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One-Element Extensions of Distributive Groupoids 

T. KEPKA 
Department of Mathematics, Charles University, Prague*) 

Received 30 March 1983 

In the paper, non-medial distributive groupoids of order 82 are described. 

V článku se popisují nemediální distributivní grupoidy rádu 82. 

B cтaтьe oпиcивaютcя нeмeдиaльныe диcтpибyтивныe гpyппoиды пopядкa 82. 

1. In this section, let G be a distributive groupoid containing a subgroupoid H 

and an element a such that a £ H and G = H u {a}. Put A = {x e H; ax = a}, 

B = {x e H; xa = a}, C = {x e H; ax =j= a}, D = {x e H; xa =t= a} and b = aa. 

1.1. Lemma. A n C = B n D = Q and A u C = B u D = H. 

Proof Obvious. 

1.2. Lemma, (i) CC c C, DD c D, BC c C, DA c D, CA c C, BD c D. 

(ii) If a = b then AA ^ A, BB ^ B, BA ^ A n B. 

(iii) If a 4= 6 then AA ^ C, BB ^ D, BA ^ C n D. 

Proof. Let x,ue A, y,ve B, z,we C and r, se D. Then a . xu = ax . au = 
= aa = b, yv . a = b, a . zw = az . aw 4= a, rs . a #= a, a . yx = ay . ax = ay . 
. a = a . ya = aa = b, yx . a = ya . xa = a . xa = ax . a = aa = b, a . yz = ya . 
. yz = y . az #= a, rx . a = rx . ax = ra . x 4= a, a . zx = ax . zx = az . x =# a and 
yr . a = yr. ya = y . ra 4= a. 

1.3. Lemma. C (resp. D) is either empty or a right (resp. left) ideal of H. 

Proof. Use 1.2(i). 

1.4. Lemma. If D = 0 then C is either empty or an ideal of H. 

Proof. Use 1.3 and 1.2(i). 

*) 186 00 Praha 8, Sokolovská 83, Czechoslovakia. 
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1.5. Lemma. Suppose that H is left-ideal-free. 

(i) Either D = H or B = H. 

(ii) If B = H then either C = H or A = H. 

Proof. Use 1.3. 

1.6. Lemma. Suppose that H is both left and right-ideal-free. Then either A = B = H 
or A = D = H or C = B = H or C = D = H. 

Proof Use 1.3. 

1.7. Lemma. Suppose that H is both left and right-ideal-free and A = D = H. 
Then H is trivial and G is a two-element semigroup of left zeros. 

Proof. We have ax = a and xaeH for every xeH. Then xa . xa = xa = 
= x . ay = xa . xy for all x, y e H. From this, (xa, xy) e q where q is defined by 
(u, v)e q iff zu = zv for every zeH (take into account that H is regular). Now, it 
is clear that (xy, xz) e q for all x,y,ze H, H\q is a semigroup of left zeros and it is 
trivial, since it is right-ideal-free. In particular, q = H x H, H is a semigroup of 
left zeros and H is trivial by similar arguments. 

1.8. Lemma. If either A = H or B = H then a = b. 

Proof Obvious. 

1.9. Lemma. Suppose that C = H (resp. D = H) and put f(x) = ax (resp. g(x) = 
= xa) for every xeH. Then / (resp. g) is an endomorphism of H and f(x) y = 
= f(y) - xy (resp. x g(y) = xy . g(x)) for all x, y e H. 

Proof. We have /(xy) = a . xy = ax . ay = f(x)f(y) and f(x) y = ax . y = 
= ay . xy = f(y) . xy. 

1.10. Lemma. Suppose that C = D = H and consider the endomorphisms / , g 
defined in 1.9. Then xf(y) = g(x). xy and g(x) y = xy .f(y) for all x,yeH. 
Moreover, fg = gf 

Proof. We have xf(y) = x . ay = xa . xy = g(x) . xy, g(x) y = xa . y = xy . 
. ay = xy . / (y) and / g(x) = a . xa = aax . a = g f(x). 

2. In this section, let H be a distributive groupoid such that H is a right (resp. 
left) quasigroup. 

2.1. Lemma. Let / be an endomorphism of H such that f(x) y = f(y) . xy for all 
x, y e H. Then there exists an element a e H with f(x) = ax for every xeH. 

Proof. Take an element b e H. Then / (b ) = ab for some a e H and we have 
ab = / (b ) = / (b ) / (b ) = / ( b ) . ab = f(a) b which implies/(a) = a. Now, ac . ac = 
= ac = f(a) c = f(c) . ac and ac = f(c) for every c e H. 
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2.2. Lemma. Let f and a be endomorphisms of H such that f(x) y = f(y) . xy and 
•jcf(y) = g(x) . xy for all x, y e H. Then there exists an element a e H withf(x) = ax 
and g(x) = xa for each xeH. 

Proof. By 2.\, there is an element a e H such that f(x) = ax for every xeH. 
Now, xa . x = x . ax = xf(x) = g(x) x, and hence xa = g(x). 

3. In this section, let H be a distributive idempotent groupoid, b e H, a$H and 
G = H u {a}. Define three groupoids H[a, 1] = G( + ), H[a, b, 2] = G ( - ) and 
H[a, b, 3] = G(:) by x + y = x — y = x : y = xy, x + a = a + x = a + a = 
= a — a = a, x — a = x : a = xb, a — x = a : x = bx, a : a = b for all x, y e H. 

3.1. Lemma. The groupoids H[a, 1] and H[a, b, 2] are distributive and idempotent 
and the groupoid H[a, b, 3] is distributive and not idempotent. 

Proof. Let x,y,ze G. If x, y, z e H then both the distributive laws for these 
elements are clear. If x = a and y, z e H then x + (y + z) = a = (x + y) + 
+ (x + z), (y + z) + x = a = (y + x) + (z + x), x — (y — z) = a — yz = b . 
. yz = by . bz = (a — y) (a — z) = [a — y) — (a — z) = (x — y) — (x — z), 
(y — z) — x = (y — x) — (z — x), x : (y : z) = (x : y) : (x : z) and (y : z) : x = 
(y : x) : (z : x). Ify = a and x, zeH then x + (y + z) = a = (x + y) + (x + z), 
(y + z) + x = a = ()> + x) + (z + x), x — (y — z) = x — bz = x . bz = xb . 
. xz = (x — a) . xz = (x — y) — (x — z), (y — z) — x = bz — x = bz . x = bx . 
. zx = (a — x). zx = (y — x) — (z — x), x : (y : z) = (x : y) : (x : z) and (y : z) : 
: x = (y : x) : (z : x). If z = a and x, y e H then x + (>> + z) = a = (x + y) + 
+ (x + z), (y + z) + x = a = (y + x) + (z + x), x — (y — z) = x — yb = x . 
. yb = xy . xb = (x — y) — (x — a) = (x — y) — (x — z), (y — z) — x = 
= (y — x) — (z — x), x : (y : z) = (x : y) : (x : z) and (y : z) : x = (y : x) : (z : x). 
If x = y = a and zeH then x + (y + z) = a = (x + y) + (x + z), (y + z) + 
+ x = a = (j; + x) + (z + x), x - (y — z) = a — (a — z) = (a — a) — 

— (a — z) = (x — y) — (x — z), (>> — z) — x = (a — z) — a = bz . b = b . 
. zb = a — (z — a) = (y — x) — (z — x), x : (y : z) = a : (a : z) = b . bz = 
= (a : a) : (a : z) = (x : y) : (x : z), (y : z) : x = (a : z) : a = bz . b = b . zb = 
= (a : a) : (z : a) = (y : x) : (z : x). If x = a = z and y G H then x + (y + z) = 
= a = (x + y) + (x + z), ( j + z) + x = (y + x) + (z + x), x - (y - z) = a -
- (y - a) = b . yb = by . b = (x - y) - (x - z), (y - z) - x = (y - a) - a = 
= (y — a) — (a — a) = (y — x) — (z — x), x : (y : z) = a : (y : a) = b . yb = by . 
. b = (x : y) : (x : z), (y : z) : x = (y : a) : a = yb . b = (y : x) : (z : x). IfxeH 
and y = z = a then x + (y + z) = (x + y) + (x + z), (y + z) + x = (y + x) + 
+ (z + x), x — ( j — z) = x — a = xb = xb . xb = (x — a) — (x — a) = 
= (x - y) - (x - z), (y - z) - x = (y - x) - (z - x), x : (y : z) = (x : y) : 
: (x : z), (y : z) : x = (y : x) : (z : x). Finally, i fx = >> = z = a then x + (y + z) = 
= (x + y) + (x + z), (y + z) + x = (y + x) + (z + x), x - (y - z) = (x - y) -
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- (x - z), (y - z) - x = (y - x) - (z - x), x : (y : z) = a : b = bb = (a : a) : 
: (a : a) = (x : y) : (x : z), (y : z) : x = bb = (y : x) : (z : x). 

3.2. Lemma. Suppose that H has no zero element. Then the groupoids H[a, 1] and 

H[a, b, 2] are not isomorphic. 

Proof. Obvious. 

3.3. Lemma. Suppose that H is a left (resp. right) quasigroup and b, ce H. Then 
the groupoids H[a, b, 2] and H[a, c, 2] are isomorphic. 

Proof. There is an element d e H such that c = bd. Now, define a permutation f 
of G by f(x) = xd for every x e H and f(a) = a. Let x, y e G. If x, y e H then 
/ (x - y) = f(xy) = xy . d = xd . yd = f(x)f(y) = f(x) - f(y). If x = a and y e H 
then f(x - y) = f(by) = by . d = bd . yd = c . yd = a - yd = f(a) -
_ f(y) = f(x) - f(y). If x e H and y = a then f(x - y) = f(xb) = xb . d = 
= xd. bd = xd. c = xc - a = f(x) - f(a) = f(x) - f(y). If x = y = a then 

f(* ~ y)= f(a) = a = a- a = f(a) - f(a) = f(x) - f(y). We have proved thatf 
is an isomorphism of H[a, b, 2] onto H[a, c, 2]. 

3.4. Lemma. Suppose that H is a left (resp. right) quasigroup. Then the groupoids 
H[a, b, 3] and H[a, c, 3] are isomorphic for all b, c e H. 

Proof. Similar to that of 3.3. 

3.5. Lemma. Suppose that H contains no zero element and no subgroupoid K with 
card (H — K) = 1. Let P be a distributive idempotent groupoid such that P is not 
isomorphic to H and let d e P, c £ P. Then the groupoids H[a, 1], H[a, b, 2], 
H[a, b, 3], P[c, l ] , P[c, d, 2] and P[c, d, 3] are pair-wise non-isomorphic. 

Proof. Easy. 

4. In this section, let H be a non-trivial left-right-ideal-free distributive groupoid 
such that H is a left (resp. right) quasigroup. Take two elements a $ H and b e H 
and put H[l] = H[a, 1], H[2] = H[a, b, 2] and H[3] = H[a, b, 3]. 

4.1. Proposition, (i) If H is a subgroupoid of a distributive groupoid G such that 
G — H is a one-element set then G is isomorphic to exactly one of the groupoids 
H[l], H[2] and H[3]. 

(ii) The groupoids H[l], H[2] and H[3] are pair-wise non-isomorphic one-element 
extensions of H. 

Proof, (i) Let G = H u {a}. Consider the subsets A, B, C, D defined in the first 
section. If A = B = H then G is isomorphic to H[l]- If this is not true then C = 
= D = H by 1.6, 1.7 and its dual. In that case, by 1.9, 1.10 and 2.2, there is an 
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element b e H such that ax = bx and xa = xb for each x e H. If a = aa then G 
is isomorphic to H[2] by 3.3. If a =# aa then aa . aa = a . aa = b . aa = aa . a = 
= aa . b, b = aa and G is isomorphic to H[3] by 3.4. 
(ii) This follows from 3.1 and 3.2. 

4.2. Proposition. Every two-element distributive groupoid contains a one-element 
subgroupoid and the number of isomorphism classes of two-element distributive 
groupoids is equal to 4. 

Proof. Easy. 

5. For every positive integer n ^ 1, let a(n) (resp. b(n), c(n), d(n)) designate 
the number of isomorphism classes of non-medial (resp. idempotent non-medial, 
medial, idempotent medial) distributive groupoids of order n. 

5.1. Proposition. a(82) = 18 and b(82) = 12. 

Proof. First, let G be a non-medial distributive groupoid of order. 82 by [3], 
G contains a non-medial subquasigroup Q of order 81. Now, according to 4.l(i), 
G is isomorphic to one of the groupoids Q[l] , Q[2] and Q[3]. Conversely, as proved 
in [4], there exist up to isomorphism just six non-medial distributive quasigroups 
of order 81 and the result follows from 3.5. 

5.2. Remark. According to 5.1, [2], [3] and [4], we have the following table: 

n 1 2 3 .. 80 81 82 

a(ri) 0 0 0 .. 0 6 18 
b(n) 0 0 0 .. 0 6 12 
c(n) 1 4 19 .. . >1079 >1080 >1081 

d(n) 1 3 13 .. . >1079 >1080 >1081 
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