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Feebly Canonical and 1-Hypergroups

P. CORSINI
Institute of Mathematics, University of Messina*)

Received 30 March 1983

In the paper, two classes of hypergroups are introduced and investigated. The first one
generalizes the classes of canonical hypergroups and complete commutative hypergroups. The
second class is formed by hypergroups with the core of cardinality one.

V ¢lanku jsou zavedeny a studovany dvé tfidy hypergrup. Prvni zobeciiuje ttidy kompletnich
hypergrup a kanonickych hypergrup. Druh4 ttida je tvotena hypergrupami, jejich? jadro ma
pouze jeden prvek.

B crathe u3y4eHHbl OBa Kiacca rumeprpymm. Ilepseiit 0000nIaeT XjgacC MOJIBHBIX THIEp-
rPYII ¥ BTOPOit COCTOUT U3 FHIEPrPYIII, KOTOPbIE HMEIOT AP0 MOLIHOCTH 1.

Canonical hypergroups, studied both in the context of field theory and in that
one of characters of finite groups, have many properties owned also by complete
commutative hypergroups which are correlated with the theory of groupoids and
quasigroups, for instance both of them are join spaces and regular reversible hyper-
groups. This paper concernes just a class (feebly canonical hypergroups), denoted
by F.C., which contains strictly the union of the two classes and has a lot of their
properties. Another class is considered here, which in the commutative case is near
enough, as F.C., to that one of abelian groups. The core of a group has cardinality 1.
The converse is not true. Just the class of 1-hypergroups, i.e. of those the core of which
has cardinality 1, is introduced.

In the following, E(H) is the set of identities of a hypergroup H, i(P) is the set
of the inverses of elements of P, a/b is the set {x; a e x . b}, ¥(x) is the complete
closure of {x} and wy, is the core of H.

D:finition 1. A hypergroup H is called feebly canonical if it is commutative,
regular, reversible and satisfies the following condition:

(i) Vx € H, if x’, x" are inverses of x, then Vae H we have a . x' = a . x".

Examples. Canonical hypsrgroups and complete commutative hypergroups are
feebly canonical. The following examples A and A’ are feebly canonical but neither
canonical nor complete.

*) via Nazionale 323 z, Mili Marina, Messina, Italy. This paper is supported by G.N.S.A.
G.A. of C.N.R.
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A. Let G be an abelian group and S a set. One supposes that |G| >1< |S|
and Gn S = 0. We define the hyperproduct as follows: V¥(g,s)eG x S, g.s =
=5.9=3S5; Y(91,92)€G* gy .9, = 91925 (s, 5,)€S? s;.5, = G. Let’s pose
A={GuUS, *).

A'. a b ¢ d
aa b c¢decd
bb a c¢decd
cc,dce,dA A
dc,de,dA A

If P is a non-empty part of a regular hypergroup H, we denote by i(P) the set of
the elements of H which are inverses of some elements of P.

Lemma 1. Feebly canonical hypergroups are join spaces.

Let x be in the set a/b N c/a, that is, ae b.x, ced . x, then there exists an
element b’ € i(b) such that x € b’ . a, it follows that ced.b’.a = a.d. b, there-
fore there exists an element v € a . d such that c e v. b’, the reversibility of H implies
that there exists an element b” € i(b’) such that ve b” . ¢, then for (i), b”.c = b . c,
it follows a . ¢ n b . ¢ *+ 0, and therefore H is a join space.

Lemma 2. Let H be a join space which has at least one identity and which satisfies
the condition

(i) V(u,v)e H?, Vee E(H), VxeH, u.vne.x £+ 0=>x€cu.v.

Then H is reversible.
Suppose aeb.x, ec E(H), b’ ei(b), eeb.b’; then beafx nelb', it follows
a.b nx.e= 0, thus, from (ii) we have x € @ . b’, and hence H is reversible.

Lemma 3. If H € F.C. then H satisfies (ii).

Let e be an identity of H and suppose aeu.v N x.e. Since a€x . e, there
exists x € i(x) such that ee x’ . a, thus {x, a} < i(x) and we have z.a = z.x Vze
€ H. From a € u . v it follows that there exists an element u’ € i(u) such thatve u’ . a,
then, since u’.a = u’'.x, we have veu’.x. Hence, there must be an element
u" e i(u’) such that x e u” . v. From (1) it follows u” .v = u . v, thus x e u . v.

Lemma 4. If H is a join space which satisfies (ii) then H satisfies also (i).

Suppose {e, e;} = E(H), ee b”. b, e; € b’ . b, then we have a/b” N e,[b" + 0,
it follows e. b’ ne; . b" & 0, hence b”"ee.b’. Now, if ¢ is an element of H and
zec.b, from b"ee.b’ we have b’len z[c + 0, therefore b".cne.z =+ 0,
hence ze b”.cand b’ .c < b”. c. In like manner we find that b”".c < b’'. ¢, and
thus (i) is satisfied.
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Theorem 1. If H is a commutative hypergroup such that E(H) # 0 then the following
conditions are equivalent:

(1) H is a join space and satisfies (ii).
(2) H is reversible and satisfies (i).
It follows immediately from Lemmas 1, ..., 4.

Let’s denote by RR the class of regular reversible hypergroups, by JS the class
of join spaces, by C(i) and by C(ii) the classes of hypergroups which satisfy the con-
ditions (i) and (ii), resp.

Theorem 2. 1)M = RR n C(ii) ¢ C(i) and M ¢ JS.

2) N = JS n C(i) & C(ii) and N ¢ RR.

3) P=RnJS & C(i) and P & C(ii).

1) Let H be a set. Suppose H = |J 4; U {e}, where II( 22, e¢UAd, 4,0 A=
=0 if i # j. Let’s denote by A th:Iset A;u {e} for any iel. fét’s set for any
(i,j)eI? and any (x, y)e 4; x A,

IJe.e=e, x.e=e.x= 4,

M x.y=H,ifi+j;x.y=A4,ifi=]j
One can verify that He M — C(i).

2) Taking into account the hypergroups, the tables of which follow, one sees
that Ue N — C(ii) and Ve P — C(i).

U={a,b,c} V={p,q,s}

a b c P q S
a a b b, c p vV VYV
b b U b, ¢ Vp p
¢ b,c byc U s V pp

Theorem 3. If H € DC, then Vb € H, Ve € E(H), Vb’ € i(b), we have i(b) = e. b’
1) e.b < i(b).

If zee.b', then e.zne.b’ =+ O, it follows b’ €e. z, thus there exists e, €
€ E(H)such thate, € b’ . b < e. z. b. Then there exists y e z . bsuch that e, e . y,
hence y € i(e). Since e € i(e), we have, forevery xe H, xex.e = x . y, i.e. y € E(H).
Now, z. be E(H) # 0, therefore z € i(b) and thus e . b’ < i(b).

2)i(b)yce.b.
If b” € i(b), there exists e, € E(H) such that e, € b” . b, hence b € e,/b". Analo-
gously, there exists e, € E(H) such that bee,[b". It follows e; . b ne,.b" 0,

therefore b"ee,.b’ and i(b) < e, .b". Since {e, e,} < i(e;), we have Vse H
e.s=¢,.sand thuse, .b' =e.b"
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Theorem 4. Let H be a regular join space such that Vx € H, Vx' € i(x), i(x) = e . x'.
Then H is reversible.

Suppose aeb.x, ec E(H), eex.x’, then from xealbne/x’, it follows
a.x'ne.b £0. If byee.bna.x', the hypothesis of the Theorem implies
that Vb’ € i(b), we have b, € i(b’), hence e.b; = i(b'). It follows be b, .e =
S a.x'.e, thus there exists x" € x’.e = i(x) such that bea.x", and so H is
reversible.

Remarque. The hypergroup V which has been considered before, proves that
the hypothesis of Th. 4 does not imply (i).

Theorem 5. Let H be a feebly canonical hypergroup. Then V(x, y) € H?, Vx’ € i(x),
Vy' € i(y), we have:

1) x.y =xy,

2) x.x' = Ip(x) = Ip(x,) = i(lp(x)) = Ip(i(x»’

3) Vee E(H), Vael,(x), e.a < I,(x),

4) if {a, b} < I,(x), there exists q € I(x) with aeb. q.

To prove 1) and 2), it suffices to remember the reversibility of H and the condi-
tion (i). To prove 3), notice that for every a’ € i(a), we have e. a = i(a’) < i(I (x))
and apply 2). 4) From the hypothesis, if x’ € i(x), thenbe x . x’ = a . x . x’ and there
exists g € x . x" such that bea . q.

Theorem 6. If He F.C., (x,, ..., x,) € H", (x, ..., X;) €i(x,) x ... x i(x,), then we
have x} . x5 ... x, = i(X; . X5 ... X,).

Suppose a € X, . X,, a’' € i(a); from the reversibility of H and from the con-
dition (i), it follows x, € a . x}. Then x} € a’ . x,, and afterwards a’ € x| . x}. Suppose
now that the result is true for any k < n; if be x, ... x, and b’ € i(b), there exists
Y€ X, ... x,_; such that b € y . x,. By induction one obtains y’ € x| ... x,_, for any
v' €i(y), and then, since b’ € y’ . x,, it follows i(x, ... x,) S X} ... x,_,. Conversely,
suppose z € X} ... x, and z' € i(z); then z € i(z’) and with respect to the first part of
the proof, we have z' € X, ... X,, thus z € i(x; ... x,).

Theorem 7. If He F.C., then V(x, y,z t)e H*, from x.ynz.t =+ 0, it follows
that for any )’ € i(y) and any z’ € i(z), we have x .z’ nt. )" * 0.

Suppose uex.ynz.t, u €i(u), z e€i(z), ¢ ei(r). It is clear that u.u' <
Sx.y.z.t'=x.z.y.t. But if eeE(H), ecu.u’ then eex.z .y.t and
there exist an element v € x . z’ and an element v’ € y . ¢’ such that e v.v’. Thus,
since i(y . 1) =t.)’, one obtains x.z' Nt.y =* 0.

Definition 2. Let H be a feebly canonical hypergroup and let K be a subhypergroup
of H . K is called a feebly canonical subhypergroup of H if K n E(H) * 0.
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Theorem 8. If H € F.C. and K is a subhypergroup of H, the following six conditions
are equivalent:

1) K is a feebly canonical subhypergroup of H.

2) There exists an element x € K such that K n i(x) % 0.

3) E(H) = K.

4) Vx eK, i(x) < K.

5) K is invertible.

6) K is closed as a subhypergroup of H.

It is clear that 1) and 2) are equivalent.

1) implies 3). Suppose e, € E(H) N K, e, € E(H). Then from e, € e, . e, N e; . €,
it follows e, € e, . e, < K, hence 3).

3) implies 4). If x € K, e € E(H), there exists x’ € K such that e€ x . x’. Then
from Th. 3, one obtains i(x) = e.x’ < K.

4) implies 5). Suppose ae K and x ea.y. Since H is reversible, there exists
a’' € i(a) such that ye a’ . x and thus ye K . x.

5) implies 6). It is always true.

6) implies 1). Trivial.

Theorem 9. If H € F.C., then E(H) is an invertible hypergroup.

Suppose {e,, e,} < E(H), q € H. Then for z € e, . e,, we have z[e, n g[q + 0,
since g € q . e,. Consequently, z.gNe;.q + 0, and thus gez.q and z e E(H).
Therefore E(H) is a subsemihypergroup. Now, let x € H be such that e, ee, . x.
Then, since e, € e, . e;, we have e,[x N e,[e; + 0. further e; . e, N e; . x & 0, and
hence x € e, . e, and x € E(H). One has shown that E(H) is a closed subhypergroup,
and therefore E(H) is invertible by Th. 8.

Theorem 10. If H € F.C., then ¥(x, y) € H?, Vx' € i(x), V)’ € i(y), Ve € E(H), we have:
1) i(x.y)=x".y =i(x).i(y),
2) I(x - y) € I(x) - I,(y),
3) I(x) < (I,(x))"
4 Vk 21, i*x)=e.x, i*(x)=i(x) =e.x.
1) follows from Th. 6.
2) If ael,(x.y) then there exists zex .y such that aez.z’ S x.y.x .y =
=x.x.y.y =1,(x).I,(y).
3) follows from 2) and Th. 5.
4) From 1) one obtains i(e.x') = i(e) . i(x') = e.x and i(e. x) = i(e) . i(x) =
= e. x'. The rest is clear by induction.

Definition 3. A hypergroup H is called 1-hypergroup if le] = 1.
We shall denote by 1 — Q the class of the 1-hypergroups.
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Theorem 11. If H is an 1-hypergroup and we set g = {e}, then we have:

(1) the B*-classes are the products e . a where a € H,

(2) H is regular and reversible,

(3) Vx e H, Vx' € i(x), i(x) = €(x').

(1) It is obvious.

(2) Vx € H we have by (1), x . e = x.e = %(x)and x € ¢(x);itfollows ec E(H).
For any x € H, there exists an element x’ € H such that ee x' . x. But x . x' < wy =
= {e}, then x.x" = e, hence also x’.x = e and thus H is regular. Further, if
y €x .z, there exists ve H such thatx € y . v, therefore ye y . v. z, and hence there
exists a € v. z such that y e y. a. Consequently, v.z N wyg *+ 0, then v.z = eand
thus v = z’ is an inverse of z. Finally, x € y . z’, i.e. H is reversible.

(3) First, we prove that (x’) < i(x). If y € €(x’), then, by (1), y € x’ . e, hence
x.y<Sx.x .e=e.e=eand we have y € i(x). Now, the inclusion i(x) = %(x').
Ifx.z=e wehavex'.x.z =x".e = C(x), therefore e. z = %(x’) and z € G(x').

Theorem 12. Let H be an 1-hypergroup. If |H| < 4, then H is either a group or, up to
isomorphic copies, one of the following hypergroups (1), (2), (3) (in this case, H is
complete).

(1) e b c (2) e a b ¢
e e b,c b,c e H H H’

b b,c e e a H e e e

¢ b,c e e b H e e e

¢c H e e e

where H' = {a, b, ¢} and

®)

oS
o

o Q Q8 ® ®
S o

o o 6 Q 9

QR 6 N Q o

Q66

o ot ®

,b

We shall show that in the case iHl = 4, if one supposes e.a = {a, b}, one
obtains necessarily the hypergroup (3) In the other cases, one proceeds similarly.
From the hypothesis, it follows e . b = {a,b}=b.e,e.c = c.e = c. Since wy = e,
we have a.cn{a,c} = 0 and then a.c = e, otherwise a.c = b would imply,
by Th. 11(2), ce a’ . b, where a’ € i(a), and hence ¢y(c) = 1. Moreover, similarly,
one obtains a.a =a.b=>b.a=">b.c=c.b. Finally, from Th. 11(2), it follows
c¢.c = {a, b}. To complete the proof, one has only to verify the associativity.

Theorem 13. For any cardinal n = 5, there exists a 1-hypergroup which is not com-
plete and has cardinality n.
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Let’s set H,={e} UAUB, where |4 22 < |B|, ANB=0, e¢ AU B,
and let’s fix an element b; in B. Define the following hyperoperation in H,:

Vae A, a.a = by, V(ay, a,) € A® such that a; * a,, a; .a, = B.

V(a,b)e A x B,a.b=>b.a=e, ¥(by, b;)eB* by .b, = A.

H, is a hypergroup which is clearly not complete but satisfies the condition |wH| = 1.
The hypergroups obtained in this way are not the unique non-complete 1-hyper-
groups as one can see from the following examples; S for n = 5 and Tforn =7
where A = {a, b}, C={c,d}, P ={p,q} and T= AU CUP U {e}.

S e a b c d T e a b ¢ d p q
e e a,b a,b c¢,d c¢,d e e A A C C P P
a ab c¢,d ¢ e e a A c d P P e e
b a, b ¢ c,d e e b A d ¢c P P e e
c ¢, d e e a,b a,b ¢c C P P e e A A
d c,d e e a,b a,b d C P P e e A A

p P e e A A ¢ d

q P e e A A d c

Theorem 14. Let H be a hypergroup which satisfies the following condition:
(t) V(x,y)eH:, x .ynog £+ 0=>x.y = og.
Let A, B be subhypergroups of H. Then the following conditions are equivalent:

(1) An B = wy.
(2) Y(ay, a,) e 42, V(by, by) € B?, a, . by na,. b, + 0= %(a,) = ¥(ay),
“(by) = ¥(b).

(1)=(2)
The condition (t) is equivalent to (t'): Vn = 2, V(xy, ..., x,) € H", [ x; n wg *+ 0 =
n i=1

=[] x; = wy. Suppose now a,.b, na,.b, =0 and let aj, b; be such that

i=1
ay.a, = wg = b, . by. Then, since da3.a,.b;.biNnay.a,.b,.by +0, one
obtains ay.a;.wy N wy.b,. b} = AN B = wy. Thus there exists {z, w} = wy
such that a3 .a,.z=w.b,.b] = wy and it follows a}.a; = wg = b, . b}. If
one multiplies this equality by a, on the left, one obtains wy.a; = a,.wyg =
= Wy . a,. Similarly, wy . b; = wy . b,.

2=

Suppose e€ A N wy and let a be an element of A. There exists a’ € A such that
eca.a’ and thena.a N wy + 0. Consequently, a . a’ = wy and wy < A. Similar-
ly, oy = B and wy = A N B. Conversely, let g be in A N B. Let e, be a partial left
identity of ¢ in 4 and let e, be a partial right identity of g in B. We have gee; . g N
N g . e,, then (2) implies €(e,) = %(q), therefore g € wy and 4 N B S wy.
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Remark. The class of 1-hypergroups and that of complete hypergroups (Co)
are contained in the class T of hypergroups satisfying (t).

Theorem 15. If H is a quasicanonical hypergroup then H is a group if and only if
Hel - Q.

Suppose He 1 — Qand {a, b} < H.If{c,d} < a.b,wehaveaec.b nd.b,
therefore a.b<c.b’ .bnd.b .b;butc.b’.b=c.e=d.e,andthusa.b =
=c=d.

Theorem 16. If H € F.C. then, from He 1l — Q, it follows H € Co.

We shall show that ¥(u, v)e H, Vxeu.v, u.v = ¢(x). From xeu . v it fol-
lowsu.vcé(x)=e.x.If yex.etheny.e=%(y)=x.e,u.v<e.y,u.vn
Nne.y+0,and hence yeu.vand u.v = ¢(x).

Theorem 17. Let H be in JS n C(i). Then H e 1 — Q implies H € Co.
Since He 1 — Q, we have i(x) = e.x’ Vx € H, Vx' € i(x) by Th. 3. Then, Th. 4
implies that H is reversible. Consequently, H € F.C. and H € Co by Th. 16.
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