Acta Universitatis Carolinae. Mathematica et Physica

Tomáš Kepka

Quasitrivial groupoids and balanced identities

Acta Universitatis Carolinae. Mathematica et Physica, Vol. 22 (1981), No. 2, 49--64
Persistent URL: http://dml.cz/dmlcz/142473

Terms of use:

© Univerzita Karlova v Praze, 1981

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

Quasitrivial Groupoids and Balanced Identities

T. KEPKA
Department of Mathematics, Charles University, Prague*)

Received 5 March 1981

Quasitrivial groupoids satisfying a balanced identity are described.
V článku jsou popsány kvazitriviální grupoidy splňující nějakou balancovanou identitu.

Abstract

В статье опысываются квазитривиальные группоиды выполняющие некоторое сбалансированое тождество.

The aim of this paper is to describe quasitrivial groupoids satisfying a non-trivial balanced identity. To this purpose, balanced identities are divided into five types and the corresponding quasitrivial groupoids are determined in each of these five cases.

1. A groupoid G is said to be

- commutative if $a b=b a$ for all $a, b \in G$,
- idempotent if $a a=a$ for every $a \in G$,
- medial if $a b . c d=a c . b d$ for all $a, b, c, d \in G$,
- quasitrivial if $a b \in\{a, b\}$ for all $a, b \in G$,
- a semigroup if $a . b c=a b . c$ for all $a, b, c \in G$,
- an L-semigroup if $a b=a$ for all $a, b \in G$,
- an R-semigroup if $a b=b$ for all $a, b \in G$,
- a semilattice if it is a commutative idempotent semigroup.

Obviously, a groupoid G is quasitrivial iff every non-empty subset of G is a subgroupoid.

For a groupoid G, define a relation ϱ_{G} by $(a, b) \in \varrho$ iff $a, b \in G$ and either $a=b$ or $a b \neq b a$. Further, let σ_{G} designate the least congruence of G such that the corresponding factor is commutative. The groupoid G is called anticommutative (contracommutative) if $\varrho=G \times G(\sigma=G \times G)$.
1.1 Lemma. Let G be a quasitrivial gropoid. Then:
(i) $(a, b) \in \varrho_{G}$ iff $a, b \in G$ and $\{a, b\}=\{a b, b a\}$.

[^0](ii) $\varrho_{G} \subseteq \sigma_{G}$.
(iii) $\varrho_{G}=\sigma_{G}$ iff ϱ_{G} is a congruence of G.

Proof. (i) This assertion is clear.
(ii) Let f be the natural mapping of G onto G / σ. If $a b \neq b a$ for some $a, b \in G$ then $f(a b)=f(b a)$ implies $f(a)=f(b)$.
(iii) Let $a, b \in G$. If $a b=b a$ then $(a b, b a) \in \varrho$. If $a b \neq b a$ then $\{a b, b a\}=$ $=\{a, b\}, a b . b a \neq b a . a b$ and $(a b, b a) \in \varrho$.
1.2 Corollary. Every anticommutative quasitrivial groupoid is contracommutative.

Let H be a quasitrivial groupoid and $G_{i}, i \in H$, pair-wise disjoint groupoids. Define a groupoid $K=\mathrm{U}\left(G_{i}, i \in H\right)$ as follows: $K=\bigcup G_{i}$; the groupoids G_{i} are subgroupoids of $K ; g_{i} g_{j}=g_{i j}$ for all $i, j \in H, i \neq j, g_{i} \in G_{i}$ and $g_{j} \in G_{j}$.
1.3 Lemma. Let H be a quasitrivial groupoid and $G_{i}, i \in H$, pair-wise disjoint groupoids. Then $\mathrm{U}\left(G_{i}, i \in H\right)$ is quasitrivial iff each G_{i} is.

Proof. Obvious.
1.4 Proposition. Let G be a quasitrivial groupoid. Then:
(i) G / σ is a commutative quasitrivial groupoid.
(ii) Every block of σ is a contracommutative quasitrivial groupoid.
(iii) $G=\mathrm{U}(i, i \in G / \sigma)$.

Proof. See [1, Proposition 2.11].
1.5 Proposition. Let G be a quasitrivial semigroup. Then $\varrho=\sigma$. Moreover, if G is contracommutative then G is either an L -semigroup or an R -semigroup.

Proof. The result is easy and well known (see e.g. [1, Lemmas 3.1, 3.5]).
1.6 Corollary. A groupoid G is a quasitrivial semigroup iff there exist a quasitrivial semilattice H and pair-wise disjoint groupoids $G_{i}, i \in H$, such that $G=$ $=\mathrm{U}\left(G_{i}, i \in H\right)$ and each G_{i} is either an L-semigroup or an R -semigroup.

Let G, H be two groupoids with $G \cap H=\emptyset$. Define a groupoid $K=G: H$ as follows: $K=G \cup H$; both G and H are subgroupoids of K; $g h=h=h g$ for all $g \in G$ and $h \in H$. Clearly, K is quasitrivial iff G and H are so.

Let G be a groupoid. An element $e \in G$ is said to be a left (right) unit if $e a=$ $=a(a e=a)$ for every $a \in G$. An element $z \in G$ is said to be a left (right) zero if $z a=$ $=z(a z=z)$ for every $a \in G$. Further, for every $a \in G$, we define two transformations L_{a} and R_{a} of G by $L_{a}(b)=a b$ and $R_{a}(b)=b a$.

Let G be a groupoid. The opposite groupoid $\left.G^{\text {op }}=G()_{\circ}\right)$ is defined by $a \circ b=b a$ for all $a, b \in G$.
2. Consider the following twelve groupoids defined on a three-element set $S=\{u, v, w\}$.
$S_{1}: u u=u v=u w=u, v u=v v=v w=v, w u=w v=w v=w w=w ;$
$S_{2}: u u=u v=u, v u=v v=v, u w=v w=w u=w v=w w=w$;
$S_{3}: u u=u v=u w=w u=u, v u=v v=v w=w v=v, w w=w ;$
$S_{4}: u u=u, u v=v u=v v=v, u w=v w=w u=w v=w w=w ;$
$S_{5}: u u=u v=u, v u=v v=v w=v, u w=w u=w v=w w=w$;
$S_{6}: u u=u v=u, v u=v v=v w=w v=v, u w=w u=w w=w$;
$S_{7}: u u=u v=w u=u, v u=v v=v w=v, u w=w v=w w=w ;$
$S_{8}: u u=u v=w u=u, v u=v v=v w=w v=v, u w=w w=w ;$
$S_{9}: u u=u v=v u=u, v v=v w=w v=v, u w=w u=w w=w ;$
$S_{10}: u u=u v=v u=w u=u, v v=v w=v, u w=w v=w w=w$;
$S_{11}: u u=u v=v u=u, v v=v w=v, u w=w u=w v=w w=w ;$
$S_{12}: u u=u v=v u=w u=u, v v=v w=w v=v, u w=w w=w$.
2.1 Proposition. The groupoids $S_{1}, S_{2}, S_{3}, S_{4}, S_{1}^{\mathbf{o p}}, S_{2}^{\mathbf{o p}}, S_{3}^{\mathrm{op}}$ are pair-wise nonisomorphic three-lement quasitrivial semigroups. Every three-element quasitrivial semigroup is isomorphic to one of these seven groupoids.

Proof. The assertion is an easy consequence of 1.6.
2.2 Lemma. Let G be a quasitrivial groupoid and $a, b, c \in G$. Then $a . b c \neq$ $\neq a b . c$ iff at least one of the following two conditions is satisfied:
(i) $a \neq b \neq c, a \neq c$ and $a b=a, b c=b, a c=c$.
(ii) $a \neq b \neq c, a \neq c$ and $a b=b, b c=c, a c=a$.

Proof. Easy.
2.3 Lemma. Let G be a quasitrivial groupoid and let $a, b, c \in G$ be such that $a . b c \neq a b . c$. Put $H=\{a, b, c\}$. Then H is a subgroupoid of G and H is isomorphic to at least one of the groupoids $S_{5}, \ldots, S_{12}, S_{5}^{\mathrm{op}}, \ldots, S_{12}^{\mathrm{op}}$.

Proof. Use 2.2.
2.4 Lemma. (i) The groupoids $S_{5}, \ldots, S_{9}, S_{5}^{\text {op }}, \ldots, S_{8}^{\text {op }}$ are quasitrivial, nonassociative and pair-wise non-isomorphic.
(ii) S_{6} is isomorphic to S_{11} and $S_{12}^{\mathrm{op}}, S_{8}$ is isomorphic to S_{10}^{op} and $S_{9}=S_{9}^{\mathrm{op}}$.

Proof. Easy.
2.5 Proposition. The groupoids $S_{1}, \ldots, S_{9}, S_{1}^{\mathrm{op}}, S_{2}^{\mathrm{op}}, S_{3}^{\mathrm{op}}, S_{5}^{\mathrm{op}}, \ldots, S_{8}^{\mathrm{op}}$ are pairwise non-isomorphic three-element quasitrivial groupoids. Every three-element quasitrivial groupoid is isomorphic to one of these sixteen groupoids.

Proof. Apply 2.1, 2.3 and 2.4.
2.6 Corollary. The groupoids S_{4} and S_{9} are up to isomorphism the only threeelement commutative quasitrivial groupoids.
2.7 Proposition. A quasitrivial groupoid G is a semigroup iff no subgroupoid of G is isomorphic to one of the groupoids $S_{5}, \ldots, S_{9}, S_{5}^{\mathrm{op}}, \ldots, S_{8}^{\mathrm{op}}$.

Proof. Apply 2.3 and 2.4.
3. Let $X=\left\{x_{1}, x_{2}, \ldots\right\}$ be an infinite countable set of variables and W the absolutely free groupoid of terms over X. For every $t \in W$, define a positive integer $\mathrm{l}(t)$ and a non-empty set $\operatorname{var}(t)$ by $\mathrm{l}(x)=1, \operatorname{var}(x)=\{x\}$ for every $x \in X$ and $\mathrm{l}(r s)=$ $=1(r)+1(s), \operatorname{var}(r s)=\operatorname{var}(r) \cup \operatorname{var}(s)$ for all $r, s \in W$. Further, for all $x \in X$ and $t \in W$, define a non-negative integer $\mathrm{i}(t, x)$ by $\mathrm{i}(x, x)=1, \mathrm{i}(y, x)=0$ for $x \neq y \in X$ and $\mathrm{i}(r s, x)=\mathrm{i}(r, x)+\mathrm{i}(s, x)$ for all $r, s \in W$. Finally, put $\mathrm{o}(x)=x=(x) \mathrm{o}$ and $\mathrm{o}(r s)=\mathrm{o}(r),(r s) \mathrm{o}=(s) \mathrm{o}$.

Let $t \in W$ and $\mathrm{n}=1(t)$. We define an ordered n -tuple $\mathrm{v}(t)$ as follows: If $\mathrm{n}=1$ then $t=x_{\mathrm{i}}$ for some $1 \leqq \mathrm{i}$ and we put $\mathrm{v}(t)=(\mathrm{i})$; if $2 \leqq \mathrm{n}$ then $t=r s, r, s \in W$, $\mathrm{l}(r)=\mathrm{m}, \mathrm{l}(s)=\mathrm{k}, \mathrm{n}=\mathrm{m}+\mathrm{k}, \mathrm{v}(r)=\left(\mathrm{i}_{1}, \ldots, \mathrm{i}_{\mathrm{m}}\right), \mathrm{v}(s)=\left(\mathrm{j}_{1}, \ldots, \mathrm{j}_{\mathrm{k}}\right)$ and we put $\mathrm{v}(t)=\left(\mathrm{i}_{1}, \ldots, \mathrm{i}_{\mathrm{m}}, \mathrm{j}_{1}, \ldots, \mathrm{j}_{\mathrm{k}}\right)$.

A term t is said to be balanced if $\mathrm{i}(t, x) \leqq 1$ for every $x \in X$.
An identity is an ordered pair of terms. Let (r, s) be an identity and G a groupoid. We say that G satisfies this identity if $f(r)=f(s)$ for every homomorphism f of W into G.

An identity (r, s) is called non-trivial if $r \neq s$.
An identity (r, s) is called balanced if $\operatorname{var}(r)=\operatorname{var}(s)$ and both r and s are balanced.

Let $\mathscr{R}\left(\mathscr{S}, \mathscr{T}_{\mathrm{I}}, \mathscr{T}_{\mathrm{r}}\right.$, resp.) denote the fully invariant congruence of W generated by the pair $\left(x_{1} x_{2}, x_{2} x_{1}\right)\left(\left(x_{1} \cdot x_{2} x_{3}, x_{1} x_{2}, x_{3}\right),\left(x_{1}, x_{2} x_{3}, x_{2}, x_{1} x_{3}\right),\left(x_{1} x_{2} \cdot x_{3}\right.\right.$, $x_{1} x_{3} \cdot x_{2}$), resp.).

Let (r, s) be a balanced identity. We shall say that (r, s) is

- of type 1 if $(r, s) \in \mathscr{R}$ and $r \neq s$;
- of type 2 if $(r, s) \in \mathscr{S}$ and $r \neq s$;
- of type 3 if $(r, s) \in \mathscr{T}_{r}$ and $r \neq s$;
- of type 4 if $(r, s) \in \mathscr{T}_{1}$ and $r \neq s$;
- of type 5 if $(r, s) \notin \mathscr{R} \cup \mathscr{S} \cup \mathscr{T}_{r} \cup \mathscr{T}_{\text {; }}$;
- strong if $(r, s) \notin \mathscr{R}$.

Let t be a balanced term. We denote by $\operatorname{var}_{1}(t)$ the set of all variables x such that $x r$ is a subterm of t for some $r \in W$. Further, we put $\operatorname{var}_{r}(t)=\operatorname{var}(t) \backslash \operatorname{var}_{1}(t)$.

Let t be a balanced term and $x \in X$ be such that $t \neq x$. Define a balanced term $\mathrm{u}(t, x)$ as follows: If $x \notin \operatorname{var}(t)$ then $\mathrm{u}(t, x)=t$; if $t=p x$ for some $p \in W$ then $\mathrm{u}(t, x)=p$; if $t=x q$ for some $q \in W$ then $\mathrm{u}(t, x)=q$; if $t=r s$ for some $r, s \in W$, $r \neq x \neq s$, then $\mathrm{u}(t, x)=\mathrm{u}(r, x) . \mathrm{u}(s, x)$.

A balanced identity (r, s) is said to be irreducible if $t \in X$ whenever t is a subterm of both the terms r and s.
3.1 Lemma. Let $r, s \in W$. Then $(r, s) \in \mathscr{R}$ iff every commutative groupoid satisfies (r, s).

Proof. Easy.
3.2 Lemma. The following conditions are equivalent for a balanced identity (r, s) :
(i) $(r, s) \in \mathscr{R}$.
(ii) If p is a subterm of r then there exists a subterm q of s such that $\operatorname{var}(p)=$ $=\operatorname{var}(q)$.
(iii) If q is a subterm of s then there exists a subterm p of r such that $\operatorname{var}(q)=$ $=\operatorname{var}(p)$.

Proof. (i) implies (ii) and (iii). Define a relation \mathscr{U} on W by $(p, q) \in \mathscr{U}$ iff for every subterm t of p there is a subterm w of q such that $\operatorname{var}(t)=\operatorname{var}(w)$ and $1(t)=$ $=1(w)$. Put $(p, q) \in \mathscr{V}$ iff (p, q) and (q, p) belong to \mathscr{U}. Then \mathscr{V} is a congruence of W and W / \mathscr{V} is a commutative groupoid. Hence $\mathscr{R} \subseteq \mathscr{V}$.
(ii) implies (i). We shall proceed by induction on $1(r)$. Let $r=r_{1} r_{2}, s=s_{1} s_{2}$ and let f be a homomorphism of W into a commutative groupoid G. Then $f(r)=$ $=f\left(r_{1}\right) f\left(r_{2}\right)=f\left(r_{2}\right) f\left(r_{1}\right), f(s)=f\left(s_{1}\right) f\left(s_{2}\right)=f\left(s_{2}\right) f\left(s_{1}\right)$ and either $\operatorname{var}\left(r_{1}\right)=$ $=\operatorname{var}\left(s_{1}\right)$ or $\operatorname{var}\left(r_{1}\right)=\operatorname{var}\left(s_{2}\right)$. The rest of the proof is clear.
3.3 Lemma. The following conditions are equivalent for an identity (r, s) :
(i) $(r, s) \in \mathscr{S}$.
(ii) Every semigroup satisfies (r, s).
(iii) $\mathrm{v}(r)=\mathrm{v}(s)$.

Proof. Obvious.
3.4 Lemma. Let $(r, s) \in \mathscr{T}_{r}$. Then $\mathrm{o}(r)=\mathrm{o}(s), \mathrm{l}(r)=1(s), \operatorname{var}(r)=\operatorname{var}(s)$ and $\mathrm{i}(r, x)=\mathrm{i}(s, x)$ for every $x \in X$.

Proof. Easy.
3.5 Lemma. Let $0 \leqq \mathrm{n}, \mathrm{m}, r_{1}, \ldots, r_{\mathrm{n}}, s_{1}, \ldots, s_{\mathrm{m}} \in W, \quad x \in X$ and $r=$ $=\left(\left(\left(x r_{1}\right) r_{2}\right) \ldots\right) r_{\mathrm{n}}, s=\left(\left(\left(x s_{1}\right) s_{2}\right) \ldots\right) s_{\mathrm{m}}$. Then $(r, s) \in \mathscr{T}_{\mathrm{r}}$ iff $\mathrm{n}=\mathrm{m}$ and there exists a permutation π such that $\left(r_{\mathrm{i}}, s_{\pi(\mathrm{i})}\right) \in \mathscr{T}_{\mathrm{r}}$ for every $1 \leqq \mathrm{i} \leqq \mathrm{n}$.

Proof. Define a relation \mathscr{V} on W by $(p, q) \in \mathscr{V}$ iff there are $0 \leqq \mathrm{k}, p_{1}, \ldots, p_{\mathrm{k}}$, $q_{1}, \ldots, q_{\mathrm{k}} \in W, y \in X$ and a permutation σ such that $p=\left(\left(y p_{1}\right) \ldots\right) p_{\mathrm{k}}, q=$ $\left.=\left(y q_{1}\right) \ldots\right) q_{\mathrm{k}}$ and $\left(p_{\mathrm{i}}, q_{\sigma(\mathrm{i})}\right) \in \mathscr{T}_{\mathrm{r}}$ for every $1 \leqq \mathrm{i} \leqq \mathrm{k}$. It is easy to check that \mathscr{V} is a congruence of $W, \mathscr{V} \subseteq \mathscr{T}_{\mathrm{r}}$ and W / \mathscr{V} satisfies the identity $\left(x_{1} x_{2}, x_{3}, x_{1} x_{3}, x_{2}\right)$. Hence $\mathscr{V}=\mathscr{T}_{r}$.
3.6 Lemma. Let r be a balanced term and $y \in \operatorname{var}_{\mathrm{r}}(r)$. Then there exists a balanced term $s \in W$ such that $y=(s)$ o and $(r, s) \in \mathscr{T}_{r}$.

Proof. By induction on $\mathrm{l}(r)$. If $\mathrm{l}(r)=1$ then $r=y$ and $y=(r)$. Let $\mathrm{l}(r) \geqq 2$. There are $\mathrm{n} \geqq 1, x \in X$ and $r_{1}, \ldots, r_{\mathrm{n}} \in W$ such that $r=\left(\left(x r_{1}\right) \ldots\right) r_{\mathrm{n}}$. Since $y \in$ $\in \operatorname{var}_{\mathrm{r}}(r), y \neq x$ and we can assume that $y \in \operatorname{var}\left(r_{\mathrm{n}}\right)$. If $1\left(r_{\mathrm{n}}\right)=1$ then $r_{\mathrm{n}}=y,(r) \mathrm{o}=$ $=y$ and we put $s=r$. If $1\left(r_{\mathrm{n}}\right) \geqq 2$ then $y \in \operatorname{var}_{\mathrm{r}}\left(r_{\mathrm{n}}\right)$ and $(p) \mathrm{o}=y$ for some $p \in W$ such that $\left(r_{\mathrm{n}}, p\right) \in \mathscr{T}_{\mathrm{r}}$ and we put $s=\left(\left(\left(x r_{1}\right) \ldots\right) r_{\mathrm{n}-1}\right) p$.
3.7 Proposition. Every non-trivial balanced identity is of exactly one of the types $1,2,3,4$ and 5.

Proof. Apply 3.2, 3.3, 3.4 and 3.5 .
3.8 Lemma. Let Y, Z be subsets of X and t a balanced term such that $Y \cap Z=$ $=\emptyset, \operatorname{var}(t) \subseteq Y \cup Z$ and $\operatorname{var}(t) \cap Y \neq \emptyset \neq \operatorname{var}(t) \cap Z$. Then there exist $r, s \in W$ such that $r s$ is a subterm of t and either $\operatorname{var}(r) \subseteq Y, \operatorname{var}(s) \subseteq Z$ or $\operatorname{var}(r) \subseteq Z$, $\operatorname{var}(s) \subseteq Y$.

Proof. By induction on $1(t)$.
3.9 Lemma. Let (r, s) be a balanced identity such that $(r, s) \in \mathscr{R}((r, s) \in \mathscr{S})$ and $x \in X$ such that $r \neq x$. Then $(\mathrm{u}(r, x), \mathrm{u}(s, x)) \in \mathscr{R}(\in \mathscr{S})$.

Proof. By induction on $1(t)$.
4.
4.1 Lemma. Let G be a groupoid containing at least two left zeros and satisfying an identity (r, s). Then $\mathrm{o}(r)=\mathrm{o}(s)$.

Proof. Let $\mathrm{o}(r)=x \neq y=\mathrm{o}(s)$. Define a homomorphism f of W into G by $f(x)=a$ and $f(z)=b$ for every $x \neq z \in X, a \neq b$ being left zeros of G. Then $f(r)=$ $=a \neq b=f(s)$, a contradiction.
4.2 Lemma. Let G be a groupoid containing a left zero a such that $b a=b=$ $=b b$ for some $a \neq b \in G$. Suppose that G satisfies an identity (r, s). Then $\mathrm{o}(r)=\mathrm{o}(s)$.

Proof. Similar to that of 4.1.
4.3 Lemma. Let G be a groupoid satisfying a balanced identity (r, s) such that $2 \leqq 1(r)$. Suppose that G contains a right unit and $x \in \operatorname{var}_{\mathrm{r}}(r) \cap \operatorname{var}_{\mathrm{r}}(s)$. Then G satisfies the identity $(\mathrm{u}(r, x), \mathrm{u}(s, x))$.

Proof. Let f be a homomorphism of W into G and let $e \in G$ be a right unit. There is a homomorphism g such that $g(y)=f(y)$ for every $x \neq y \in X$ and $g(x)=e$. It is easy to show by induction on $\mathrm{l}(t)$ that $f(\mathrm{u}(t, x))=g(t)$ for every balanced term t such that $2 \leqq 1(t)$ and $x \in \operatorname{var}_{\mathrm{r}}(t)$.
4.4 Lemma. Let G be a groupoid with $G=\{a b \mid a, b \in G\}$ and (r, s) a balanced identity such that G satisfies (r, s). Suppose that a term t is a subterm of both r and s, $x \in \operatorname{var}(t)$ and define an endomorphism f of W by $f(y)=y$ for every variable $y \neq x$ and $f(x)=t$. Then:
(i) There exist uniquely determined $r^{\prime}, s^{\prime} \in W$ such that $f\left(r^{\prime}\right)=r, f\left(s^{\prime}\right)=$ $=s,\left(r^{\prime}, s^{\prime}\right)$ is a balanced identity and G satisfies $\left(r^{\prime}, s^{\prime}\right)$.
(ii) If (r, s) is of type 2 then $\left(r^{\prime}, s^{\prime}\right)$ is of this type.
(iii) If $r \neq s$ then $r^{\prime} \neq s^{\prime}$.

Proof. Easy.
4.5 Lemma. Let G be a groupoid containing a right unit and satisfying a balanced identity (r, s) of type 2 . Suppose that $\mathrm{n}=1(r) \leqq 1\left(r^{\prime}\right)$ whenever $\left(r^{\prime}, s^{\prime}\right)$ is a balanced identity of type 2 such that G satisfies (r^{\prime}, s^{\prime}). Then $3 \leqq \mathrm{n}$ and there exists $1 \leqq \mathrm{~m} \leqq$ $\leqq \mathrm{n}-2$ such that G satisfies (p, q), where $p=x_{1}\left(x_{2}\left(\ldots\left(x_{\mathrm{n}-1} x_{\mathrm{n}}\right)\right)\right)$ and $q=$ $=x_{1}\left(\ldots\left(x_{m-1}\left(\left(x_{m}\left(\ldots\left(x_{n-2} x_{n-1}\right)\right)\right) x_{n}\right)\right)\right)$.

Proof. We can assume that $\mathrm{v}(r)=(1,2, \ldots, \mathrm{n})$. Since $r \neq s, 3 \leqq \mathrm{n}$. Further, $\left(\mathrm{u}\left(r, x_{\mathrm{n}}\right), \mathrm{u}\left(s, x_{\mathrm{n}}\right)\right) \in \mathscr{S}$ and G satisfies this identity. Consequently, $\mathrm{u}\left(r, x_{\mathrm{n}}\right)=\mathrm{u}\left(s, x_{\mathrm{n}}\right)$. On the other hand, there are $1 \leqq \mathrm{i}, \mathrm{j}$ and $r_{1}, \ldots, r_{\mathrm{i}}, s_{1}, \ldots, s_{\mathrm{j}} \in W$ such that $r=$ $=r_{1}\left(\ldots\left(r_{\mathrm{i}} x_{\mathrm{n}}\right)\right)$ and $s=s_{1}\left(\ldots\left(s_{j} x_{\mathrm{n}}\right)\right)$. We must distinguish the following two cases:
(i) $2 \leqq \mathrm{i} \leqq \mathrm{j}$. Then $r_{1}\left(\ldots\left(r_{\mathrm{i}-1} r_{\mathrm{i}}\right)\right)=\mathrm{u}\left(r, x_{\mathrm{n}}\right)=\mathrm{u}\left(s, x_{\mathrm{n}}\right)=s_{1}\left(\ldots\left(s_{\mathrm{j}-1} s_{\mathrm{j}}\right)\right), r_{1}=$ $=s_{1}, \ldots, r_{\mathrm{i}-1}=s_{\mathrm{i}-1}, r_{\mathrm{i}}=s_{\mathrm{i}}\left(\ldots\left(s_{\mathrm{j}-1} s_{\mathrm{j}}\right)\right), s_{1}, \ldots, s_{\mathrm{j}} \in X$ by $4.4, \mathrm{j}=\mathrm{n}-1, s_{1}=$ $=x_{1}, \ldots, s_{\mathrm{n}-1}=x_{\mathrm{n}-1}, s=x_{1}\left(\ldots\left(x_{\mathrm{n}-1} x_{\mathrm{n}}\right)\right)$ and $r=x_{1}\left(\ldots\left(x_{\mathrm{i}-1}\left(\left(x_{\mathrm{i}}\left(\ldots\left(x_{\mathrm{n}-2} x_{\mathrm{n}-1}\right)\right)\right) x_{\mathrm{n}}\right)\right)\right)$. Since $r \neq s, \mathrm{i} \leqq \mathrm{n}-2$.
(ii) $1=\mathrm{i} \leqq \mathrm{j}$. Then $r_{1}=s_{1}\left(\ldots\left(s_{\mathrm{j}-1} s_{\mathrm{j}}\right)\right)$, $\mathrm{j}=\mathrm{n}-1, s_{1}=x_{1}, \ldots, s_{\mathrm{n}-1}=x_{\mathrm{n}-1}$, $r=\left(x_{1}\left(\ldots\left(x_{\mathrm{n}-2} x_{\mathrm{n}-1}\right)\right)\right) x_{\mathrm{n}}$ and $s=x_{1}\left(\ldots\left(x_{\mathrm{n}-1} x_{\mathrm{n}}\right)\right)$.
5.
5.1 Lemma. The groupoids S_{5} and $S_{5}^{\text {op }}$ satisfy no balanced identity of type 2 .

Proof. Let (r, s) be a balanced identity of type 2 such that S_{5} satisfies (r, s). Put $\mathrm{n}=1(r)$ and suppose that $r=x_{1}\left(\ldots\left(x_{\mathrm{n}-1} x_{\mathrm{n}}\right)\right)$ and $s=x_{1}\left(\ldots\left(x_{\mathrm{m}-1}\left(\left(x_{\mathrm{m}}\left(\ldots\left(x_{\mathrm{n}-2} x_{\mathrm{n}-1}\right)\right)\right) x_{\mathrm{n}}\right)\right)\right)$ where $1 \leqq \mathrm{~m} \leqq \mathrm{n}-2$ (see 4.5). Define a homomorphism f of W into S_{5} by $f\left(x_{1}\right)=f\left(x_{2}\right)=\ldots=f\left(x_{n-2}\right)=u, f\left(x_{n-1}\right)=$ $=v$ and $f\left(x_{\mathrm{n}}\right)=f\left(x_{\mathrm{n}+1}\right)=\ldots=w$. Then $f(r)=u \neq w=f(s)$, a contradiction.
5.2 Lemma. The groupoids $S_{6}, S_{7}, S_{6}^{\text {op }}, S_{7}^{\text {op }}$ satisfy no balanced identity of type 2.

Proof. Similar to that of 5.1.
5.3 Lemma. The groupoids S_{8} and $S_{8}^{\text {op }}$ satisfy no balanced identity of type 2.

Proof. Suppose that $S_{8}^{\text {op }}$ satisfies $(r, s), 1 \leqq m \leqq n-2, r=x_{1}\left(\ldots\left(x_{\mathrm{n}-1} x_{\mathrm{n}}\right)\right)$ and $s=x_{1}\left(\ldots\left(\left(x_{m}\left(\ldots\left(x_{n-2} x_{n-1}\right)\right)\right) x_{n}\right)\right)$) (see 4.5). Define a homomorphism f
of W into S_{8}^{op} by $f\left(x_{1}\right)=\ldots=f\left(x_{\mathrm{n}-2}\right)=v, f\left(x_{\mathrm{n}-1}\right)=w$ and $f\left(x_{\mathrm{n}}\right)=\ldots=u$. Then $f(r)=v \neq u=f(s)$, a contradiction.
5.4 Lemma. The groupoid S_{9} satisfies no balanced identity of type 2 .

Proof. We are going to show by induction on $1(r)$ that for every balanced identity (r, s) of type 2 there exists a homomorphism f of W into S_{9} such that $f(r) \neq f(s)$. We can assume without loss of generality that $4 \leqq \mathrm{n}=1(r), \mathrm{v}(r)=(1,2, \ldots, \mathrm{n})$, $r=r_{1} r_{2}$ and $s=s_{1} s_{2}$.
(i) Let $1\left(r_{1}\right)=\mathrm{m}<\mathrm{k}=1\left(s_{1}\right)$. Define a homomorphism f of W into S_{9} by $f\left(x_{1}\right)=\ldots=f\left(x_{\mathrm{m}}\right)=u, f\left(x_{\mathrm{m}+1}\right)=\ldots=f\left(x_{\mathrm{k}}\right)=v$ and $f\left(x_{\mathrm{k}+1}\right)=\ldots=w$. Then $f(r)=f\left(r_{1}\right) f\left(r_{2}\right)=u v=u \neq w=u w=f\left(s_{1}\right) f\left(s_{2}\right)=f(s)$.
(ii) Let $1\left(r_{1}\right)=\mathrm{m}=1\left(s_{1}\right)$. Then $1\left(r_{2}\right)=1\left(s_{2}\right)$. Assume first $r_{1} \neq s_{1}$. Then $\left(r_{1}, s_{1}\right)$ is a balanced identity of type 2 and there is a homomorphism g of W into S_{9} with $g\left(r_{1}\right) \neq g\left(s_{1}\right)$. We have $\left\{g\left(r_{1}\right), g\left(s_{1}\right), z\right\}=\{u, v, w\}=S$ for some $z \in S$. Define f by $f\left(x_{\mathrm{i}}\right)=g\left(x_{\mathrm{i}}\right)$ for $1 \leqq \mathrm{i} \leqq \mathrm{m}$ and $f\left(x_{\mathrm{j}}\right)=z$ for $\mathrm{m}+1 \leqq \mathrm{j}$. Then $f(r)=$ $=g\left(r_{1}\right) z \neq g\left(s_{1}\right) z=f(s)$. If $r_{1}=s_{1}$ then $r_{2} \neq s_{2}$ and we can proceed similarly.
5.5 Theorem. The following conditions are equivalent for a quasitrivial groupoid G :
(i) G satisfies a balanced identity of type 2 .
(ii) G is a semigroup.
(iii) G satisfies every balanced identity of type 2 .

Proof. Apply 2.7, 5.1, 5.2, 5.3 and 5.4.
6.
6.1 Lemma. The groupoid S_{5} satisfies the identity $\left(x_{1} x_{2} \cdot x_{3}, x_{1} x_{3} \cdot x_{2}\right)$.

Proof. Easy.
6.2 Lemma. Let (r, s) be a balanced identity such that S_{5} satisfies (r, s). Then $(r, s) \in \mathscr{T}_{\mathrm{r}}$.

Proof. The proof will be divided into eight parts.
(i) By 4.1, o $(r)=\mathrm{o}(s)$. Suppose $\mathrm{o}(r)=x_{1}$.
(ii) Let $x \in \operatorname{var}_{1}(r)$. We are going to show that $x \in \operatorname{var}_{1}(s)$. Suppose, on the contrary, that $x p$ is a subterm of r and $q x$ of s for some $p, q \in W$. Obviously, $x \neq x_{1}$ and we can assume $x=x_{2}$ and $\operatorname{var}(p)=\left\{x_{3}, \ldots, x_{\mathrm{m}}\right\}, 3 \leqq \mathrm{~m}$. Define a homomorphism f of W into S_{5} by $f\left(x_{1}\right)=f\left(x_{\mathrm{m}+1}\right)=f\left(x_{\mathrm{m}+2}\right)=\ldots=u, f\left(x_{2}\right)=v$ and $f\left(x_{3}\right)=f\left(x_{4}\right)=\ldots=f\left(x_{m}\right)=w$. Then $f(x p)=v, f(q x)=f(q) \in\{u, w\}$ and $f(r)=$ $=u \neq w=f(s)$, a contradiction.
(iii) $\operatorname{By}($ ii $), \operatorname{var}_{1}(r)=\operatorname{var}_{1}(s)$ and $\operatorname{var}_{\mathrm{r}}(r)=\operatorname{var}_{\mathrm{r}}(s)$.
(iv) Now, we are going to prove by induction on $1(r)=\mathrm{n}$ that $(r, s) \in \mathscr{T}_{r}$. With regard to (i), (iii), 3.4, 3.6 and 6.1, we can assume that $3 \leqq \mathrm{n}$ and (r) $\mathrm{o}=$ $=x_{\mathrm{n}}=(s)$ o. Put $r^{\prime}=\mathrm{u}\left(r, x_{\mathrm{n}}\right)$ and $s^{\prime}=\mathrm{u}\left(s, x_{\mathrm{n}}\right)$. By 4.3, S_{5} satisfies the identity $\left(r^{\prime}, s^{\prime}\right)$. Hence $\left(r^{\prime}, s^{\prime}\right) \in \mathscr{T}_{\mathrm{r}}$. On the other hand (see 3.5), there are $1 \leqq \mathrm{k}, r_{1}, \ldots, r_{\mathrm{k}}$, $s_{1}, \ldots, s_{\mathrm{k}} \in W$ and a permutation π such that $r^{\prime}=\left(\left(x_{1} r_{1}\right) \ldots\right) r_{\mathrm{k}}, s^{\prime}=\left(\left(x_{1} s_{1}\right) \ldots\right) s_{\mathbf{k}}$ and $\left(r_{\mathrm{i}}, s_{\pi(\mathrm{i})}\right) \in \mathscr{T}_{\mathrm{r}}$ for every $1 \leqq \mathrm{i} \leqq \mathrm{k}$.
(v) Let $r=r^{\prime} x_{\mathrm{n}}$ and $s=s^{\prime} x_{\mathrm{n}}$. Then $(r, s) \in \mathscr{T}_{\mathrm{r}}$ trivially.
(vi) Let $r=\left(\left(\left(x_{1} r_{1}\right) \ldots\right) r_{\mathrm{k}-1}\right) p, p \in W$, and $s=s^{\prime} x_{\mathrm{n}}$. Put $q=\left(\left(\left(x_{1} s_{\pi(1)}\right) \ldots\right)\right.$. . $\left.s_{\pi(\mathrm{k})}\right) x_{\mathrm{n}}$ and define a homomorphism f of W into S_{5} by $f\left(x_{1}\right)=f(x)=u$ for every $x \in \operatorname{var}\left(r_{1}\right) \cup \ldots \cup \operatorname{var}\left(r_{\mathrm{k}-1}\right), f(y)=v$ for every $y \in \operatorname{var}\left(r_{\mathrm{k}}\right)$ and $f(z)=w$ for any other variable z. Then S_{5} satisfies (r, q) and we have $f(r)=u v=u \neq w=u w=$ $=u u \cdot w=f(q)$, a contradiction.
(vii) Let $r=\left(\left(\left(x_{1} r_{1}\right) \ldots\right) r_{\mathrm{k}-1}\right) p, s=\left(\left(\left(x_{1} s_{1}\right) \ldots\right) s_{\mathrm{k}-1}\right) q$ and $\pi(\mathrm{k})=\mathrm{i}<\mathrm{k}$. Then $\pi(\mathrm{j})=\mathrm{k}$ for some $1 \leqq \mathrm{j}<\mathrm{k}$ and we put $p^{\prime}=\left(\left(\left(\left(\left(\left(x_{1} r_{1}\right) \ldots\right) r_{\mathrm{j}-1}\right) r_{\mathrm{j}+1}\right) \ldots\right)\right.$. .$\left.\left.\left.r_{\mathrm{k}-1}\right) r_{\mathrm{j}}\right) p, q^{\prime}=\left(\left(\left(\left(\left(\left(x_{1} s_{\pi(1)}\right) \ldots\right) s_{\pi(\mathrm{j}-1)}\right) s_{\pi(\mathrm{j}+1)}\right) \ldots\right) s_{\pi(\mathrm{k}-1)}\right) s_{\mathrm{i}}\right) q$ if $\mathrm{j} \neq \mathrm{k}-1$ and $p^{\prime}=r, q^{\prime}=\left(\left(\left(\left(x_{1} s_{\pi(1)}\right) \ldots\right) s_{\pi(\mathrm{k}-2)}\right) s_{\mathrm{i}}\right) q$ if $\mathrm{j}=\mathrm{k}-1$. Then S_{5} satisfies the identity $\left(p^{\prime}, q^{\prime}\right)$. Define f by $f\left(x_{\mathrm{n}}\right)=w, f(y)=v$ for every $y \in \operatorname{var}\left(r_{\mathrm{j}}\right)$ and $f(z)=u$ for $z \in X, \quad z \neq x_{\mathrm{n}}, \quad z \notin \operatorname{var}\left(r_{\mathrm{j}}\right)$. Then $f\left(p^{\prime}\right)=u v . w=w \neq u=u v=f\left(q^{\prime}\right)$, a contradiction.
(viii) Let $r=\left(\left(\left(x_{1} r_{1}\right) \ldots\right) r_{\mathrm{k}-1}\right) p, s=\left(\left(\left(x_{1} s_{1}\right) \ldots\right) s_{\mathrm{k}-1}\right) q$ and $\pi(\mathrm{k})=\mathrm{k}$. Assume first that S_{5} satisfies (p, q). Then $(p, q) \in \mathscr{T}_{r}$, and hence $(r, s) \in \mathscr{T}_{r}$. Now, let S_{5} do not satisfy (p, q). Since $u\left(p, x_{\mathrm{n}}\right)=r_{\mathrm{k}}, \mathrm{u}\left(q, x_{\mathrm{n}}\right)=s_{\mathrm{k}}$ and $\left(r_{\mathrm{k}}, s_{\mathrm{k}}\right) \in \mathscr{T}_{\mathrm{r}}$, we have $\mathrm{o}(p)=\mathrm{o}(q)$. From this, $\{f(p), f(q)\}=\{u, w\}$ for every homomorphism f of W into S_{5} such that $f(p) \neq f(q)$. However, such a homomorphism f exists and we define g by $g(x)=u$ for every $x \in \operatorname{var}\left(x_{1} r_{1}\right) \cup \operatorname{var}\left(r_{2}\right) \cup \ldots \cup \operatorname{var}\left(r_{\mathrm{k}-1}\right), g(y)=y$ for the remaining variables $y \in X$. Then $\{g(r), g(s)\}=\{u u, u w\}=\{u, w\}, g(r) \neq$ $\neq g(s)$, a contradiction.
6.3 Corollary. The groupoid $S_{5}\left(S_{8}^{\mathrm{op}}\right)$ satisfies a non-trivial balanced identity (r, s) iff (r, s) is of type 3 (4).
7.
7.1 Lemma. Let (r, s) be a balanced identity such that the groupoid S_{6} satisfies (r, s). Then $r=s$.

Proof. The proof will be divided into eight parts.
(i) By 4.2, o $(r)=\mathrm{o}(s)$. Suppose $\mathrm{o}(r)=x_{1}$.
(ii) Let $x \in \operatorname{var}_{1}(r)$. We are going to show that $x \in \operatorname{var}_{1}(s)$. Let, on the contrary, $x p$ be a subterm of r and $q x$ of s. Then we can assume $x=x_{2}$ and $\operatorname{var}(p)=$ $=\left\{x_{3}, \ldots, x_{\mathrm{m}}\right\}$ for some $3 \leqq \mathrm{~m}$. Define a homomorphism f of W into S_{6} by $f\left(x_{2}\right)=$ $=u, f\left(x_{3}\right)=f\left(x_{4}\right)=\ldots=f\left(x_{\mathrm{m}}\right)=v$ and $f\left(x_{1}\right)=f\left(x_{\mathrm{m}+1}\right)=\ldots=w$. Then $f(x p)=u, f(q x)=f(q) \in\{v, w\}$ and $f(r)=w \neq v=f(s)$, a contradiction.
(iii) $\mathrm{By}\left(\right.$ ii), $\operatorname{var}_{1}(r)=\operatorname{var}_{1}(s)$ and $\operatorname{var}_{\mathrm{r}}(r)=\operatorname{var}_{\mathrm{r}}(s)$.
(iv) Let $r=p q_{1}$ and $s=p q_{2}, p, q_{1}, q_{2} \in W$, and let f be a homomorphism of W into S_{6} with $f\left(q_{1}\right) \neq f\left(q_{2}\right)$. Taking into account that the inequalities $w u \neq w v$, $u u \neq u w$ and $u v \neq u w$ hold in S_{6}, it is easy to check that there exists a homomorphism g such that $g(x)=f(x)$ for every $x \in \operatorname{var}\left(q_{1} q_{2}\right)$ and $g\left(p q_{1}\right) \neq g\left(p q_{2}\right)$, a contradiction. We have proved that S_{6} satisfies $\left(q_{1}, q_{2}\right)$.
(v) Assume that $r \neq s$ and $r^{\prime}=s^{\prime}$ whenever $\left(r^{\prime}, s^{\prime}\right)$ is balanced, S_{6} satisfies (r^{\prime}, s^{\prime}) and $\mathrm{l}\left(r^{\prime}\right)<\mathrm{n}=1(r)$. Then $3 \leqq \mathrm{n}$ and (r, s) is irreducible by 4.4. Further, let $\operatorname{var}(r)=\left\{x_{1}, \ldots, x_{n}\right\}$ and $(r) \mathrm{o}=x_{\mathrm{n}}$. Then $x_{\mathrm{n}} \in \operatorname{var}_{\mathrm{r}}(r)=\operatorname{var}_{\mathrm{r}}(s)$ and S_{6} satisfies the identity $\left(\mathrm{u}\left(r, x_{\mathrm{n}}\right), \mathrm{u}\left(s, x_{\mathrm{n}}\right)\right.$). Consequently, $\mathrm{u}\left(r, x_{\mathrm{n}}\right)=\mathrm{u}\left(s, x_{\mathrm{n}}\right)$ and the following three cases can arise:
(vi) $r=p q, s=p^{\prime} q^{\prime}$ and $x_{\mathrm{n}} \in \operatorname{var}\left(q^{\prime}\right)$. First, let $q \neq x_{\mathrm{n}} \neq q^{\prime}$. Then $p \mathrm{u}\left(q, x_{\mathrm{n}}\right)=$ $=\mathrm{u}\left(r, x_{\mathrm{n}}\right)=\mathrm{u}\left(s, x_{\mathrm{n}}\right)=p^{\prime} \mathrm{u}\left(q^{\prime}, x_{\mathrm{n}}\right), p=p^{\prime}$ and S_{6} satisfies $\left(q, q^{\prime}\right)$ by (iv). Thus $q=q^{\prime}$ and $r=s$, a contradiction. Further, let $q=x_{\mathrm{n}} \neq q^{\prime}$. Then $p=p^{\prime} \mathrm{u}\left(q^{\prime}, x_{\mathrm{n}}\right)$, $p^{\prime} \in X, p^{\prime}=x_{1}, r=x_{1} u\left(q^{\prime}, x_{\mathrm{n}}\right) \cdot x_{\mathrm{n}}, s=x_{1} q^{\prime}$ and $f(r) \neq f(s)$ where $f\left(x_{1}\right)=u$, $f\left(x_{\mathrm{n}}\right)=w$ and $f(x)=v$ for $x \in X, x \neq x_{1}, x \neq x_{\mathrm{n}}$, a contradiction. Similarly if $q \neq x_{\mathrm{n}}=q^{\prime}$. Finally, if $q=x_{\mathrm{n}}=q^{\prime}$ then $p=p^{\prime}$ and $r=s$, a contradiction.
(vii) $r=p q, s=p^{\prime} q^{\prime}, 2 \leqq 1(q)$ and $x_{\mathrm{n}} \in \operatorname{var}\left(p^{\prime}\right)$. Then $p=\mathrm{u}\left(p^{\prime}, x_{\mathrm{n}}\right), q^{\prime}=$ $=\mathrm{u}\left(q, x_{\mathrm{n}}\right)$ and there are $1 \leqq \mathrm{k}, \mathrm{m}, T_{1}, \ldots, T_{\mathrm{k}} \in\{L, R\}$ and $r_{1}, \ldots, r_{\mathrm{k}}, s_{1}, \ldots, s_{\mathrm{m}} \in W$ such that $p^{\prime}=T_{1, r_{1}} \ldots T_{\mathrm{k}, r_{\mathrm{k}}}\left(x_{\mathrm{n}}\right), T_{\mathrm{k}}=L$ and $q=s_{1}\left(\ldots\left(s_{\mathrm{m}} x_{\mathrm{n}}\right)\right)$. Then $p=T_{1, r_{1}} \ldots$ $\ldots T_{\mathrm{k}-1, r_{\mathrm{k}-1}}\left(r_{\mathrm{k}}\right), q^{\prime}=s_{1}\left(\ldots\left(s_{\mathrm{m}-1} s_{\mathrm{m}}\right)\right)$ and $r_{1}, \ldots, r_{\mathrm{k}}, s_{1}, \ldots, s_{\mathrm{m}} \in X$, since (r, s) is irreducible. We have $1 \leqq \mathrm{~m}, s_{\mathrm{m}} \in \operatorname{var}_{1}(r)$ and $s_{\mathrm{m}} \in \operatorname{var}_{1}(s)$, a contradiction.
(viii) $r=p x_{\mathrm{n}}, s=p^{\prime} q^{\prime}$ and $x_{\mathrm{n}} \in \operatorname{var}\left(p^{\prime}\right)$. Then $p=\mathrm{u}\left(p^{\prime}, x_{\mathrm{n}}\right) q^{\prime}$ and $q^{\prime} \in X$. There are $1 \leqq \mathrm{k}, T_{1}, \ldots, T_{\mathrm{k}} \in\{L, R\}$ and $r_{1}, \ldots, r_{\mathrm{k}} \in W$ such that $p^{\prime}=T_{1, r_{1}} \ldots$ $\ldots T_{\mathrm{k}, r_{\mathrm{k}}}\left(x_{\mathrm{n}}\right), T_{\mathrm{k}}=L$. Then $p=T_{1, r_{1}} \ldots T_{\mathrm{k}-1, r_{k-1}}\left(r_{\mathrm{k}}\right) \cdot q^{\prime}, r_{1}, \ldots, r_{\mathrm{k}} \in X$. Assume $\mathrm{k} \geqq 2$. Since $r_{\mathrm{k}} \in \operatorname{var}_{1}(s)$, we have $r_{\mathrm{k}} \in \operatorname{var}_{1}(r), T_{\mathrm{k}-1}=R, S_{6}$ satisfies $\left(\mathrm{u}\left(r, r_{\mathrm{k}-1}\right)\right.$, $\left.\mathrm{u}\left(s, r_{\mathrm{k}-1}\right)\right), \mathrm{u}\left(r, r_{\mathrm{k}-1}\right)=\mathrm{u}\left(s, r_{\mathrm{k}-1}\right)$ and $x_{\mathrm{n}}=q^{\prime}$, a contradiction. Thus $\mathrm{k}=1$, $\mathrm{n}=3, r=x_{1} x_{2} \cdot x_{3}, s=x_{1} x_{3} \cdot x_{2}$. But $u w \cdot v \neq u v \cdot w$ is true in S_{6}, a contradiction.
7.2 Corollary. The groupoids S_{6} and $S_{6}^{\text {op }}$ satisfy no non-trivial balanced identity.
8.
8.1 Lemma. Let (r, s) be a balanced identity such that the groupoid S_{7} satisfies (r, s). Then $r=s$.

Proof. By 4.2, o $(r)=\mathrm{o}(s)$. Moreover, the subgroupoid $\{u, w\}$ of S_{7} is an Rsemigroup, and therefore $(r) \mathrm{o}=(s)$ o. Since S_{7} has a right unit, S_{7} satisfies the identity $(\mathrm{u}(r, x), \mathrm{u}(s, x)), x=(r) \mathrm{o}$. Hence $(\mathrm{u}(r, x)) \mathrm{o}=(\mathrm{u}(s, x)) \mathrm{o}$, etc., and we have $\mathrm{v}(r)=\mathrm{v}(s)$ and $(r, s) \in \mathscr{S}$. By 5.2, $r=s$.
8.2 Lemma. Let (r, s) be a balanced identity such that the groupoid S_{8} satisfies (r, s). Then $r=s$.

Proof. We have $\mathrm{o}(r)=\mathrm{o}(s)$ by 4.2, S_{8} has a left unit, $\mathrm{v}(r)=\mathrm{v}(s)$ and $r=s$ by 5.3 .
8.3 Corollary. The groupids $S_{7}, S_{8}, S_{7}^{\text {op }}, S_{8}^{\text {op }}$ satisfy no non-trivial balanced identity.
9.
9.1 Lemma. Let $r, s, r^{\prime}, s^{\prime} \in W$ be such that $\operatorname{var}(r) \cap \operatorname{var}\left(r^{\prime}\right) \neq \emptyset \neq \operatorname{var}(s) \cap$ $\cap \operatorname{var}\left(r^{\prime}\right)$ and the pair $\left(r s, r^{\prime} s^{\prime}\right)$ is a strong balanced identity. Then the groupoid S_{9} does not satisfy this identity.

Proof. Let $Y=\operatorname{var}(r)=\left\{x_{1}, \ldots, x_{m}\right\}$ and $Z=\operatorname{var}(s)=\left\{x_{m+1}, \ldots, x_{n}\right\}, 1 \leqq$ $\leqq \mathrm{m}<\mathrm{n}$. By 3.8, there are $p, q \in W$ such that $p q$ is a subterm of r^{\prime} and either $\operatorname{var}(p) \subseteq Y$ and $\operatorname{var}(q) \subseteq Z$ or $\operatorname{var}(p) \subseteq Z$ and $\operatorname{var}(q) \subseteq Y$. Suppose that $\operatorname{var}(p) \subseteq Y$ and $\operatorname{var}(q) \subseteq Z$, the other case being similar. If $\operatorname{var}(q) \neq Z$ then $x_{k} \in \operatorname{var}(q)$ for some $\mathrm{m}+1 \leqq \mathrm{k} \leqq \mathrm{n}$ and we define a homomorphism f of W into S_{9} by $f\left(x_{1}\right)=\ldots$ $\ldots=f\left(x_{\mathrm{m}}\right)=u, f\left(x_{\mathrm{k}}\right)=v$ and $f(x)=w$ for the remaining variables $x \in X$. Then $f(r s)=u v=u$ and $f\left(r^{\prime} s^{\prime}\right)=w$. If $\operatorname{var}(q)=Z$ then we can assume $\operatorname{var}\left(s^{\prime}\right)=$ $=\left\{x_{\mathrm{k}}, x_{\mathrm{k}+1}, \ldots, x_{\mathrm{m}}\right\}$ for some $2 \leqq \mathrm{k} \leqq \mathrm{m}$ and we define f by $f\left(x_{1}\right)=\ldots$ $\ldots=f\left(x_{\mathrm{k}-1}\right)=u, f\left(x_{\mathrm{k}}\right)=\ldots=f\left(x_{\mathrm{m}}\right)=w$ and $f\left(x_{\mathrm{m}+1}\right)=\ldots=v$. Then $f(r s)=$ $=w v=v$ and $f\left(r^{\prime} s^{\prime}\right)=u w=w$.
9.2 Lemma. The groupoid S_{9} satisfies no strong balanced identity.

Proof. Let (r, s) be a strong balanced identity. We shall prove by induction on $1(r)$ that $f(r) \neq f(s)$ for a homomorphism f of W into S_{9}. We have $3 \leqq 1(r), r=r_{1} r_{2}$ and $s=s_{1} s_{2}$. With respect to 9.1 and the fact that S_{9} is commutative, we may assume that $\operatorname{var}\left(r_{1}\right)=\operatorname{var}\left(s_{1}\right)$ and $\operatorname{var}\left(r_{2}\right)=\operatorname{var}\left(s_{2}\right)$. First, let $\left(r_{2}, s_{2}\right)$ be a strong balanced identity. Then $g\left(r_{2}\right) \neq g\left(s_{2}\right)$ for a homomorphism g and we define f by $f(x)=g(x)$ for $x \in \operatorname{var}\left(r_{2}\right)$ and $f(y)=z$ for $y \in X, y \notin \operatorname{var}\left(r_{2}\right)$, where $z \in S$ is such that $\left\{g\left(r_{2}\right), g\left(s_{2}\right), z\right\}=\{u, v, w\}=S$. Then $f(r)=z g\left(r_{2}\right) \neq z g\left(s_{2}\right)=f(s)$. Finally, let $\left(r_{2}, s_{2}\right) \in \mathscr{R}$. Then $\left(r_{1}, s_{1}\right) \notin \mathscr{R},\left(r_{1}, s_{1}\right)$ is a strong balanced identity and we can proceed similarly.
10.
10.1 Proposition. Every quasitrivial groupoid satisfying a balanced identity of type 5 is a semigroup.

Proof. Apply 2.7, 6.3, 7.2, 8.3 and 9.2.
10.2 Proposition. A groupoid G is a medial quasitrivial groupoid iff at least one of the following five assertions is true:
(i) G is a quasitrivial semilattice.
(ii) G is an L-semigroup.
(iii) G is an R -semigroup.
(iv) There exist an l-semigroup H and a quasitrivial semilattice K such that $H \cap K=\emptyset$ and $G=H: K$.
(v) There exist an R-semigroup H and a quasitrivial semilattice K such that $H \cap K=\emptyset$ and $G=H: K$.

Proof. See [1, Theorem 5.5].
10.3 Corollary. Every medial quasitrivial groupoid is a semigroup.
10.4 Theorem. The following conditions are equivalent for a quasitrivial groupoid G :
(i) G satisfies a balanced identity of type 5 .
(ii) G is medial.
(iii) G satisfies every balanced identity (r, s) such that $\mathrm{o}(r)=\mathrm{o}(s)$ and $(r) \mathrm{o}=$ $=(s) \mathrm{o}$.

Proof. (i) implies (ii). By 10.1, G is a semigroup. Let $A, B \in G / \sigma$ be such that $A \neq B$ and $A B=B$. Suppose that $2 \leqq \operatorname{card} B$ and $v(r)=(1,2, \ldots, \mathrm{n})$. Since $(r, s) \notin \mathscr{S}^{\prime}$, there are $1 \leqq \mathrm{i}<\mathrm{j} \leqq \mathrm{n}$ such that $\mathrm{v}(s)=(\ldots, \mathrm{j}, \ldots, \mathrm{i}, \ldots)$. Now, take $a \in A, b, c \in B, b \neq c$, and define a homomorphism f of W into G by $f\left(x_{i}\right)=b$, $f\left(x_{\mathrm{j}}\right)=c$ and $f(x)=a$ for $x_{\mathrm{i}} \neq x \neq x_{\mathrm{j}}$. Then, by 1.4 and $1.5, f(r)=b c \neq c b=$ $=f(s)$, a contradiction. have proved that card $B=1$ and the rest is now clear from 10.2.
(ii) implies (iii). Apply 10.2.
(iii) implies (i). This is obvious.
10.5 Corollary. The following conditions are equivalent for a quasitrivial groupoid G :
(i) G satisfies a balanced identity (r, s) of type 5 such that $(r) \mathrm{o} \neq(s) \mathrm{o}$.
(ii) G is either a semilattice or an L-semigroup or $G=H: K$ where H is an L-semigroup and K a quasitrivial semillatice with $H \cap K=\emptyset$.
(iii) G satisfies the identity $\left(x_{1} x_{2}, x_{3}, x_{1}, x_{3} x_{2}\right)$.
(iv) G satisfies every balanced identity (r, s) such that $o(r)=o(s)$.
10.6 Corollary. The following conditions are equivalent for a quasitrivial groupoid G :
(i) G is commutative and satisfies a strong balanced identity.
(ii) G is a semilattice.
(iii) G satisfies every balanced identity.
(iv) G satisfies the identity $\left(x_{1} x_{2}, x_{3}, x_{3} x_{2} . x_{1}\right)$.
(v) G satisfies a balanced identity (r, s) of type 5 such that $o(r) \neq o(s)$ and $(r) \mathrm{o} \neq(s) \mathrm{o}$.
11.
11.1 Proposition. The following conditions are equivalent for a quasitrivial groupoid G :
(i) $\varrho=\sigma$.
(ii) G contains no subgroupid isomorphic to one of the groupoids S_{5}, S_{6}, S_{8}, $S_{5}^{\text {op }}, S_{6}^{\text {op }}, S_{8}^{\text {op }}$.

Proof. Easy (use 1.1(iii) and 2.5).
11.2 Lemma. Let G be a contracommutative quasitrivial groupoid satisfying a balanced identity of type 1 . Then G is either an L-semigroup or an R-semigroup.

Proof. By 6.3, 7.2, 8.3 and $11.1, \varrho=G \times G$ and G is anticommutative. Hence S_{9} is not isomorphic to a subgroupoid of G and G is a semigroup. The result follows now from 1.5.

We shall say that a quasitrivial groupoid G is semicommutative if at least one of the following five assertions is true:
(i) G is commutative.
(ii) G is an L-semigroup.
(iii) G is an R-semigroup.
(iv) There exist an L-semigroup H and a commutative quasitrivial groupoid K such that $H \cap K=\emptyset$ and $G=H: K$.
(v) There exist an R-semigroup H and a commutative quasitrivial groupoid K such that $H \cap K=\emptyset$ and $G=H: K$.
11.3 Theorem. The following conditions are equivalent for a quasitrivial groupoid G.
(i) G satisfies a balanced identity of type 1 .
(ii) G is semicommutative.
(iii) G satisfies every balanced identity (r, s) of type 1 such that $\mathrm{o}(r)=\mathrm{o}(s)$ and $(r) \mathrm{o}=(s) \mathrm{o}$.
(iv) G satisfies the identity $\left(\left(x_{1} \cdot x_{2} x_{3}\right) x_{4},\left(x_{1} \cdot x_{3} x_{2}\right) x_{4}\right)$.

Proof. (i) implies (ii). Let $A, B \in G / \sigma$ be such that $A B=B$ and $A \neq B$. Suppose $2 \leqq \operatorname{card} B$ and $\mathrm{v}(r)=(1,2, \ldots, \mathrm{n})$ where (r, s) is balanced identity of type 1 such that G satisfies (r, s). Since $(r, s) \in \mathscr{R}$ and $r \neq s,(r, s) \notin \mathscr{S}$ and there are $1 \leqq \mathrm{i}<$ $<\mathrm{j} \leqq \mathrm{n}$ such that $\mathrm{v}(s)=(\ldots, \mathrm{j}, \ldots, \mathrm{i}, \ldots)$. Take $a \in A, b, c \in B, b \neq c$, and define a homomorphism f of W into G by $f\left(x_{\mathrm{i}}\right)=b, f\left(x_{\mathrm{j}}\right)=c$ and $f(x)=a$ for every $x \in X, x_{\mathrm{i}} \neq x \neq x_{\mathrm{j}}$. Then $f(r)=b c$ and $f(s)=c b$. However, $b c \neq c b$ by 11.1, a contradiction. We have proved that card $B=1$ and the rest is clear from 1.4 and 11.2.
(ii) implies (iii). Assume that $G=H: K$ for an L-semigroup H and a commutative quasitrivial groupoid K such that $H \cap K=\emptyset$. Obviously, $\sigma_{G}=(H \times H) \cup$
$\cup \mathrm{id}_{G}$. Denote by g the natural homomorphism of G onto G / σ. Let (r, s) be a balanced identity of type 1 such that $\mathrm{o}(r)=\mathrm{o}(s)$. We have $g f(r)=g f(s)$ and $(f(r), f(s)) \in \sigma$ for every homomorphism f of W into G. Hence either $f(r)=f(s)$ or $f(r), f(s) \in H$. If $f(r) \in H$ then $f(\operatorname{var}(r)) \subseteq H$ and $f(r)=f(s)$. The rest is similar.
(iii) implies (iv) and (iv) implies (i). These implications are clear.
11.4 Corollary. The following conditions are equivalent for a quasitrivial groupoid G :
(i) G satisfies a balanced identity (r, s) of type 1 such that $(r) \mathrm{o} \neq(s) \mathrm{o}$.
(ii) G is either commutative or an L-semigroup or $G=H: K$ for an L-semigroup H and a commutative quasitrivial groupoid K with $H \cap K=\emptyset$.
(iii) G satisfies every balanced identity (r, s) of type 1 such that $\mathrm{o}(r)=\mathrm{o}(s)$.
(iv) G satisfies the identity $\left(x_{1}, x_{2} x_{3}, x_{1}, x_{3} x_{2}\right)$.
11.5 Corollary. The following conditions are equivalent for a quasitrivial groupoid G :
(i) G satisfies a balanced identity (r, s) of type 1 such that $\mathrm{o}(r) \neq \mathrm{o}(s)$ and $(r) \mathrm{o} \neq(s) \mathrm{o}$.
(ii) G is commutative.
(iii) G satisfies every balanced identity of type 1 .
12.
12.1 Lemma. Let G be a quasitrivial semigroup satisfying a balanced identity of type 3 . Then G is medial.

Proof. Similar to that of 10.4 .
12.2 Proposition. Let G be a quasitrivial groupoid satisfying the identity $\left(x_{1} x_{2}, x_{3}, x_{1} x_{3}, x_{2}\right)$. Define a relation π by $(a, b) \in \pi$ iff $a, b \in G$ and $a b=b$. Then:
(i) π is an ordering.
(ii) If $a, b, c \in G$ and $(a, b),(a, c) \in \pi$ then either $(b, c) \in \pi$ or $(c, b) \in \pi$.

Proof. Easy.
12.3 Proposition. Let π be an ordering on a non-empty set G such that either $(b, c) \in \pi$ or $(c, b) \in \pi$ whenever $a, b, c \in G$ and $(a, b),(a, c) \in \pi$. Define a multiplication on G by $a b=b$ if $(a, b) \in \pi$ and $a b=a$ in the opposite case. Then G is a quasitrivial groupoid satisfying ($x_{1} x_{2} . x_{3}, x_{1} x_{3} . x_{2}$).

Proof. Easy.
12.4 Theorem. The following conditions are equivalent for a quasitrivial groupoid G :
(i) G satisfies a balanced identity (r, s) of type 3 such that $(r) \mathrm{o} \neq(s) \mathrm{o}$.
(ii) G satisfies the identity $\left(x_{1} x_{2}, x_{3}, x_{1} x_{3} \cdot x_{2}\right)$.
(iii) G satisfies every balanced identity of type 3 .

Proof. (i) implies (ii). Let H be a subgroupoid of G containing at most three elements. If H is a semigroup then H is medial by 12.1 and it is easy to check that H satisfies $\left(x_{1} x_{2} . x_{3}, x_{1} x_{3} . x_{2}\right)$ (use 10.2). Assume that H is not associative. According to $2.7,6.3,7.2,8.3$ and $9.2, H$ is isomorphic to S_{5} and the result follows from 6.1.
12.5 Theorem. The following conditions are equivalent for a quasitrivial groupoid G :
(i) G satisfies a balanced identity of type 3 .
(ii) G satisfies the identity $\left(\left(x_{1} x_{2}, x_{3}\right) x_{4},\left(x_{1} x_{3}, x_{2}\right) x_{4}\right)$.
(iii) At least one of the following assertions is true:
(iii1) G satisfies the identity $\left(x_{1} x_{2}, x_{3}, x_{1} x_{3} . x_{2}\right)$.
(iii2) G is an R -semigroup.
(iii3) $G=H: K$ for an R -semigroup H and a quasitrivial semilattice K with $H \cap K=\emptyset$.
(iv) G satisfies every balanced identity (r, s) of type 3 such that $(r) \mathrm{o}=(s) \mathrm{o}$.

Proof. (i) implies (ii). Let H be a subgroupid of G containing at most four elements. We are going to show that H satisfies the identity $\left(\left(x_{1} x_{2}, x_{3}\right) x_{4},\left(x_{1} x_{3}\right.\right.$. .$\left.x_{2}\right) x_{4}$). The groupoid H satisfies a balanced identity of type 3 , say (r, s). We can assume that $1(r) \leqq 1\left(r^{\prime}\right)$ whenever $\left(r^{\prime}, s^{\prime}\right)$ is a balanced identity of type 3 such H satisfies $\left(r^{\prime}, s^{\prime}\right)$. If $(r) \mathrm{o} \neq(s) \mathrm{o}$ then 12.4 may be applied. Suppose $\mathrm{o}(r)=x=\mathrm{o}(s)$, $(r) \mathrm{o}=y=(s) \mathrm{o} \quad(x \neq y$, since $4 \leqq \mathrm{l}(r))$ and put $r_{1}=\mathrm{u}(r, x), r_{2}=\mathrm{u}(r, y), s_{1}=$ $=\mathrm{u}(s, x), s_{2}=\mathrm{u}(s, y)$. We must distinguish the following cases:
(1) H is a semigroup. By $12.1, H$ is medial and the result follows easily from 10.2.
(2) H is not associative and H contains a left unit. Then H satisfies $\left(r_{1}, s_{1}\right)$. If $r_{1}=s_{1}$ then $\mathrm{v}(r)=\mathrm{v}(s),(r, s) \in \mathscr{S}$, a contradiction. Therefore $\left(r_{1}, s_{1}\right)$ is a balanced identity of type $T \in\{1,2,4,5\}$. If $T=1(T=2, T=5)$ then H is associative by 11.3 and $10.6(5.5,10.1)$, a contradiction. Hence $T=4$ and, since H is not associative, H contains a subgroupoid isomorphic to $S_{5}^{\text {op }}$ (use 2.7, 6.3, 7.2, 8.3, 9.2), a contradiction with 6.3.
(3) H is not associative and H contains a right unit. In this case, we can proceed similarly as in (2).
(4) H is not associative and contains no left unit and no right unit. We can assume without loss of generality that S_{5} is a subgroupoid of H. If $H=S_{5}$ then we have a contradiction with 6.1. Hence H contains just four elements, $H=\{u, v, w, z\}$. Since u and v are not right units of H and z is not a left unit, $z u=u, z v=v, z w=z$. The subgroupoid $K=\{u, w, z\}$ is not associative, since $z . u w=z \neq w=z u . w$. Consequently, K is isomorphic to S_{5}, a contradiction with the fact that K contains at most one left zero.
(ii) implies (iii). Suppose that $d=a b . c \neq a c . b=e$ for some $a, b, c \in G$. We have $d g=e g$ for every $g \in G$, and so $d g=g=e g$. From this, $g h . k=$ $=(d g . h) k=(d h . g) k=h g . k$ for all $g, h, k \in G$ and the rest is clear from 11.3 and 10.6.
(iii) implies (iv) and (iv) implies (i). Easy.

Reference

[1] Ježek J. and Kepka T.: Quasitrivial and nearly quasitrivial distributive groupoids and semigroups, Acta Univ. Carolinae Math. Phys. 19/2 (1978), 25-44.

[^0]: *) 18600 Praha 8, Sokolovská 83, Czechoslovakia.

