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1983 ACTA UNIVERSITATIS CAROLINAE - MATHEMATICA ET PHYSICA VOL. 24, NO. 2. 

Constructions of Color Schemes 

STEPHEN D. C O M E R 
The Citadel, Charleston*) 

Received 30 March 1983 

Representation techniques for an important class of multigroups, called polygroups, are 
discussed. For a set C of colors and an involution i of C, a color scheme is a system ( V, \Ca : 
: a~ C}> such that (i). {Ca : ae C} is a partition of { ( * , y ) e V2 : x 4= y}, (ii). C^ = Ci(fl> for 
each a G C, (hi), each color is present on some edge emininating from each vertex, and (iv). for 
a, b,ce C, Cc n (Cfl | Cb) #= 0 implies C c c c J Cfc. A multigroup, called a chromatic poly-
group, is associated with a color scheme in a natural way. Three techniques for showing that 
a polygroup is chromatic are discussed: (1) the construction of random schemes with forbidden 
configurations, (2) the construction of iterative 1-point extensions, and (3) product constructions. 

Jsou diskutovány techniky reprezentace důležité třídy multigrup, zvané polygrupy. Chroma-
tická polygrupa je multigrupa, asociovaná přirozeným způsobem s barevným schématem. Jsou 
diskutovány tři techniky pro demonstraci chromatičnosti polygrupy: (1) konstrukce náhodných 
schémat se zakázanými konfiguracemi, (2) konstrukce iterativních jednobodových extenzí, 
a (3) produktové konstrukce. 

Mccjie,zryioTCH TCXHHKH npeflCTaBJíeHHíi o ^ H o r o BaaeHoro KJiacca MyjiTHrpymi, Ha3biBaeMbix 
nojibirpynnbi. XpoMaTH-iecKan nojrbirpynna — eTo MyjiTHrpynna, accoHHpoBaHHaa HaTypajibHbíM 
Cn0C060M C HBeTHOH CXeMOH. HcCJICJTVTOTCfl TpH TCXHHKH yCTaHOBJíeHIM XpOMaTHHHOCTH flaHHOH 
nojibrrpynnbi: ( 1 ) nocTpoeHHH cnyHaHHbix cxeM c 3anpeiu,eHHbiMH KOH^yrypanHHMH, (2) nocrpoeHHH 
HTepaTHBHbIX OAHOTOHeHHbIX paCUIHpeHHH, H (3) nOCTpOeHHH npH nOMOHÍH npOH3Be^eHHH. 

A polygrup is a multivalued group-like system 301 = <90l, •, " 1 , e) where eeWt, 
- 1 is a unary operation on 9W, • maps 9Jt2 into nonempty subsets of 501, and the fol­
lowing axioms hold for all x, y, z e 50J: 

(0 (x . y) . z = x . (y . z), 

(ii) e . x = x = x . e, 

(iii) x e y . z implies y e x . z~l and z e y~l . x. 

Natural examples of polygroups can be derived from systems such as geometries, 
groups, distance transitive graphs, and association schemes (see [1]). Moreover, 

*) The Citadel Charleston, SC 29409 U.S.A. 
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polygroups are closely connected to the theory of relations (see [2]) and to other 
forms of algebraic logic. 

This paper is concerned with a class of polygroups related to a strong coloring 
of complete graphs. Given a set C (of colors) and an involution i of C, a color scheme 
is a system V = <V, {ca : a e C}> such that 

(i) {Ca:ae C} partitions V2 - I = {(x, y) e V2 : x -# >!}, 

(ii) Cfl
u = C,(fl) for a e C, 

(iii) each color is present on some edge eminating from each vertex, 

(iv) for a, b, c e C, Cc n (Ca \ Cb) 4= 0 implies Cc <~\ Ca \ Cb. 

The algebra of a color scheme "T is a system 5Plr = ( C u {I}, *, _ 1 , I> where 
I -f= C, a" 1 = i(a), I"1 = I, I . a = a .I, and for a, b G C, 

a * b = {c e C : Cc n (Ca | Cb) * 0} u {/ : a = b"1} . 

A polygroup isomorphic to some fflr is called chromatic. Chromatic polygroups 
are closely related to representable relation algebras (see [1]). 

A basic problem for a given polygroup ffl is to determine whether or not it is 
chromatic. If it is, it becomes of interest to know whether ffl has certain additional 
properties. 

(1) Is ffl ^ G // H, the polygroup of all double cosets of a subgroup H of 
a group G? 

(2) Is ffl =* fflr for a homogeneous coherent configuration? 

(3) Is ffle g2(Group), i.e., isomorphic to G // 0 where 0 is a conjugation on 
some group G? 

The purpose of this article is to discuss in one place several recent methods that 
can be used to show that a polygroup is chromatic or has one of the other properties 
above. In Section 1 a general iterative procedure is used to build color schemes with 
a prescribed set of forbidden configurations. A strong form of this inductive process 
leads to a type of random scheme in section 2 which contains an easy sufficient 
condition for the existence of these schemes. The consideration of special types of 
color scheme representations leads in a natural way to closure properties for the 
associated classes of polygroups. In section 3 closure properties with respect to two 
types of product operations are studied. A reader should consult [ l ] for terminology 
and notation that is not obvious. 

1. Iterative 1-point Extensions 

The idea behind this method is the observation that a polygroup fflr specifies 
which configurations of V are forbidden and which are admissible. 

An element of C3 is called a colored triangle (or just a triangle). A triangle 
(i, j , k) is realizable in 'V on an edge (x, y)eV2 — I if (x, y) e Ck n (C£ | Cj). 
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A class K of colored triangles is locally realizable in if if, for every edge (x, y) e Ck 

and every (i, j , k) e K, (x, y) e C{ | Cj. A class K of triangles is forbidden in TT if no 
triangle in K is realizable on an edge in if. 

The forbidden class FC(Wl) of a polygroup 301 is the class 

FC(SR) = {(a, b, c)e(M\ {e})3 :c$a.b} 

of colored triangles. When explicitly writing FC($R) we omit the obvious symmetries. 
For example, we say, the algebra A?123 in figure 1 has forbidden class {(1, 2, 3)} 
instead of {(1, 2, 3), (l, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)}. 

0 1 2 3 

0 0 1 2 3 
1 1 0123 12 13 
2 2 12 0123 23 
3 3 13 23 0123 

Figure 1. 

A system if that satisfies color scheme axioms (i) and (ii) is called a partial 
scheme. The following lemma provides the key to constructing color schemes having 
a prescribed forbidden class. 

Lemma 1. 901 is chromatic iff there a partial scheme that forbids FC(9Jl) and locally 
realizes it complement. 

Proof. Suppose if is a partial scheme with the property of the lemma. Assume 
there is some edge in Cj into a vertex x e V. For each i e M, j . i -# 0 so some triangle 
(I, f, k) will be locally realizable in if. Using properties of 9M an edge (x, z) e C7 can 
be found which establishes condition (iii) of the definition of color scheme. Condition 
(iv) is immediate from the assumption on rT. 

A color scheme produced by the method described in the next theorem is called 
an iterative 1-point extension. 

Theorem 2. A finite polygroup 9M is chromatic if K = FC(9Jl) has the property 

for every finite partial scheme if = <V, Ca}aeC that forbids K, every edge 
(*)<(*, y) e Ck and every triangle (i,j, k)$K, there exist a finite partial scheme 

if1 extending if such that if' forbids K and (i, j , k) is realized on (x, y) e if'. 

Proof. A scheme that represents 501 is constructed in a countable number of 
steps. Any finite partial scheme that forbids K is taken as the first stage. The partial 
scheme ir

n + l for the n + 1 stage is obtained from the scheme ifn at the nth stage 
by using (*) repeatedly (but only finitely many many times) to realize all admissible 

41 



triangles on edges in Vn. The union of all ^ n ' s has the property of Lemma 1. Com­
plete details may be found in [3]. 

The procedure above is the most general sufficient condition known. However, 
it has several disadvantages. 

(1) It is often a tedious, arduous task to verify (*). 

(2) Through the inductive procedure one loses control of the properties of the 
color scheme that ultimately represents ffl. To some extent this cannot be improved. 
For example in [3] Theorem 2 was used to show that a system 91 x was chromatic 
although 91i is not isomorphic to the algebra of a finite homogeneous coherent 
configuration; in particular 91x is not a double coset algebra of a finite group. 

Condition (*) in Theorem 2 is not necessary for ffl to be chromatic. This is 
a consequence of the next two results about the algebra A°X with forbidden class 
{(1, 1, 2), (1, 1, 3), (2, 2, 2), (3, 3, 3)} (see figure 2). 

0 1 2 3 

0 0 1 2 3 
1 1 01 23 23 
2 2 23 013 123 
3 3 23 123 012 

A01 

Figure 2 

The construction below was worked out jointly with Bill Sands. 

Proposition 3. A^ is chromatic. 

Proof. Partition R+ (= the positive reals) into three disjoint subsets B0, Bt, B2 

such that each Bt is dense in R + , cofinal in R + , and coinitial in R +. Introduce 
TT = <K + , Ci, C2, C3> where, for x, y e R + , x + y 

(x, y) e Ci iff x, y E Bt for some /. 

(x, y) e C2 iff for some i, m e Bt and M e Bj where j = i + 1 (mod 3), 
m = min {x, y} and M = max {x, y}. 

(x, y) e C3 iff (x, y) $ Ct and (x, y) £ C2. 

Using the properties of the Bf's it is not difficult to check that TT is a color scheme 
with the desired forbidden class. 

Proposition 4. If "K is a color scheme with fflr = A°x\, then y is 3-partite in C1? 

(i.e., there are 3 Ci-cliques). 
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Proof. Since 1.1 = {0, 1}, "V is n-partite for some n and since (1, 2, 3)-triangles 
are realizable n = 3. Fix (x,y)eCl9 and choose z with (x, z ) e C 2 , (y,z)eC3. 
[This realizes a (2, 3, l)-triangle on (x, y).]- Choose w with (y, w) e C2 and (z, w) e C3, 
i.e., realize a (2, 3, 3) - triangle on (y, z). Then y, z, w belong to disjoint C r sub-
graphs. Assume that a 4th ^-clique exist and choose v in this clique so that (y, v) e 
e C2. [if necessary realize a (3, 1, 2)-triangle.] Since wC2yC2v, w and v are in separate 
cliques, and (2, 2, 2)-triangles are forbidden, we have (w, v) e C3. Similarly, (v, z) e C2 

and (x, v)eC3. Since a (3, 1, 2)-triangle is realizable on (y, w), there is w with 
(w, w)eCj and (y, w)eC 3 . Since zC3>yC3w it follows that (z,w)eC2 and then 
a similar argument yields (w, v) e C3. Now, x and w belong to disjoint ^-cliques so 
either (x, w) e C2 or (x, w) e C3. But either case produces a forbidden monochrome 
triangle since xC2zC2w and xC3vC3w. It follows that TT contains exactly 3 ^-cliques. 

Corollary 5. A14 is chromatic but condition (*) of Theorem 2 fails. 

Proof, (second part) Consider the partial scheme V below that only uses colors 
2 and 3. (Color 2 is represented by a solid line and color 3 by a dashed line.) 

Any scheme that contains 'V' must have at least 4 Ci-cliques. "V cannot be 
0 1 extended to a representation of A14 by Proposition 4. 

This confirms the conjecture made in [3]. 

2. Random Color Schemes with Forbidden Triangles 

The random schemes considered in this section do not have the disadvantages 
inherent in the iterative technique. Namely, 

(1) there is an easy sufficient condition for a polygroup to be represented by 
a random scheme, and 

(2) the algebra of a random scheme is a double coset algebra. 

Random schemes were introduced in [1], For convenience we take C = 
= {1,..., n} and let i(i) = V. Random schemes are stronger than those obtained 
using (*) in the previous section. To make the concept precise we need the following 
notion. Suppose V = <V, Cf>leC is a color scheme and K .= C is a class of triangles. 
A sequence Fl9 ..., Fn of subsets of Vis compatible with K if it is not the case there 
exist i,j G C, w e Fh v e Fj with (u, v) e Ck where ( i , / , k) e K. (Of course i = j is 
allowed.) 
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A color scheme if is a random n-color scheme with forbidden K if 
(i) no triangle in K is realized in if, 

(ii) for every sequence Fl,...,Fn of n finite pairwise disjoint sets of vertices 
compatible with K, there exist a vertex p such that for every / e C and v e Fh 

(v, p) e Ct (and, of course, (p, v) e Cr). 

Standard arguments show that any two denumerable random n-color schemes 
with a forbidden K are isomorphic and the automorphism group of such a scheme if 
has very strong properties. In [1] it was shown that $Jlr is a double coset algebra 
G II Gx where G = Aut(i^) and Gx is the stabiliser at a vertex x. 

The following result gives a useful condition for showing that a polygroup 501 
is represented by a random scheme. 

Theorem 6. A random n-color scheme with forbidden K exist if K depends on at 
most n — 1 colors (i.e., one of the n colors does not occur in any triangle of K). 

Proof. Do the induction as in Theorem 2 but at the nth stage add only one 
point for each compatible partition of the partial scheme at that stage. Edges between 
these new points at the (n + l)-st stage can ee colored with some color missing 
from K. 

It is known that the condition in Theorem 6 is not necessary, only sufficient, for 
a random scheme to exist. In [ l ] the condition is applied to show that permutation 
groups (namely Aut(^)) with certain properties exist. It would be very desirable to 
know if finite groups with these properties exist. The general problem is to determine 
for a random n-color scheme if with a forbidden class K, when there exist a finite 
scheme W with 2R ^ att#-? 

3. Product Constructions 

One way to verify that a particular polygroup is chromatic is to show that it can 
be built up from systems, known to be chromatic, using operations which reserve the 
property. Thus, it is of interest to determine operations (or constructions) that leave 
the basic classes of polygroups invariant. In this section two types of products are 
considered. 

Direct products will be considered first. Although the product of two algebras 
is treated for convenience, it is not difficult to extend the treatment to an arbitrary 
number of factors. Given polygroups 91 and 23 the direct Product $1 x 53 of 91 
and 23 is the system 

<A x B, *, ~\(e, e)} 

where (a, b)_1 = (a'1, b'1) and 

(a0, b0) * (al9 bt) = {(x, y):xea0.ax and y e b0 . bj 

The first result shows that a product of chromatic systems is chromatic. 
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Suppose 1T0 = (V09 Ca}aeA_{e} and iT^ = (Vl9 Cfi>0eB_{e} are color schemes. 
It is convenient to assume the identity relation occurs among the colors, i.e., Ce = 
= JVo (in i r 0 ) and Ce = IVl (in ^TJ. Consider the product scheme 

n x ^ i = <^o x ^ W ( a J ) e . 4 x B\{(e,e)} 

where C ( a ^ = {((a, i), (b9j)) e (V0 x Vx)
2 : (a9 b) e Ca and (i9j) e Cp}. 

Theorem 7. V0 x - ^ is a color scheme and l ^ x f , = $V 0 x Wri. 

Proof. Most of the color scheme properties are trivial. We show (iv). Suppose 
((a9 i)9 (b9j)) belongs to C(aoM n (CiaifPi) \ C{a2,Pl)). If ock = e or pk = e for some 
fce{0, 1,2}, the condition above degenerates and the conclusion is clear. Assume 
all a's and /Ts are =j= e. Then (a9 b) e Cao and (i, j) e Cfio and there exist (c, k) such that 

(a, c) e Cai and (i, k) e Cfil and (c, b) e Ca2 and (k9 j) e Cfiz. 

Then Cao n (Cai | Ca2) -# 0 and CPo n (C* | C,2) 4= 0 so Cao __ Cai \ Ca2 and C,0 s 
£ C ^ | C , 2 . It follows that C M o ) c C ( > 1 ^ ) | C ( B 2 i j , 2 ) . To see that mroxri = 
= Wlro x yRri notice that allowing a = e and P = e simplifies the definition 
of * in Wflro x Wrr Namely, 

(«o, Po) * («i, Pi) = {(«2> £2) : C(.2i,2) ^ (C(ao.,o) | C(aii/Il)) * 0} . 

As in the proof of (iv) above, the product 

(*2> P_)*(*o> Po)*(*u Pi) 

is equivalent to products 

a2 e a0 . ax and P_e Po • Pi 

on the factors. This, in turn, is equivalent to the product in ^0lro x 3Rri. 

What other classes are closed under direct products? For color schemes Y0 

and y ^ it is not hard to see that 

Lemma 8. Aut(iT0) x A u t ^ ) __ Aut(iT0 x TTX). 

Proof. Consider the map that sends (a09 at) e Aut(V0) x Aut(Vx) to the auto­
morphism [a09 ax~\ defined as [<T0, at~\ (a9 i) = (a0(a)9 ax(i)) for all (a9 i) e V0 x Vx. 

Theorem 9. The following classes are closed under direct products: 

(1) Q2(Group) 

(2) Q2(Group) 

(3) double coset algebras. 

Proof. (1) By 4.1 of [1] 9)t e Q2(Group) iff 5OT _ 90^ for some color scheme Y 
with Aut( f ) transitive on vertices. Given *"0, -y x both with such automorphism 
groups Lemma 8 shows that Aut (^ 0 * V . ) is also transitive on vertices. By The-
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orem 7, 9PV0 x Wl^. e Q2(Group). The proof of (2) and (3) is similar using 4.2(2) 
and 4.2 (1)of [1]. 

We mention one application of direct products. Harrison [6] and Maddox [7] 
associated a polygroup $ft(L) with each modular lattice L = <L, v , A > with a mini­
mum element e. Namely, 5Pl(L) = <L, •, _ 1 , e) where x~l = x and 

x . y = {z e L:x v z = y v z = x v y } . 

It is not hard to check that ^ ( L x x L2) = 5QZ(Lj) x $R(L2). Theorem 7 implies 
that whenever the 3W(L) construction associates a chromatic polygroup to lattices Ll 

and L2, the product also gives rise to a chromatic polygroup. A similar conclusion 
holds for the classes listed in Theorem 9. 

We now consider another type of product. Assume that 91 and 93 are polygroups 
with A n B = {e} (i.e., only the identity element is common). Define the extension 
of 91 by® 

9Z[93] = <M, *, ' , e} 

where M = (A \ {e}) u (B\{e}) u {e}, e1 = e, x1 = x _ / (whichever operation _ 1 

is appropriate for x). 

e*x = x*e = x, 
and 

X У if x, y є A 
X if xєB, y є A 

У if xє A, y є B 

X У if x, yєB, y Ф x~l 
x * y 

x . y u A if x, y e B, y = x~ 

Several examples are worked out in [4]. Other suitable names for 9I[93] include the 
"wreath product" of 91 by 93 (due to the way a double coset representation for 9l[93] 
is constructed from such representations of 91 and 93) and the "composition" of 91 
with 93 (due to the way a color scheme for 9I[93] is constructed from such representa­
tions for 91 and 93). 

Theorem 10. The following classes are closed under the extension operations 9l[93]. 

(a) Chromatic 
(b) Q2(Group) 
(c) Q2

s(Group) 
(d) double coset algebras 

Proof. The idea for the proof of (a) is to take a color scheme y that represents 93 
and replace each vertex of y by a copy of a color scheme iT that represents 91. 
The resulting scheme represents 9l[93]. If both V and iir have transitive automor­
phism groups, it is not hard to see that the scheme representing 9l[93] also has one. 
Thus, Q2(Group) is closed under 9t[93]. (b) and (c) have similar proofs. Different 
proofs are given in [4]. 
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We conclude with two examples of how to use $I[93]. Recall that the ordered 
sum L0 © Lx of two bounded lattices is the lattice obtained by identifying the mini­
mum element of Lt with the maximal element L0. 

Proposition 11. For bounded modular lattices L0 and Ll9 9R(L0 © Lx) = 9R(L0) 
[^(Lj)] . Thus, L0 © Lx yields a chromatic polygroup whenever L 0 and Lx do. 

Composition series play an important role in the study of groups. Polygroups 
(and in general multigroups) also exhibit similar series (c.f., [5]). We outline the 
notion of an ultragroup from Roth [8]. The core of a polygroup 9R, written Core(M), 
is the subpolygroup generated by \J{a . a'1 : a e M}. For a subpolygroup 91 of 9R 
introduce a full conjugation (9^ on 9ft by 

aQ^b iff beNaN 

Stt// &%i is a polygroup. An ultragroup is a polygroup 9R for which there exist 
a chain of subpolygroups 

{e} = 9i, _= gik^ c-...<-n0 = m 

where 91, // 0%ii_l is a group for all i < k. The groups 9t0// 0^ . , ... are called the 
factors of the series. Note that Core(2l[23]) = A u Core(93) so if © is a group, 
Core(9l[93]) = A. 

Proposition 12. Given groups G0, Gl9 ..., Gk+l and 0 < i < fc, let 9if denote the 
extension (... (GofGj) ...) [ G ^ ] . Then 

(1) 9lfc is an ultragroup with factors Gk-l9 ..., G0. 

(2) 9lfc is a double coset algebra. 

Proof. (1) Since 91, = 9l f_1[G I_1] and Core(9tf) = 9lf_x, Nk z> 9lk_1 z^ ... 
... => 9lj .=) {e} gives the lower ultra-series for 9lfc. Moreover, note that for a, beN(, 

aQwi-i0 iff a,beNi_1 or a = b. 

Thus, « , / / © « , . , - » . / / 9 t . _ . =G._. . . 

(2) follows from Theorem 10. 

It would be interesting to know whether every ultragroup is a double coset 
algebra. 
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