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Quasitrivial groupoids satisfying a balanced identity are described.
V ¢lanku jsou popsany kvazitrividlni grupoidy spliujici néjakou balancovanou identitu.

B cratbe onbiChIBAIOTCSA KBA3UTPUBHAJIbHBIC IPYNNOUIbI BBINMOJIHAOIIKE HECKOTOPOE cbanaH-
CHPOBAHOE TOXIECTBO.

The aim of this paper is to describe quasitrivial groupoids satisfying a non-trivial
balanced identity. To this purpose, balanced identities are divided into five types and
the corresponding quasitrivial groupoids are determined in each of these five cases.

1. A groupoid G is said to be

— commutative if ab = ba for all a, be G,

— idempotent if aa = a for every a € G,

— medial if ab.cd = ac. bd for all a, b, ¢, d € G,

— quasitrivial if ab € {a, b} for all a, b€ G,

— a semigroup if a . bc = ab.c for all a, b, ce G,

— an L-semigroup if ab = a for all a, be G,

— an R-semigroup if ab = b for all a, be G,

— a semilattice if it is a commutative idempotent semigroup.

Obviously, a groupoid G is quasitrivial iff every non-empty subset of G is a sub-
groupoid.

For a groupoid G, define a relation g by (a, b) e ¢ iff a, b € G and either a = b
or ab % ba. Further, let o; designate the least congruence of G such that the cor-
responding factor is commutative. The groupoid G is called anticommutative (contra-
commutative) if o = G x G (6 = G x G).

1.1 Lemma. Let G be a quasitrivial gropoid. Then:
(i) (a, b)e g iff a, be G and {a, b} = {ab, ba}.

*) 186 00 Praha 8, Sokolovska 83, Czechoslovakia.
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(ii) o¢ < 0.
(iii) o¢ = o iff g is a congruence of G.

Proof. (i) This assertion is clear.

(ii) Let f be the natural mapping of G onto G/o. If ab # ba for some a, be G
then f(ab) = f(ba) implies f(a) = f(b).

(iii) Let a, be G. If ab = ba then (ab, ba)e ¢. If ab + ba then {ab, ba} =
= {a, b}, ab. ba + ba . ab and (ab, ba) € g.

1.2 Corollary. Every anticommutative quasitrivial groupoid is contracom-
mutative.

Let H be a quasitrivial groupoid and G;, i e H, pair-wise disjoint groupoids.
Define a groupoid K = U(G,, i € H) as follows: K = (JG;; the groupoids G; are
subgroupoids of K; g;g; = g;; for all i,je H, i # j, g;€ G; and g; € G,.

1.3 Lemma. Let H be a quasitrivial groupoid and G;, i € H, pair-wise disjoint
groupoids. Then U(G,, i € H) is quasitrivial iff each G; is.

Proof. Obvious.

1.4 Proposition. Let G be a quasitrivial groupoid. Then:

(i) G/o is a commutative quasitrivial groupoid.
(ii) Every block of o is a contracommutative quasitrivial groupoid.
(i) G = U(i, i € GJo).

Proof. See [1, Proposition 2.11].

1.5 Proposition. Let G be a quasitrivial semigroup. Then ¢ = 6. Moreover, it G
is contracommutative then G is either an L-semigroup or an R-semigroup.

Proof. The result is easy and well known (see e.g. [1, Lemmas 3.1, 3.5]).

1.6 Corollary. A groupoid G is a quasitrivial semigroup iff there exist a quasi-
trivial semilattice H and pair-wise disjoint groupoids G;, i€ H, such that G =
= U(G,, i € H) and each G; is either an L-semigroup or an R-semigroup.

Let G, H be two groupoids with G n H = (. Define a groupoid K = G: H
as follows: K = G u H; both G and H are subgroupoids of K; gh = h = hg for all
g € G and h e H. Clearly, K is quasitrivial iff G and H are so.

Let G be a groupoid. An element e € G is said to be a left (right) unit if ea =
= a(ae = a) forevery a € G. An element z € G is said to be a left (right) zero if za =
= z(az = z) forevery a € G. Further, for every a € G, we define two transformations
L,and R, of G by L,(b) = ab and R,(b) = ba.

Let G be a groupoid. The opposite groupoid G°® = G(c) is defined by a - b = ba
for all a, b e G.
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2. Consider the following twelve groupoids defined on a three-element set

S = {u, v, w}.

S, tuu=uv=uw=u, LU =00 =DW =0, WU = W0 = WD = WW = W;
S, tuu=uv=u, VU = V0 =0, UW = VW = WU = WD = WW
Sy tuu=uv=uw = WU =u, VU =00 = 0W = WD = D, WW

Il
T 2T E

Sy fuu =u, ub = VU = V0 =V, UW = VW = WU = WD = WW
wo = ww
S¢ uu =uv=u, tu = V0 =0W = W0 = U, UW = WU = WW
S

SS SUU = UV = U, VU = 00 = DW= 0, UuwW = WU

S TUU = UV = WU = U, VU = VD = UW = 0, UW = WD = WW = W,

Sg tuu =uv=wu=u, VU =00=0W=WD=0, UW = WW = w;
So tuu =uv=0vuU = U, LU = VW = WD = v, UW = WU = WW = W,
SioiUU = UV = VU = WU = U, DV = DW = D, UW = WD = WW = W,
SjpiuUlu =uv =0U = U, V= VW = 0, UW = WU = WD = WW = W,

Si2iUU = UL = VU = WU = U, DV=UW = WD =0, UW = WW = W.

2.1 Proposition. The groupoids S, S,, S3, S4, ST°, S5°, S¥ are pair-wise non-
isomorphic three-lement quasitrivial semigroups. Every three-element quasitrivial
semigroup is isomorphic to one of these seven groupoids.

Proof. The assertion is an easy consequence of 1.6.

2.2 Lemma. Let G be a quasitrivial groupoid and a, b, c € G. Then a . bc
#+ ab . ¢ iff at least one of the following two conditions is satisfied:

()a+xb+c,a+cand ab=a, bc=b, ac =c.
(i) a+b+c,a%+cand ab=>b, bc =c¢, ac = a.

Proof. Easy.

2.3 Lemma. Let G be a quasitrivial groupoid and let a, b, c € G be such that
a.bc # ab.c.Put H={a, b, c}. Then H is a subgroupoid of G and H is isomorphic
to at least one of the groupoids Ss, ..., S;5, ¥, ..., S15.

Proof. Use 2.2.

2.4 Lemma. (i) The groupoids Ss,..., Sq, S?°, ..., S§¥ are quasitrivial, non-
group 5 9, V5 8 q
associative and pair-wise non-isomorphic.
(if) Se is isomorphic to S;, and S%5, Sg is isomorphic to S{j and S, = Sg.
Proof. Easy.
2.5 Proposition. The groupoids Sy, ..., So, S7°, S, SP¥°, ST, ..., S§¥ are pair-

wise non-isomorphic three-element quasitrivial groupoids. Every three-element
quasitrivial groupoid is isomorphic to one of these sixteen groupoids.

Proof. Apply 2.1, 2.3 and 2.4.
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2.6 Corollary. The groupoids S, and S, are up to isomorphism the only three-
element commutative quasitrivial groupoids.

2.7 Proposition. A quasitrivial groupoid G is a semigroup iff no subgroupoid
of G is isomorphic to one of the groupoids Ss, ..., Sy, S%, ..., Sg*-

Proof. Apply 2.3 and 2.4.

3. Let X = {x;, x5,...} be an infinite countable set of variables and W the
absolutely free groupoid of terms over X. For every t € W, define a positive integer
1(t) and a non-empty set var(r) by I(x) = 1, var(x) = {x} for every x € X and I(rs) =
= I(r) + 1(s), var(rs) = var(r) U var(s) for all r, se W. Further, for all xe X and
t € W, define a non-negative integer i(t, x) by i(x, x) = 1, i(y, x) = 0 for x + ye X
and i(rs, x) = i(r, x) + i(s, x) for all r,se W. Finally, put o(x) = x = (x)o and
o(rs) = o(r), (rs)o = (s)o.

Let te Wand n = I(t). We define an ordered n-tuple v(r) as follows: If n = 1
then t = x; for some 1 < i and we put v(r) = (i); if 2 < n then t = rs, r,se W,
I(r)=m, I(s) =k, n=m+k, v(r) =(iy, .. im) ¥(s) = (jp, . Jx) and we put
V(1) = (igs oo i 1o oo di)-

A term t is said to be balanced if i(t, x) £ 1 for every x € X.

An identity is an ordered pair of terms. Let (r, s) be an identity and G a groupoid.
We say that G satisfies this identity if f(r) = f(s) for every homomorphism f of W
into G.

An identity (r, s) is called non-trivial if r * s.

An identity (r, s) is called balanced if var(r) = var(s) and both r and s are
balanced.

Let Z(&, T\, T ,, resp.) denote the fully invariant congruence of W generated by
the pair (x;x;, x;x;) ((x; . X2%3, X;x5 . x3), (X . Xp%3, X5 . %;X3), (x,%; . X3,
X;X3 . X), Tesp.).

Let (r, s) be a balanced identity. We shall say that (r, s) is
— of type 1if (r,s)e # and r =+ s;

— of type 2if (r,s)e & and r # s;

— of type 3if (r,s)e 7, and r * s;

— of type 4 if (r,s)e I, and r * s;
—of type 5if (r,s)¢ RV L VT, UT;
- strong if (r, s) ¢ &.

Let ¢ be a balanced term. We denote by var (1) the set of all variables x such that
xr is a subterm of ¢ for some r € W. Further, we put var,(t) = var(t) \ var ().

Let t be a balanced term and x € X be such that ¢ & x. Define a balanced term
u(t, x) as follows: If x ¢ var(s) then u(t, x) = t; if t = px for some pe W then
u(t, x) = p; if t = xq for some g € W then u(t, x) = g; if t = rs for some r,se W,
r + x #* s, then u(t, x) = u(r, x) . u(s, x).
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A balanced identity (r, s) is said to be irreducible if t € X whenever ¢ is a subterm
of both the terms r and s.

3.1 Lemma. Let r,se W. Then (r,s)e # iff every commutative groupoid
satisfies (r, s).

Proof. Easy.

3.2 Lemma. The following conditions are equivalent for a balanced identity
(r,s):

(i) (r,s)e 2.

(ii) If p is a subterm of r then there exists a subterm g of s such that var(p) =
= var(q).

(iif) If g is a subterm of s then there exists a subterm p of r such that var(q) =
= var(p).

Proof. (i) implies (i) and (jii). Define a relation % on W by (p, q) € % iff for
every subterm t of p there is a subterm w of g such that var(f) = var(w) and I(r) =

= 1(w). Put (p, g) e ¥ iff (p, q) and (g, p) belong to %. Then ¥" is a congruence of W
and W/¥" is a commutative groupoid. Hence # < ¥".

(i) implies (i). We shall proceed by induction on I(r). Let r = ryry, s = 55,
and let f be a homomorphism of W into a commutative groupoid G. Then f(r) =
= f(r)) f(r2) = f(r2) f(r1), f(s) = f(s1) f(52) = f(s2) f(s5,) and either var(r,) =

= var(s,) or var(r,) = var(s,). The rest of the proof is clear.

3.3 Lemma. The following conditions are equivalent for an identity (r, s):
(i) (r,s) e &.

(ii) Every semigroup satisfies (r, s).

(iit) v(r) = v(s).

Proof. Obvious.

3.4 Lemma. Let (r,s)e 7,. Then o(r) = o(s), I(r) = I(s), var(r) = var(s) and
i(r, x) = i(s, x) for every x € X.

Proof. Easy.

3.5 Lemma. Let 0<n,m, r,...,", S,.-..SmeW, xeX and r=
= (((xry) r2)-..) rs s = (((xs1) 52) .-.) Sm- Then (r,s)e 7, iff n = m and there
exists a permutation 7 such that (r;, s,;)) € 7, for every 1 =i < n.

Proof. Define arelation ¥" on W by (p, q)€ ¥~ iff thereare 0 £ K, Py, -+ Pis
4y, --» g€ W, ye X and a permutation ¢ such that p = ((ypl) )P 4=
= (v q,)...) g and (p;, 4,(;)) € 7, for every 1 < i £ k. It is easy to check that ¥~
is a congruence of W, ¥~ < J, and W/|¥  satisfies the identity (%y%z . X3, X1 X3 . Xz)-
Hence v = 7.
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3.6 Lemma. Let r be a balanced term and y e var (r). Then there exists a balanced
term s € Wsuch that y = (s)o and (r, s)e 7.

Proof. By induction on I(r). If I(r) = 1 then r = y and y = (r)o. LetI(r) = 2.
There are n 2 1, xe X and ry, ..., r,€ W such that r = ((xr,)...) r,. Since ye
e var(r), y # x and we can assume that y € var(r,). If I(r,) = L thenr, = y, (r)o =
=y and we put s = r. If I(r,) = 2 then y e var(r,) and (p)o = y for some pe W
such that (r,, p)e 7, and we put s = (((xr,)...) ra=y) p-

3.7 Proposition. Every non-trivial balanced identity is of exactly one of the
types 1, 2, 3, 4 and 5.

Proof. Apply 3.2, 3.3, 3.4 and 3.5.

3.8 Lemma. Let Y, Z be subsets of X and t a balanced term such that Yn Z =
=0, var(t) = YU Z and var(r) n Y & 0 # var(t) n Z. Then there exist r,se W
such that rs is a subterm of ¢ and either var(r) = Y, var(s) = Z or var(r) < Z,
var(s) < Y.

Proof. By induction on I(f).

3.9 Lemma. Let (r,s) be a balanced identity such that (r,s)e 2 ((r,s) e &¥)
and x € X such that r # x. Then (u(r, x), u(s, x)) € Z (¢ ¥).

Proof. By induction on I().

4.
4.1 Lemma. Let G be a groupoid containing at least two left zeros and satisfying
an identity (r, s). Then o(r) = o(s).

Proof. Let o(r) = x % y = ofs). Define a homomorphism f of W into G by
f(x) = aand f(z) = b forevery x # z€ X, a # b being left zeros of G. Then f(r) =
=a * b = f(s), a contradiction.

4.2 Lemma. Let G be a groupoid containing a left zero a such that ba = b =
= bb for some a + b e G. Suppose that G satisfies an identity (r, s). Then o(r) = ofs).

Proof. Similar to that of 4.1.

4.3 Lemma. Let G be a groupoid satisfying a balanced identity (r, s) such that
2 < 1(r). Suppose that G contains a right unit and x e var/(r) N var(s). Then G
satisfies the identity (u(r, x), u(s, x)).

Proof. Let f be a homomorphism of Winto G and let e € G be a right unit. There
is a homomorphism g such that g(y) = f(y) for every x + ye X and g(x) = e.
It is easy to show by induction on I() that f(u(z, x)) = g(¢) for every balanced term ¢
such that 2 < 1(¢) and x € var,(1).
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4.4 Lemma. Let G be a groupoid with G = {ab | a, b € G} and (r, s) a balanced
identity such that G satisfies (r, s). Suppose that a term ¢ is a subterm of both r and s,
X € var(t) and define an endomorphism f of W by f(y) = y for every variable y + x
and f(x) = t. Then:

(i) There exist uniquely determined r’,s’e€ W such that f(r') =r, f(s') =
= s, (v, 5') is a balanced identity and G satisfies (', s').
(ii) If (r, s) is of type 2 then (r', s') is of this type.
(iii) If r & s then ' + .

Proof. Easy.

4.5 Lemma. Let G be a groupoid containing a right unit and satisfying a balanced
identity (r, 5) of type 2. Suppose that n = 1(r) < I(r') whenever (r', s) is a balanced
identity of type 2 such that G satisfies (', s’). Then 3 < n and there exists 1 £ m <
< n — 2 such that G satisfies (p, g), where p = x;(x5(... (xo-1x,))) and q =

= Xy (- (Xm= 1 ((xm(- - - (Kn=2%a=1))) Xn)))-

Proof. We can assume that v(r) = (1,2, ...,n). Since r # s, 3 < n. Further,
(u(r, x,), u(s, x,)) € & and G satisfies this identity. Consequently, u(r, x,) = u(s, x,,).
On the other hand, there are 1 £1i,j and ry, ..., r;, sy, ..., 5;€ W such that r =
= ry(... (r;x,)) and s = s4(... (s;x,)). We must distinguish the following two cases:

(i) 2 £i £j. Then ry(... (ri=yry)) = u(r, x,) = u(s, x,) = 54(-.. (55-15y)), 11 =
=Sy, .o Py = S, i = 8(.. (55-15)) S, ... 5;€X by 44, j=n-—1, 5, =
= Xy, .0 Spmg = Xpop, 8 = X4(-.. (x4-1X,)) and
r=x(.. (= ((x;(- - (xa=2%a=1))) Xn)))- Since r # s5,i < n — 2.

(i) 1 =i <j. Then ry = s;(-.. (55=15))),  =n — 1, 5, = Xy, ..., Samg = Xpo1s
r=(xy(-.. (Xa=2Xn-1))) Xa and s = x,(... (x,-x,)).

5.
5.1 Lemma. The groupoids S5 and S?° satisfy no balanced identity of type 2.

Proof. Let (r, s) be a balanced identity of type 2 such that S; satisfies (r, s).
Put n = I(r) and suppose that r = x,(... (x,-x,)) and
s = X(-.. (Xm-1((Xm(- -+ (Xa=2%n=1))) Xa))) where 1 < m < n — 2 (see 4.5). Define
a homomorphism f of Winto Ss by f(x,) = f(x2) = ... = f(Xa=2) = 1, f(xa-y) =
=v and f(x,) = f(xa+,) = ... =w. Then f(r) = u + w = f(s), a contradiction.

5.2 Lemma. The groupoids S¢, S;, S, S9° satisfy no balanced identity of type 2.
Proof. Similar to that of 5.1.
5.3 Lemma. The groupoids Sg and Sg° satisfy no balanced identity of type 2.

Proof. Suppose that SP° satisfies (r,s), 1 Sm < n —2, r=x(... (xa-1%n))
and s = x;(-.. (Xm(--- (Xa=2%Xn=1))) Xa))) (see 4.5). Define a homomorphism f
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of Winto S§ by f(x;) = ... = f(X,=2) = v, f(x,-;) =w and f(x,) =... = u.
Then f(r) = v + u = f(s), a contradiction.

5.4 Lemma. The groupoid S, satisfies no balanced identity of type 2.

Proof. We are going to show by induction on I(r) that for every balanced identity
(r, s) of type 2 there exists a homomorphism f of W into S, such that f(r) * f(s).
We can assume without loss of generality that 4 < n =1(r), v(r) = (1,2, ..., n),
r = r,r, and s = s;5,.

(i) Let I(r;) = m < k = I(s;). Define a homomorphism f of W into S, by
f(xy) = . = f(xm) = 8, f(Xm+1) = --- = f(x) = v and f(x4,) = ... = w. Then
() = f(r) f(r2) = uo = u £ w=uw = f(s,) £(52) = ().

(ii) Let 1(r;) = m = I(s;)- Then I(r;) = I(s;). Assume first r; # s;. Then
(r1,s,) is a balanced identity of type 2 and there is a homomorphism g of Winto S,
with g(r,) #+ g(s;). We have {g(r1), 9(s1), z} = {u,v,w} = S for some zeS.
Define f by f(x;) = g(x;) for 1 £i £ mand f(x;) = z form + 1 < j. Then f(r) =
= g(r,) z # g(s;) z = f(s). If ry = s, then r, 5, and we can proceed similarly.

5.5 Theorem. The following conditions are equivalent for a quasitrivial
groupoid G:

(i) G satisfies a balanced identity of type 2.
(ii) G is a semigroup.
(iii) G satisfies every balanced identity of type 2.

Proof. Apply 2.7, 5.1, 5.2, 5.3 and 5.4.

6.
6.1 Lemma. The groupoid Ss satisfies the identity (x;x, . x3, X; X3 . X;).

Proof. Easy.

6.2 Lemma. Let (r, s) be a balanced identity such that S; satisfies (r, s). Then
(r,s)e 7,

Proof. The proof will be divided into eight parts.

(i) By 4.1, o(r) = ofs). Suppose o(r) = x;.
(ii) Let x e var,(r). We are going to show that x e var(s). Suppose, on the
contrary, that xp is a subterm of r and gx of s for some p, g € W. Obviously, x + x,

and we can assume x = x, and var(p) = {xs,..., X}, 3 £ m. Define a homo-
morphism f of W into S5 by f(x;) = f(Xm+1) = [(Xm+2) = ... = u, f(x2) = v and
(x3) = f(x4) = ... = f(x,) = w. Then f(xp) = v, f(4x) = f(q) € {u, w} and f(r) =

= u # w = f(s), a contradiction.
(iii) By (ii), var,(r) = var/(s) and var,(r) = var,(s).
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(iv) Now, we are going to prove by induction on I(r) = n that (r,s)e 7.
With regard to (i), (iii), 3.4, 3.6 and 6.1, we can assume that 3 < n and (rJo =
= x, = (s)o. Put r =u(r, x,) and s’ = u(s, x,). By 4.3, S; satisfies the identity
(r', s'). Hence (r’, s') € 7. On the other hand (see 3.5), there are 1 < k, ry,..., 7y,
S, .- S € W and a permutation n such that r' = ((x,r,)...) r, 8" = ((x,8,) -..) s¢
and (r;, S,))€ 7, forevery 1 <i<k.

(v) Let r = r'x, and s = s'x,. Then (r, s) € 7, trivially.

(vi) Let r = (((x471) ---) re—1) P, p€ W, and s = s'x,,. Put ¢ = (((xySx)) ---) -
. Sa(ky) X» and define a homomorphism f of Winto Ss by f(x,) = f(x) = u for every
xevar (r;) u... uvar(r,_,), f(y) = v for every ye var(r,) and f(z) = w for any
other variable z. Then S; satisfies (r, g) and we have f(r) =uv = u + w = uw =
= uv.w = f(q), a contradiction.

(vii) Let r = (((xyry).-) re=1) P> s = (((x151) .-) sx-1) ¢ and =(k) =i < k.
Then n(j) = k for some 1 < j < k and we put p' = (((x171) ---) rj=1) 7541) ---) -
Te-1) 1) Py @ = (($1851) ++-) Sx5- 1) Sx+ 1)) ++) Swe-1)) $:) 4 if j + k — 1 and
P =rq = ((((x15x1)) ---) Sex-2)) 5;) ¢ if j = k — 1. Then S satisfies the identity
(p', ¢'). Define f by f(x,) = w, f(y) = v for every yevar(r;) and f(z) = u for
zeX, z % x, z¢var(r;). Then f(p)=wuv.w=w=*u=uv=f(q), a con-
tradiction.

(viii) Let r = ((x171) --) re=1) P> s = ((x151) --.) sx=1) ¢ and =(k) = k. As-
sume first that S satisfies (p, g). Then (p, q)€ 7,, and hence (r,s)e 7,. Now,
let S5 do not satisfy (p, g). Since u(p, x,) = ry, u(g, x,) = s, and (ry, s,) € 7, we
have o(p) = o(g). From this, {f(p),f(q)} = {u, w} for every homomorphism f
of Winto Ss such that f(p) # f(gq). However, such a homomorphism f exists and
we define g by g(x) = u for every x € var(x,r,) U var(r;) U ... U var(r,_,), g(y) = »
for the remaining variables y € X. Then {g(r), g(s)} = {uu, uw} = {u, w}, g(r) +
# ¢(s), a contradiction.

6.3 Corollary. The groupoid S5 (S§°) satisfies a non-trivial balanced identity
(r, s) iff (r, 5) is of type 3 (4).

7.

7.1 Lemma. Let (r, s) be a balanced identity such that the groupoid S, satisfies
(r,s). Then r = s.

Proof. The proof will be divided into eight parts.

(i) By 4.2, o(r) = o(s). Suppose o(r) = x;.

(ii) Let x € var,(r). We are going to show that x € var(s). Let, on the contrary,
xp be a subterm of r and gx of s. Then we can assume x = x, and var(p) =
= {X3, ..., X} for some 3 < m. Define a homomorphism f of Winto Sg by f(x,) =
=u, f(x3) =f(xs) =... = f(xm) =v and f(x;) = f(Xn+1) = ... = w. Then
J(xp) = u, f(qx) = f(q) € {v, w} and f(r) = w + v = f(s), a contradiction.
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(iii) By (ii), var,(r) = var(s) and var(r) = var,(s).

(iv) Letr = pq, and s = pq,, p, 4, 42 € W, and let f be a homomorphism of W
into S¢ with f(q,) # f(g,). Taking into account that the inequalities wu + wo,
uu + uwand uv # uw hold in Sg, it is easy to check that there exists a homomorphism
g such that g(x) = f(x) for every x e var(q,4,) and g(pq,) * 9(pq;), a contradiction.

We have proved that S, satisfies (q,, g)-

(v) Assume that r # s and r’ = s’ whenever (r',s') is balanced, S, satisfies
(r',s') and I(r') < n = I(r). Then 3 < n and (r, s) is irreducible by 4.4. Further, let
var(r) = {x,, ..., x,} and (r)o = x,. Then x, € var,(r) = var,(s) and S, satisfies the
identity (u(r, x,), u(s, x,)). Consequently, u(r, x,) = u(s, x,) and the following
three cases can arise:

(vi) r = pq, s = p'q’ and x, € var(q’). First, let ¢ #+ x, * g'. Then pu(q, x,) =
= u(r, x,) = u(s, x,) = p'u(q’, x,), p=p’ and S, satisfies (g, ¢’) by (iv). Thus
q = q' and r = s, a contradiction. Further, let ¢ = x, # ¢'. Then p = p'u(q’, x,),
peX, p=x, r=xu(q,x,) X s=xq and f(r) + f(s) where f(x,) = u,
f(xy) =w and f(x) = v for xe X, x # x;, x # x,, a contradiction. Similarly if
q * x, = q'. Finally, if ¢ = x, = q' then p = p’ and r = s, a contradiction.

(vii) r = pq, s = p'q’, 2 £ I(q) and x, e var(p’). Then p = u(p’, x,), ¢’ =
= u(q, x,) and there are 1 S k,m, T, ..., T, e{L,R} and ry, ..., 1\, Sy, ..., Sp€ W
such that p' = Ty,, ... T, (x,), T, = Land q = sy(... (Sux,))- Then p =T, ...

Ty (1) @ =51(-. (Sm-1Sm)) and 7y, .7y, Sy, ..y Sm€X, since (r,s) is
irreducible. We have 1 < m, s,, € var,(r) and s, € var,(s), a contradiction.

(viil) r = px,, s = p'q’ and x,evar(p’). Then p = u(p’,x,)q and ¢’ €X.
There are 1 <k, Ty,..., T,e{L,R} and ry,...,r,e W such that p'=T,, ...
oo Tem(xy)y To=L. Then p=Ty, ... Ticyp_(re) -4’5 rys-.orc€X. Assume
k 2 2. Since ry e var(s), we have r evar(r), T,_, = R, S¢ satisfies (u(r, r,—,),
u(s, re=1)), u(r,r-y) = u(s, r—;) and x, =g’, a contradiction. Thus k =1,
n=3r==xX,.X3, §=X;X3.X,. But uw.v % uv.w is true in Sg, a contra-
diction.

7.2 Corollary. The groupoids S; and Sg° satisfy no non-trivial balanced
identity.

8.
8.1 Lemma. Let (r, s) be a balanced identity such that the groupoid S satisfies
(r,s). Then r = s.

Proof. By 4.2, o(r) = o(s). Moreover, the subgroupoid {u, w} of S, is an R-
semigroup, and therefore (r)o = (s)o. Since S, has a right unit, S, satisfies the
identity (u(r, x), u(s, x)), x = (r)o. Hence (u(r, x))o = (u(s, x))o, etc., and we
have v(r) = v(s) and (r,s)e ¥. By 5.2, r = s.
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8.2 Lemma. Let (r, s) be a balanced identity such that the groupoid Sg satisfies
(r,s). Then r = s.

Proof. We have o(r) = ofs) by 4.2, Sg has a left unit, v(r) = v(s) and r = s
by 5.3.

8.3 Corollary. The groupids S5, Sg, S?°, Sg¥ satisfy no non-trivial balanced
identity.

9.

9.1 Lemma. Let r,s,7,s'e W be such that var(r) n var(r’) + 0 + var(s) n
~ var(r') and the pair (rs, r's’) is a strong balanced identity. Then the groupoid S,
does not satisfy this identity.

Proof. Let Y = var(r) = {xy, ..., Xn} and Z = var(s) = {Xpsy, .., X,}, 1 <
< m < n. By 3.8, there are p, g € W such that pgq is a subterm of r’ and either
var(p) < Yand var(q) = Z or var(p) < Z and var(q) < Y. Suppose that var(p) = Y
and var(q) = Z, the other case being similar. If var(g) # Z then x, € var(q) for some
m + 1 £k <n and we define a homomorphism f of W into Sy by f(x,) = ...
eoo = f(xm) = 4, f(x,) = v and f(x) = w for the remaining variables x € X. Then
f(rs) =uv=u and f(r's’) = w. If var(q) = Z then we can assume var(s') =
= {X Xg41s --» Xy for some 2 <k <m and we define f by f(x;) = ...
ceo = f(xk=1) = u, f(x) = ... = f(xm) = w and f(xp4,) = ... = v. Then f(rs) =

= wo = v and f(r's) = uw = w.
9.2 Lemma. The groupoid S, satisfies no strong balanced identity.

Proof. Let (r, s) be a strong balanced identity. We shall prove by induction on
I(r) that f(r) % f(s) for a homomorphism f of Winto S,. We have 3 < I(r), r = ryr,
and s = s,5,. With respect to 9.1 and the fact that S, is commutative, we may assume
that var(r,) = var(s,) and var(r,) = var(s,). First, let (r,, s,) be a strong balanced
identity. Then g(r,) + g(s;) for a homomorphism g and we define f by f(x) = g(x)
for x e var(r,) and f(y) = z for ye X, y ¢ var(r,), where z€ S is such that
{g(r), 9(s5), z} = {u, v, w} = S. Then f(r) = z g(r,) * z g(s;) = f(s). Finally, let
(r2, s,) € R. Then (ry, s;) ¢ &, (ry, s,) is a strong balanced identity and we can proceed
similarly.

10.

10.1 Proposition. Every quasitrivial groupoid satisfying a balanced identity of
type 5 is a semigroup.

Proof. Apply 2.7, 6.3, 7.2, 8.3 and 9.2.

10.2 Proposition. A groupoid G is a medial quasitrivial groupoid iff at least
one of the following five assertions is true:

(i) G is a quasitrivial semilattice.
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(ii) G is an L-semigroup.

(iii) G is an R-semigroup.

(iv) There exist an L-semigroup H and a quasitrivial semilattice K such that
HnK=0and G = H:K.

(v) There exist an R-semigroup H and a quasitrivial semilattice K such that
HnK=0and G=H:K.

Proof. See [1. Theorem 5.5].
10.3 Corollary. Every medial quasitrivial groupoid is a semigroup.

10.4 Theorem. The following conditions are equivalent for a quasitrivial
groupoid G:
(i) G satisfies a balanced identity of type 5.
(ii) G is medial.
(iii) G satisfies every balanced identity (r, s) such that o(r) = o(s) and (r)o =

= (s)o.

Proof. (i) implies (ii). By 10.1, G is a semigroup. Let A, Be G/a be such that
A+ B and AB = B. Suppose that 2 < card B and v(r) = (1,2,...,n). Since
(r,s)¢ &, there are 1 <i < j<n such that v(s) = (...,j,...,i,...). Now, take
ae A, b,ce B, b % ¢, and define a homomorphism f of W into G by f(x;) = b,
f(x;) = ¢ and f(x) = a for x; # x # x;. Then, by 1.4 and 1.5, f(r) = bc + cb =
=f (s), a contradiction. have proved that card B = 1 and the rest is now clear from
10.2.

(ii) implies (iii). Apply 10.2.

(iii) implies (i). This is obvious.

10.5 Corollary. The following conditions are equivalent for a quasitrivial
groupoid G:

(i) G satisfies a balanced identity (r, s) of type 5 such that (r)o = (s)o.

(i) G is either a semilattice or an L-semigroup or G = H : K where H is an
L-semigroup and K a quasitrivial semillatice with H n K = 0.

(iii) G satisfies the identity (x,x, . X3, X; . X3%,).

(iv) G satisfies every balanced identity (r, s) such that o(r) = o(s).

10.6 Corollary. The following conditions are equivalent for a quasitrivial
groupoid G:

(i) G is commutative and satisfies a strong balanced identity.

(ii) G is a semilattice.

(iii) G satisfies every balanced identity.

(iv) G satisfies the identity (x,X, . X3, X3X; . X; ).

(v) G satisfies a balanced identity (r, s) of type 5 such that o(r) + ofs) and
(r)o * (s)o.
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11.

11.1 Proposition. The following conditions are equivalent for a quasitrivial
groupoid G:

(i) e =0

(i) G contains no subgroupid isomorphic to one of the groupoids Ss, S, S,
SP, ST, S§.

Proof. Easy (use 1.1(iii) and 2.5).

11.2 Lemma. Let G be a contracommutative quasitrivial groupoid satisfying
a balanced identity of type 1. Then G is either an L-semigroup or an R-semigroup.

Proof. By 6.3,7.2,8.3and 11.1, 9 = G x G and G is anticommutative. Hence S,
is not isomorphic to a subgroupoid of G and G is a semigroup. The result follows now
from 1.5.

We shall say that a quasitrivial groupoid G is semicommutative if at least one
of the following five assertions is true:

(i) G is commutative.
(i) G is an L-semigroup.
(iii) G is an R-semigroup.
(iv) There exist an L-semigroup H and a commutative quasitrivial groupoid K
such that HNK =0 and G = H : K.
(v) There exist an R-semigroup H and a commutative quasitrivial groupoid K
suchthat HN K =0and G = H : K.

11.3 Theorem. The following conditions are equivalent for a quasitrivial grou-
poid G.

(i) G satisfies a balanced identity of type 1.
(ii) G is semicommutative.
(iii) G satisfies every balanced identity (r, s) of type 1 such that o(r) = o(s)
and (r)o = (s)o.
(iv) G satisfies the identity ((x; . x,X3) X4, (X1 . X3%x;) x4).

Proof. (i) implies (ii). Let A, B € G/o be such that AB = B and A + B. Suppose
2 < card B and v(r) = (1, 2, ..., n) where (r, s) is balanced identity of type 1 such
that G satisfies (r, s). Since (r,s)e Z and r s, (r,s)¢ & and there are 1 <i <
< j £ n such that v(s) = (...,j,....1i,...). Take ae 4, b,ce B, b + ¢, and define
a homomorphism f of W into G by f(x;) = b, f(x;) = ¢ and f(x) = a for every
x€X, x; # x + x;. Then f(r) = bc and f(s) = cb. However, bc # cb by 11.1,
a contradiction. We have proved that card B = 1 and the rest is clear from 1.4
and 11.2.

(ii) implies (iii). Assume that G = H : K for an L-semigroup H and a commuta-
tive quasitrivial groupoid K such that H n K = (. Obviously, 65 = (H x H) u
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U idg. Denote by g the natural homomorphism of G onto G/e. Let (r, s) be a balanced
identity of type 1 such that o(r) = o(s). We have g f(r) = g f(s) and (f(r), f(5)) € @
for every homomorphism f of Winto G. Hence either f(r) = f(s) or f(r), f(s) € H.
If f(r) € H then f(var(r)) = H and f(r) = f(s). The rest is similar.

(iii) implies (iv) and (iv) implies (i). These implications are clear.

11.4 Corollary. The following conditions are equivalent for a quasitrivial
groupoid G:

(i) G satisfies a balanced identity (r, s) of type 1 such that (r)o = (s)o.

(ii) G is either commutative or an L-semigroup or G = H : K for an L-semi-
group H and a commutative quasitrivial groupoid K with H n K = 0.

(iii) G satisfies every balanced identity (r, s) of type 1 such that o(r) = o(s).

(iv) G satisfies the identity (x; . x,X3, X; . X3X;).

11.5 Corollary. The following conditions are equivalent for a quasitrivial
groupoid G:

(i) G satisfies a balanced identity (r, s) of type 1 such that o(r) # o(s) and
(r)o = (s)o.
(ii) G is commutative.
(iii) G satisfies every balanced identity of type 1.

12.
12.1 Lemma. Let G be a quasitrivial semigroup satisfying a balanced identity
of type 3. Then G is medial.

Proof. Similar to that of 10.4.

12.2 Proposition. Let G be a quasitrivial groupoid satisfying the identity
(xyx3 . X3, X1X3 . X,). Define a relation n by (a, b)en iff a,be G and ab = b.
Then:

(i) = is an ordering.
(i) If a, b, ce G and (a, b), (a, ¢) € n then either (b, ¢)e 7 or (c, b) € .

Proof. Easy.

12.3 Proposition. Let 7 be an ordering on a non-empty set G such that either
(b,c)em or (c, b)en whenever a,b,ce G and (a, b), (a. c)e n. Define a multi-
plication on G by ab = b if (a, b)e = and ab = a in the opposite case. Then G is
a quasitrivial groupoid satisfying (x;x, . x3, X;X3 . X,).

Proof. Easy.

12.4 Theorem. The following conditions are equivalent for a quasitrivial
groupoid G:

(i) G satisfies a balanced identity (r, s) of type 3 such that (r)o =* (s)o.
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(ii) G satisfies the identity (x;x, . X3, X;X3 . X;).
(iii) G satisfies every balanced identity of type 3.

Proof. (i) implies (ii). Let H be a subgroupoid of G containing at most three
elements. If H is a semigroup then H is medial by 12.1 and it is easy to check that H
satisfies (x;x, . X3, X;X3 . x,) (use 10.2). Assume that H is not associative. According
to 2.7, 6.3, 7.2, 8.3 and 9.2, H is isomorphic to S5 and the result follows from 6.1.

12.5 Theorem. The following conditions are equivalent for a quasitrivial
groupoid G:

(i) G satisfies a balanced identity of type 3.
(ii) G satisfies the identity ((x,x; . X3) X4, (X1X3 . X3) X4).
(iii) At least one of the following assertions is true:
(iii1) G satisfies the identity (x,x; . X3, X;X3 . X5).
(ili2) G is an R-semigroup.
(iii3) G = H :K for an R-semigroup H and a quasitrivial semilattice K
with H n K = 0.
(iv) G satisfies every balanced identity (r, s) of type 3 such that (r)o = (s)o.

Proof. (i) implies (ii). Let H be a subgroupid of G containing at most four
elements. We are going to show that H satisfies the identity ((x;x, . x3) X4, (%;X3 .
. X,) x4). The groupoid H satisfies a balanced identity of type 3, say (r, s). We can
assume that 1(r) < 1(r') whenever (', s’) is a balanced identity of type 3 such H
satisfies (r', s'). If (r)o # (s)o then 12.4 may be applied. Suppose o(r) = x = o(s),
(ro=y=(s)o (x#y, since 4 <1(r)) and put r, = u(r,x), r, = u(r, ), s, =
= u(s, x), s, = u(s, y). We must distinguish the following cases:

(1) H is a semigroup. By 12.1, H is medial and the result follows easily from
10.2.

(2) H is not associative and H contains a left unit. Then H satisfies (ry, s,). If
ry = s, then v(r) = v(s), (r, s) € &, a contradiction. Therefore (ry, s,) is a balanced
identity of type Te{1,2,4,5}. If T=1 (T =2, T=5) then H is associative by
11.3 and 10.6 (5.5, 10.1), a contradiction. Hence T" = 4 and, since H is not associative,
H contains a subgroupoid isomorphic to S¢* (use 2.7, 6.3, 7.2, 8.3, 9.2), a contradic-
tion with 6.3.

(3) H is not associative and H contains a right unit. In this case, we can proceed
similarly as in (2).

(4) H is not associative and contains no left unit and no right unit. We can
assume without loss of generality that Ss is a subgroupoid of H. 1If H = S then we
have a contradiction with 6.1. Hence H contains just four elements, H = {u, v, w, z}.
Since u and v are not right units of H and z is not a left unit, zu = u, zv = v, zw = z.
The subgroupoid K = {u, w, z} is not associative, since z.uw =z £ w = zu . w.
Consequently, K is isomorphic to S5, a contradiction with the fact that K contains
at most one left zero.
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(ii) implies (iii). Suppose that d = ab.c + ac.b = e for some a, b, ce G.
We have dg = eg for every g€ G, and so dg = g = eg. From this, gh . k =

= (dg.h)k = (dh.g)k = hg .k for all g, h, ke G and the rest is clear from 11.3
and 10.6.

(iii) implies (iv) and (iv) implies (i). Easy.
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