.3 and 5.4. 

6. 
6.1 Lemma. The groupoid Ss satisfies the identity (xxx2 . x3, x-x3 . x2). 

Proof. Easy. 

6.2 Lemma. Let (r, s) be a balanced identity such that 5 5 satisfies (r, s). Then 
(r, s) 6 iTr. 

Proof. The proof will be divided into eight parts. 

(i) By 4.1, o(r) = o(s). Suppose o(r) = xx. 
(ii) Let x e var^r). We are going to show that x e var,(s). Suppose, on the 

contrary, that xp is a subterm of r and gx of s for some p, qe W. Obviously, x 4= x^ 
and we can assume x = x2 and var(p) = {x3, ..., xm}, 3 g m. Define a homo­
morphism/of W into 5 5 by/(xj) = / ( x m + 1) = f(xm + 2) = ... = u, f(x2) = v and 
/(*3) = / W = • • • = f(xm) = w. Then /(xp) = v, f(qx) = f(q) e {u, w} and f(r) = 
= u 4= w = /(s), a contradiction. 

(iii) By (ii), var,(r) = varj(s) and varr(r) = varr(s). 
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(iv) Now, we are going to prove by induction on l(r) = n that (r, s) e 3Tx. 
With regard to (i), (iii), 3.4, 3.6 and 6.1, we can assume that 3 ^ n and (r)o = 
= xn = (s)o. Put r' = u(r, xn) and s' = u(s, xn). By 4.3, S5 satisfies the identity 
(r', s'). Hence (r', s')e 3TX. On the other hand (see 3.5), there are 1 = k, rl9..., rk, 
sl9..., skeW and a permutation n such that r' = ( ( x ^ ) ...) rk, s' = ( ( x ^ ) ...) sk 

and (ri5 s-(i)) e £Tr for every 1 _ i g k. 
(v) Let r = r'xn and s = s'xn. Then (r, s) e :Tr trivially. 

(vi) Let r = (((x-r-.) ...) rk-0 P, pe W, and s = s'xn. Put q = ( ( ( x ^ . ^ ) . . . ) . 
. s-(k)) xn and define a homomorphism / of Winto S5 by/(x x ) = f(x) = u for every 
x 6 var (rx) u ... u var(rk_ t) , / ( j ) = v for every j e var(rk) and f(z) = w for any 
other variable z. Then S5 satisfies (r, <?) and we have f(r) = uv = u={-w = ww = 
= uv . w = /(g), a contradiction. 

(vii) Let r = (((xxrx)...) rk_x) p, s = ( ( ( x ^ ) ...) sk_x) q and 7i(k) = i < k. 
Then -(j) = k for some 1 ^ j < k and we put p' = (((((((xiri)...) r ^ j ) rj + 1 ) . . . ) . 

-rk-i)rs)p9q' = (((((((^IS*<D) - • -) **CJ- D) S«CJ + I>) - - -) s«Ck- D) Si) « if j * k - 1 and 
p' = r, q' = ((((x^-d))...) s7l(k_2)) Sj) q if j = k — 1. Then 5 5 satisfies the identity 
(pf, q'). Define / by /(xn) = w, f(y) = v for every y e var(^) and f(z) = u for 
zsX, z 4= xn, z £ var(rj). Then f(p') = uv . w = w #= M = uv = f(q'), a con­
tradiction. 

(viii) Let r = ( ( ( x ^ ) ...) rk.x) p, s = (((xxsx) ...) sk_x) q and 7i(k) = k. As­
sume first that S5 satisfies (p, q). Then (p, q) e 3~x, and hence (r, s) e 2TX. Now, 
let S5 do not satisfy (p, q). Since u(p, xn) = rk, u(q, xn) = sk and (rk, sk) e «̂ ~r, we 
have o(p) = o(q). From this, {f(p)9f(q)} = {u,w} for every homomorphism / 
of W into 5 5 such that f(p) =)= f(q). However, such a homomorphism / exists and 
we define g by g(x) = u for every x e v a ^ x ^ ) u var(r2) u ... u var(rk_ x), g(y) = y 
for the remaining variables yeX. Then {g(r), g(s)} = {uu, ww} = {u, w}, g(r) 4= 
4= g(s), a contradiction. 

6.3 Corollary. The groupoid 5 5 (5gp) satisfies a non-trivial balanced identity 
(r, s) iff (r, s) is of type 3 (4). 

7. 
7.1 Lemma. Let (r, s) be a balanced identity such that the groupoid S6 satisfies 

(r, s). Then r = s. 

Proof. The proof will be divided into eight parts. 

(i) By 4.2, o(r) = o(s). Suppose o(r) = xv 

(ii) Let x e varj(r). We are going to show that x e varj(s). Let, on the contrary, 
xp be a subterm of r and qx of s. Then we can assume x = x2 and var(p) = 
= {x3, ..., xm} for some 3 _ m . Define a homomorphism/of Winto S6 by/(x2) = 
= u, / (x3) = /(x4) = ... = /(xm) = v and / (x x ) = / (x m + 1) = ... = w. Then 

/(xp) = u, f(qx) = f(q) e {v, w} and f(r) = w =# v = f(s), a contradiction. 
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(iii) By (ii), var,(r) = varj(s) and varr(r) = varr(s). 
(iv) Let r = pq1 and s = Pg2, p, q_, g2 e W, and let f be a homomorphism of W 

into S6 with f(gi) 4= f(g2). Taking into account that the inequalities wu 4= wv, 
uu 4= uw and uv 4= uvv hold in 56 , it is easy to check that there exists a homomorphism 
g such that g(x) = f(x) for every x e var(qtq2) and g(pqi) =1= g(pq2\ a contradiction. 
We have proved that 5 6 satisfies (qu q2). 

(v) Assume that r 4= s and r' = s' whenever (r', s') is balanced, 5 6 satisfies 
(r', s') and l(r') < n = l(r). Then 3 = n and (r, s) is irreducible by 4.4. Further, let 
var(r) = (x l9 ..., xn] and (r)o = xn. Then xn e varr(r) = varr(s) and S6 satisfies the 
identity (u(r, xn), u(s, xn)). Consequently, u(r, xn) = u(s, xn) and the following 
three cases can arise: 

(vi) r = pq, s = p'q' and xn e var(a/). First, let q =j= xn 4= q'. Then pu(q, xn) = 
= u(r, xn) = u(s, xn) = p'u(q', xn), p = p' and S6 satisfies (q, q') by (iv). Thus 
q = q' and r = s, a contradiction. Further, let q = xn 4= q'- Then p = p'u(q', xn), 
p'eX, p' = x l9 r = x_u(q', x n ) . xn, s = x_q' and f(r) 4= f(s) where f(x_) = u, 
f(xn) = w a n - /(*) = ^ for x e K , x + Xj, x 4= xn, a contradiction. Similarly if 
# 4= xn = q'. Finally, if q = xn = q' then p = p' and r = s, a contradiction. 

(vii) r = pq, s = p'q', 2 = 1(g) and xn e var(p'). Then p = u(p', xn), q' = 
= u(g, xn) and there are 1 = k, m, 7_, ..., Tk e {L, K} and r_, ..., rk, s_, ..., sm e W 
such that p' = r l f f l ... Fk,rk(xn), Tk = L and a = 5 l ( . . . (smxn)). Then p = 7_>ri ... 
••• ^ k - i ^ - X O ^ «' = si(---(sm-iV)) -nd r l 5 . . . , r k , s 1 , . . . , s m eK , since (r,s) is 
irreducible. We have 1 = m, sm e varj(r) and sm e var.(s), a contradiction. 

(viii) r = pxn, s = p'q ' and xn G var(p'). Then p = u(p', xn) q' and q e X. 
There are 1 = k, T1? ..., Tke {L, K] and r_,..., rk e W such that p' = T l f r i . . . 
... rkfrk(xn), Tk = L. Then p = TUri ... T^^^fa). q', r1? ..., r k e K . Assume 
k = 2. Since rk e var.(s), we have rkevar,(r), Tk_t = R, S6 satisfies (u(r, r k _ t ) , 
u(s, r k . J ) , u(r, rk_v) = u(s, rk_i) and xn = q', a contradiction. Thus k = 1, 
n = 3, r = xxx2 . x3, s = xxx3 . x2. But uw . v 4= uv . w is true in S6, a contra­
diction. 

7.2 Corollary. The groupoids S6 and 56
p satisfy no non-trivial balanced 

identity. 

8. 
8.1 Lemma, Let (r, s) be a balanced identity such that the groupoid S7 satisfies 

(r, s). Then r = s. 

Proof. By 4.2, o(r) = o(s). Moreover, the subgroupoid {u, w} of 5 7 is an R-
semigroup, and therefore (r)o = (s)o. Since 5 7 has a right unit, 5 7 satisfies the 
identity (u(r, x), u(s, x)), x = (r)o. Hence (u(r, x))o = (u(s, x))o, etc., and we 
have v(r) = v(s) and (r, s) e 9>. By 5.2, r = s. 
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8.2 Lemma. Let (r, s) be a balanced identity such that the groupoid S8 satisfies 
(r, s). Then r = s. 

Proof. We have o(r) = o(s) by 4.2, S8 has a left unit, v(r) = v(s) and r = s 
by 5.3. 

8.3 Corollary. The groupids S7, S8, S°p, S8
P satisfy no non-trivial balanced 

identity. 

9. 
9A Lemma. Let r, s, r', s' e W be such that var(r) n var(r') 4= 0 =f= var(s) n 

n var(r') and the pair (rs, r's') is a strong balanced identity. Then the groupoid S9 

does not satisfy this identity. 

Proof. Let Y = var(r) = {xl9..., xm} and Z = var(s) = {xm + 1, ..., xn}, 1 = 

= m < n. By 3.8, there are p, qe W such that pq is a subterm of r' and either 
var(p) ~ yand var(q) _ Z or var(p) _ Z and var(q) _ y. Suppose that var(p) ~ y 
and var(g) _ Z, the other case being similar. If var(a) =j= Z then xk e var(g) for some 
m + 1 _ k 5̂  n and we define a homomorphism / of W into S9 by f(xx) = ... 
... =- /(xm) = w, /(xk) = v and /(x) = w for the remaining variables xeX. Then 
/(rs) = uv = u and f(r's') = w. If var(a) = Z then we can assume var(s') = 
= {xk, xk + 1, ..., xm} for some 2 ^ k g m and we define / by f(xt) = ... 
••• = / K - i ) = M> /(*k) = ... = f(*m) = w and / (x m + 1 ) = ... = v. Then /(rs) = 
= wv = v and f(r's') = ww = w. 

9.2 Lemma. The groupoid S9 satisfies no strong balanced identity. 

Proof. Let (r, s) be a strong balanced identity. We shall prove by induction on 
l(r) that / ( r) =j= f(s) for a homomorphism/ of W into S9. We have 3 _ l(r), r = i\r2 

and s = sts2. With respect to 9.1 and the fact that S9 is commutative, we may assume 
that var(rj) = var(s^ and var(r2) = var(s2). First, let (r2, s2) be a strong balanced 
identity. Then g(r2) =1= g(s2) for a homomorphism gf and we define / by f(x) = g(x) 
for x e var(r2) and f(y) = z for y e K, y $ var(r2), where z G S is such that 
{0(r2)> g(52), A = {", »̂ vv] = S. Then / ( r ) = z g(r2) #= z g(s2) = /(s). Finally, let 
(r2> ^2) 6 ^ - Then (rl9 sx) ^ ^?, (r1? sx) is a strong balanced identity and we can proceed 
similarly. 

10. 
10A Proposition. Every quasitrivial groupoid satisfying a balanced identity of 

type 5 is a semigroup. 

Proof. Apply 2.7, 6.3, 7.2, 8.3 and 9.2. 

10.2 Proposition. A groupoid G is a medial quasitrivial groupoid iff at least 
one of the following five assertions is true: 

(i) G is a quasitrivial semilattice. 
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(ii) G is an L-semigroup. 
(iii) G is an R-semigroup. 
(iv) There exist an L-semigroup H and a quasitrivial semilattice K such that 

H n K = 0 and G = H : K. 
(v) There exist an R-semigroup H and a quasitrivial semilattice K such that 

H n K = 0 and G = H : K. 

Proof. See [1, Theorem 5.5]. 

10.3 Corollary. Every medial quasitrivial groupoid is a semigгoup. 

10.4 Theorem. The following conditions are equivalent for a quasitrivial 
groupoid G: 

(i) G satisfìes a balanced identity of type 5. 
(ii) G is medial. 

(iii) G satisfies every balanced identity (r, s) such that o(r) = o(s) and (r)o = 

= (s)o-

Proof. (i) implies (ii). By 10.1, G is a semigroup. Let A, B e Gja be such that 
A ф B and AB = B. Suppose that 2 g card B and v(r) = (1, 2, ..., n). Since 
(r, s)$9\ there are 1 ^ i < j ^ n such that v(s) = (..., j , ..., i, . . . ) . Now, take 
a e A, b, ce B, b ф c, and define a homomorphism f of W into G by /(XJ) = b, 
f(xj) = c and f(x) = a for Xj Ф x ф л*j. Then, by 1.4 and 1.5, f(r) = bc ф cb = 
= f(s), a contradiction. have proved that card B = 1 and the rest is now clear from 
10.2. 

(ii) implies (iii). Аpply 10.2. 
(iii) implies (i). This is obvious. 

10.5 Corollary. The following conditions are equivalent for a quasitrivial 
groupoid G: 

(i) G satisfies a balanced identity (r, s) of type 5 such that (r)o ф (s)o. 
(ii) G is either a semilattice or an L-semigroup or G = H : K where H is an 

L-semigroup and K a quasitrivial semillatice with H n K = 0. 
(iii) G satisfies the identity (x^x^ . x3, x^ . x 3x 2). 
(iv) G satisfies every balanced identity (r, s) such that o(r) = o(s). 

10.6 Corollary. The following conditions are equivalent for a quasitrivial 

groupoid G: 
(i) G is commutative and satisfies a strong balanced identity. 

(ii) G is a semilattice. 
(iii) G satisfies every balanced identity. 
(iv) G satisfies the identity (x^x2 . x3, x 3x 2 . x Д 
(v) G satisfies a balanced identity (r, s) of type 5 such that o(r) ф o(s) and 

(r)o ф (s)o. 
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11. 
11.1 Proposition. The following conditions are equivalent for a quasitrivial 

groupoid G: 

( i ) Q = (т. 
(ii) G contains no subgroupid isomorphic to one of the groupoids S5, S6, S8, 

oop oop oop 
^ 5 > ^ б » ° 8 ' 

Proof. Easy (use l.l(iii) and 2.5). 

11.2 Lemma. Let G be a contracommutative quasitrivial groupoid satisfying 
a balanced identity of type 1. Then G is either an L-semigгoup or an R-semigroup. 

Proof. By 6.3, 7.2, 8.3 and 11.1, o = G x G and G is anticommutative. Hence S 9 

is not isomorphic to a subgroupoid of G and G is a semigгoup. The result follows now 

from 1.5. 
We shall say that a quasitrivial groupoid G is semicommutative if at least one 

of the following five assertions is true: 

(i) G is commutative. 
(ii) G is an L-semigroup. 

(iii) G is an R-semigroup. 
(iv) There exist an L-semigroup H and a commutative quasitrivial groupoid K 

such that H n K = 0 and G = H : K. 

(v) There exist an R-semigroup H and a commutative quasitrivial groupoid K 
such that H n K = 0 and G = H : K. 

11.3 Theorem. The following conditions are equivalent for a quasitrivial gгou-
poid G. 

(i) G satisfies a balanced identity of type 1. 
(ii) G is semicommutative. 

(iii) G satisfies every balanced identity (r, s) of type 1 such that o(r) = o(s) 
and (r)o = (s)o. 

(iv) G satisfies the identity ((x t . x 2x 3) x4, (x^ . x 3x 2) x4). 

Proof. (i) implies (ii). Let A, B є G\a be such that AB = B and A Ф B. Suppose 
2 = card B and v(r) = (1, 2, ..., n) where (r, s) is balanced identity of type 1 such 
that G satisfies (r, s). Since (r, s) є 01 and r Ф s, (r, s) ф Sŕ and there are 1 = i < 
< j = n such that v(s) = (..., j , . . . , i, . . .) . Take a є A, b, c є Æ, b Ф c, and defìne 
a homomorphism f of W into G by f(x) = b, f(xj) = c and f(x) = я for every 
x є K , Xj Ф x Ф Xj. Then f(r) = bc and f(s) = cb. However, Ьc ф cb by 11.1, 
a contradiction. We have proved that card B = 1 and the rest is clear from 1.4 
and 11.2. 

(ii) implies (iii). Аssume that G = H : K for an L-semigroup H and a commuta-
tive quasitrivial groupoid K such that H n K = 0. Obviously, <тG = (H x H) v 
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u idG. Denote by g the natural homomorphism of G onto G\a. Let (r, s) be a balanced 
identity of type 1 such that o(r) = o(s). We have gf(r) = gf(s) and (f(r), f(s)) є a 
for every homomorphism f of W into G. Hence either f(r) = f(s) or f(r), f(s) є H. 
If f(r) є Я then f(var(r)) Î= Я and f(r) = f(s). The rest is similar. 

(iii) implies (iv) and (iv) implies (i). These implications are clear. 

11.4 Corollary. The following conditions are equivalent foг a quasitгivial 

groupoid G: 

(i) G satisfies a balanced identity (r, s) of type 1 such that (?*)o Ф (s)o. 
(ii) G is either commutative or an L-semigroup or G = Я : K foг an L-semi-

group Я and a commutative quasitrivial groupoid K with H n K = Q. 
(iii) G satisfies every balanced identity (r, s) of type 1 such that o(r) = o(s). 
(iv) G satisfies the identity (x^ . x2x3, x^ . x 3x 2). 

11.5 Corollary. The following conditions are equivalent for a quasitrivial 
groupoid G: 

(i) G satisfies a balanced identity (r, s) of type 1 such that o(r) Ф o(s) and 
(r)o Ф (s)o. 

(ii) G is commutative. 
(iii) G satisfies every balanced identity of type 1. 

12. 
12.1 Lemma. Let G be a quasitrivial semigгoup satisfying a balanced identity 

of type 3. Then G is medial. 

Proof. Similar to that of 10.4. 

12.2 Proposition. Let G be a quasitrivial groupoid satisfying the identity 
(xxx2 . x3, x^Xз . x2). Define a гelation ҡ by (a, b)є ҡ iŕľ a, b є G and ab = b. 
Then: 

(i) ҡ is an oгdering. 
(ii) If a,b, cєG and (a, Ъ), (a, c)єҡ then either (b, c)є ҡ or (c, b) є ҡ. 

Proof. Easy. 

12.3 Proposition. Let ҡ Ьe an oгdeгing on a non-empty set G such that either 
(b, c)єҡ or (c, b) є ҡ whenever a,b, cє G and (a, b), (a: c) є ҡ. Define a multi-
plication on G Ьy ab = b if (a, b) є ҡ and ab = д in the opposite case. Then G is 
a quasitrivial groupoid satisfying (x xx2 . x3, XjX3 . x2). 

Proof. Easy. 

12.4 Theorem. The following conditions are equivalent for a quasitгivial 
groupoid G: 

(i) G satisfies a Ьalanced identity (r, s) of type 3 such that (r)o ф (s)o. 
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(ii) G satisfies the identity (x^x^ . x3, x^x^ . x2). 
(iii) G satisfies eveгy balanced identity of type 3. 

Proof. (i) implies (ii). Let H be a subgroupoid of G containing at most three 
elements. If H is a semigroup then H is medial by 12.1 and it is easy to check that H 
satisfies (x^x2 . x3, x^Xз . x2) (use 10.2). Assume that H is not associative. Accoгding 
to 2.7, 6.3, 7.2, 8.3 and 9.2, H is isomoгphic to 5 5 and the result follows from 6.1. 

12.5 Theorem. The following conditions aгe equivalent for a quasitгivial 
groupoid G: 

(i) G satisfies a balanced identity of type 3. 
(ii) G satisfies the identity ((xxx2 . x3) x4, (x^Xз . x2) x4). 

(iii) At least one of the following asseгtions is true: 
(iii1) G satisfies the identity (x^x^ . x3, x t x 3 . x2). 
(iii2) G is an R-semigroup. 

(iiiЗ) G = H : K foг an R-semigroup H and a quasitrivial semilattice K 
with H nK = <&. 

(iv) G satisfies eveгy balanced identity (r, s) of type 3 such that (r)o = (s)o. 

Pгoof. (i) implies (ii). Let H be a subgгoupid of G containing at most four 
elements. We aгe going to show that H satisfies the identity ((x^x^ . x3) x4, (x^x^ . 
• xi) x*)- The gгoupoid H satisfies a balanced identity of type 3, say (r, s). We can 
assume that l(r) ^ l(r') whenever (r', s') is a balanced identity of type 3 such H 
satisfies (r', s'). If (r)o ф (s)o then 12.4 may be applied. Suppose o(r) = x = o(s), 
(r)o = y = (s)o (x ф y, since 4 _ l(r)) and put rг = u(r, x), r 2 = u(r, >), ŝ  = 
= u(s, x), s2 = u(s, y). We must distinguish the following cases: 

(1) H is a semigгoup. By 12.1, H is medial and the гesult follows easily fгom 
10.2. 

(2) H is not associative and H contains a left unit. Then H satisfies (ru s^). If 
rx = ŝ  then v(r) = v(s), (r, s ) e У , a contгadiction. Theгefoгe (r 1 ? s^) is a balanced 
identity of type Гє {1, 2, 4, 5}. If T = 1 ( Г = 2, Г = 5) then H is associative by 
11.3 and 10.6 (5.5, 10.1), a contгadiction. Hence T = 4 and, since H is not associative, 
H contains a subgroupoid isomoгphic to S5

P (use 2.7, 6.3, 7.2, 8.3, 9.2), a contradic-
tion with 6.3. 

(3) H is not associative and H contains a right unit. In this case, we can pгoceed 
similarly as in (2). 

(4) H is not associative and contains no left unit and no right unit. We can 
assume without loss of generality that S 5 is a subgroupoid of H. lf H = S 5 then we 
have a contradiction with 6.1. Hence H contains just four elements, H = [u, v, w, z). 
Since u and v are not right units of H and Z is not a left unit, Zw = u, zv = v, zw = Z. 
The subgroupoid K = {u, w, Z} is not associative, since z . uw = z Ф w = zu . w. 
Consequently, K is isomorphic to S5, a contradiction with the fact that K contains 
at most one left zero. 
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(ii) implies (iii). Suppose that d = ab.c^ac.b = e for some a, b, c e G. 

We have dg = eg for every g є G, and so dg = g = eg. From this, gh . k = 

= (dg . h) k = (dh . g)k = hg . k for all ø, h, k e G and the rest is cleaг from 11.3 

and 10.6. 

(iii) implies (iv) and (iv) implies (i). Easy. 
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