Acta Universitatis Carolinae. Mathematica et Physica

Tomáš Kepka
One-element extensions of distributive groupoids

Acta Universitatis Carolinae. Mathematica et Physica, Vol. 24 (1983), No. 2, 73--77
Persistent URL: http://dml.cz/dmlcz/142518

Terms of use:

© Univerzita Karlova v Praze, 1983

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

One-Element Extensions of Distributive Groupoids

T. KEPKA
Department of Mathematics, Charles University, Prague*)

Received 30 March 1983

In the paper, non-medial distributive groupoids of order 82 are described.

V článku se popisují nemediální distributivní grupoidy řádu 82 .
В статье описиваются немедиальные дистрибутивные группоиды порядка 82.

1. In this section, let G be a distributive groupoid containing a subgroupoid H and an element a such that $a \notin H$ and $G=H \cup\{a\}$. Put $A=\{x \in H ; a x=a\}$, $B=\{x \in H ; x a=a\}, C=\{x \in H ; a x \neq a\}, D=\{x \in H ; x a \neq a\}$ and $b=a a$.
1.1. Lemma. $A \cap C=B \cap D=\emptyset$ and $A \cup C=B \cup D=H$.

Proof. Obvious.
1.2. Lemma. (i) $C C \subseteq C, D D \subseteq D, B C \subseteq C, D A \subseteq D, C A \subseteq C, B D \subseteq D$.
(ii) If $a=b$ then $A A \subseteq A, B B \subseteq B, B A \subseteq A \cap B$.
(iii) If $a \neq b$ then $A A \subseteq C, B B \subseteq D, B A \subseteq C \cap D$.

Proof. Let $x, u \in A, y, v \in B, z, w \in C$ and $r, s \in D$. Then $a . x u=a x . a u=$ $=a a=b, y v \cdot a=b, a \cdot z w=a z \cdot a w \neq a, r s . a \neq a, a \cdot y x=a y . a x=a y$. $\cdot a=a \cdot y a=a a=b, y x . a=y a \cdot x a=a \cdot x a=a x . a=a a=b, a \cdot y z=y a$. $\cdot y z=y \cdot a z \neq a, r x . a=r x . a x=r a \cdot x \neq a, a \cdot z x=a x \cdot z x=a z \cdot x \neq a$ and $y r \cdot a=y r \cdot y a=y . r a \neq a$.
1.3. Lemma. C (resp. D) is either empty or a right (resp. left) ideal of H.

Proof. Use 1.2(i).
1.4. Lemma. If $D=\emptyset$ then C is either empty or an ideal of H.

Proof. Use 1.3 and 1.2(i).

[^0]1.5. Lemma. Suppose that H is left-ideal-free.
(i) Either $D=H$ or $B=H$.
(ii) If $B=H$ then either $C=H$ or $A=H$.

Proof. Use 1.3.
1.6. Lemma. Suppose that H is both left and right-ideal-free. Then either $A=B=H$ or $A=D=H$ or $C=B=H$ or $C=D=H$.

Proof. Use 1.3.
1.7. Lemma. Suppose that H is both left and right-ideal-free and $A=D=H$. Then H is trivial and G is a two-element semigroup of left zeros.

Proof. We have $a x=a$ and $x a \in H$ for every $x \in H$. Then $x a \cdot x a=x a=$ $=x . a y=x a . x y$ for all $x, y \in H$. From this, $(x a, x y) \in q$ where q is defined by $(u, v) \in q$ iff $z u=z v$ for every $z \in H$ (take into account that H is regular). Now, it is clear that $(x y, x z) \in q$ for all $x, y, z \in H, H / q$ is a semigroup of left zeros and it is trivial, since it is right-ideal-free. In particular, $q=H \times H, H$ is a semigroup of left zeros and H is trivial by similar arguments.
1.8. Lemma. If either $A=H$ or $B=H$ then $a=b$.

Proof. Obvious.
1.9. Lemma. Suppose that $C=H$ (resp. $D=H$) and put $f(x)=a x$ (resp. $g(x)=$ $=x a$) for every $x \in H$. Then f (resp. g) is an endomorphism of H and $f(x) y=$ $=f(y) \cdot x y$ (resp. $x g(y)=x y \cdot g(x))$ for all $x, y \in H$.

Proof. We have $f(x y)=a \cdot x y=a x . a y=f(x) f(y)$ and $f(x) y=a x \cdot y=$ $=a y \cdot x y=f(y) \cdot x y$.
1.10. Lemma. Suppose that $C=D=H$ and consider the endomorphisms f, g defined in 1.9. Then $x f(y)=g(x) \cdot x y$ and $g(x) y=x y \cdot f(y)$ for all $x, y \in H$. Moreover, $f g=g f$.

Proof. We have $x f(y)=x \cdot a y=x a \cdot x y=g(x) \cdot x y, g(x) y=x a \cdot y=x y$. . $a y=x y \cdot f(y)$ and $f g(x)=a \cdot x a=a a x . a=g f(x)$.
2. In this section, let H be a distributive groupoid such that H is a right (resp. left) quasigroup.
2.1. Lemma. Let f be an endomorphism of H such that $f(x) y=f(y) \cdot x y$ for all $x, y \in H$. Then there exists an element $a \in H$ with $f(x)=a x$ for every $x \in H$.

Proof. Take an element $b \in H$. Then $f(b)=a b$ for some $a \in H$ and we have $a b=f(b)=f(b) f(b)=f(b) \cdot a b=f(a) b$ which implies $f(a)=a$. Now, $a c \cdot a c=$ $=a c=f(a) c=f(c) . a c$ and $a c=f(c)$ for every $c \in H$.
2.2. Lemma. Let f and g be endomorphisms of H such that $f(x) y=f(y) \cdot x y$ and $x f(y)=g(x) . x y$ for all $x, y \in H$. Then there exists an element $a \in H$ with $f(x)=a x$ and $g(x)=x a$ for each $x \in H$.

Proof. By 2.1, there is an element $a \in H$ such that $f(x)=a x$ for every $x \in H$. Now, $x a \cdot x=x . a x=x f(x)=g(x) x$, and hence $x a=g(x)$.
3. In this section, let H be a distributive idempotent groupoid, $b \in H, a \notin H$ and $G=H \cup\{a\}$. Define three groupoids $H[a, 1]=G(+), H[a, b, 2]=G(-)$ and $H[a, b, 3]=G(:)$ by $x+y=x-y=x: y=x y, x+a=a+x=a+a=$ $=a-a=a, x-a=x: a=x b, a-x=a: x=b x, a: a=b$ for all $x, y \in H$.
3.1. Lemma. The groupoids $H[a, 1]$ and $H[a, b, 2]$ are distributive and idempotent and the groupoid $H[a, b, 3]$ is distributive and not idempotent.

Proof. Let $x, y, z \in G$. If $x, y, z \in H$ then both the distributive laws for these elements are clear. If $x=a$ and $y, z \in H$ then $x+(y+z)=a=(x+y)+$ $+(x+z),(y+z)+x=a=(y+x)+(z+x), x-(y-z)=a-y z=b$. $. y z=b y . b z=(a-y)(a-z)=(a-y)-(a-z)=(x-y)-(x-z)$, $(y-z)-x=(y-x)-(z-x), \quad x:(y: z)=(x: y):(x: z)$ and $(y: z): x=$ $(y: x):(z: x)$. If $y=a$ and $x, z \in H$ then $x+(y+z)=a=(x+y)+(x+z)$, $(y+z)+x=a=(y+x)+(z+x), x-(y-z)=x-b z=x . b z=x b$. $\cdot x z=(x-a) \cdot x z=(x-y)-(x-z), \quad(y-z)-x=b z-x=b z \cdot x=b x$. $\cdot z x=(a-x) \cdot z x=(y-x)-(z-x), x:(y: z)=(x: y):(x: z)$ and $(y: z):$ $: x=(y: x):(z: x)$. If $z=a$ and $x, y \in H$ then $x+(y+z)=a=(x+y)+$ $+(x+z),(y+z)+x=a=(y+x)+(z+x), x-(y-z)=x-y b=x$. $. y b=x y \cdot x b=(x-y)-(x-a)=(x-y)-(x-z),(y-z)-x=$ $=(y-x)-(z-x), x:(y: z)=(x: y):(x: z)$ and $(y: z): x=(y: x):(z: x)$. If $x=y=a$ and $z \in H$ then $x+(y+z)=a=(x+y)+(x+z),(y+z)+$ $+x=a=(y+x)+(z+x), \quad x-(y-z)=a-(a-z)=(a-a)-$ $-(a-z)=(x-y)-(x-z), \quad(y-z)-x=(a-z)-a=b z \cdot b=b$. $. z b=a-(z-a)=(y-x)-(z-x), \quad x:(y: z)=a:(a: z)=b \cdot b z=$ $=(a: a):(a: z)=(x: y):(x: z),(y: z): x=(a: z): a=b z \cdot b=b \cdot z b=$ $=(a: a):(z: a)=(y: x):(z: x)$. If $x=a=z$ and $y \in H$ then $x+(y+z)=$ $=a=(x+y)+(x+z),(y+z)+x=(y+x)+(z+x), x-(y-z)=a-$ $-(y-a)=b \cdot y b=b y \cdot b=(x-y)-(x-z),(y-z)-x=(y-a)-a=$ $=(y-a)-(a-a)=(y-x)-(z-x), x:(y: z)=a:(y: a)=b . y b=b y$. . $b=(x: y):(x: z), \quad(y: z): x=(y: a): a=y b . b=(y: x):(z: x)$. If $x \in H$ and $y=z=a$ then $x+(y+z)=(x+y)+(x+z),(y+z)+x=(y+x)+$ $+(z+x), x-(y-z)=x-a=x b=x b \cdot x b=(x-a)-(x-a)=$ $=(x-y)-(x-z),(y-z)-x=(y-x)-(z-x), x:(y: z)=(x: y):$ $:(x: z),(y: z): x=(y: x):(z: x)$. Finally, if $x=y=z=a$ then $x+(y+z)=$ $=(x+y)+(x+z),(y+z)+x=(y+x)+(z+x), x-(y-z)=(x-y)-$
$-(x-z),(y-z)-x=(y-x)-(z-x), x:(y: z)=a: b=b b=(a: a):$ $:(a: a)=(x: y):(x: z),(y: z): x=b b=(y: x):(z: x)$.
3.2. Lemma. Suppose that H has no zero element. Then the groupoids $H[a, 1]$ and $H[a, b, 2]$ are not isomorphic.

Proof. Obvious.
3.3. Lemma. Suppose that H is a left (resp. right) quasigroup and $b, c \in H$. Then the groupoids $H[a, b, 2]$ and $H[a, c, 2]$ are isomorphic.

Proof. There is an element $d \in H$ such that $c=b d$. Now, define a permutation f of G by $f(x)=x d$ for every $x \in H$ and $f(a)=a$. Let $x, y \in G$. If $x, y \in H$ then $f(x-y)=f(x y)=x y . d=x d . y d=f(x) f(y)=f(x)-f(y)$. If $x=a$ and $y \in H$ then $\quad f(x-y)=f(b y)=b y \cdot d=b d . y d=c \cdot y d=a-y d=f(a)-$ $-f(y)=f(x)-f(y)$. If $x \in H$ and $y=a$ then $f(x-y)=f(x b)=x b \cdot d=$ $=x d . b d=x d . c=x c-a=f(x)-f(a)=f(x)-f(y)$. If $x=y=a$ then $f(x-y)=f(a)=a=a-a=f(a)-f(a)=f(x)-f(y)$. We have proved that f is an isomorphism of $H[a, b, 2]$ onto $H[a, c, 2]$.
3.4. Lemma. Suppose that H is a left (resp. right) quasigroup. Then the groupoids $H[a, b, 3]$ and $H[a, c, 3]$ are isomorphic for all $b, c \in H$.

Proof. Similar to that of 3.3.
3.5. Lemma. Suppose that H contains no zero element and no subgroupoid K with $\operatorname{card}(H-K)=1$. Let P be a distributive idempotent groupoid such that P is not isomorphic to H and let $d \in P, c \notin P$. Then the groupoids $H[a, 1], H[a, b, 2]$, $H[a, b, 3], P[c, 1], P[c, d, 2]$ and $P[c, d, 3]$ are pair-wise non-isomorphic.

Proof. Easy.
4. In this section, let H be a non-trivial left-right-ideal-free distributive groupoid such that H is a left (resp. right) quasigroup. Take two elements $a \notin H$ and $b \in H$ and put $H[1]=H[a, 1], H[2]=H[a, b, 2]$ and $H[3]=H[a, b, 3]$.
4.1. Proposition. (i) If H is a subgroupoid of a distributive groupoid G such that $G-H$ is a one-element set then G is isomorphic to exactly one of the groupoids $H[1], H[2]$ and $H[3]$.
(ii) The groupoids $H[1], H[2]$ and $H[3]$ are pair-wise non-isomorphic one-element extensions of H.

Proof. (i) Let $G=H \cup\{a\}$. Consider the subsets A, B, C, D defined in the first section. If $A=B=H$ then G is isomorphic to $H[1]$. If this is not true then $C=$ $=D=H$ by 1.6, 1.7 and its dual. In that case, by $1.9,1.10$ and 2.2 , there is an
element $b \in H$ such that $a x=b x$ and $x a=x b$ for each $x \in H$. If $a=a a$ then G is isomorphic to $H[2]$ by 3.3. If $a \neq a a$ then $a a . a a=a . a a=b . a a=a a \cdot a=$ $=a a . b, b=a a$ and G is isomorphic to $H[3]$ by 3.4.
(ii) This follows from 3.1 and 3.2.
4.2. Proposition. Every two-element distributive groupoid contains a one-element subgroupoid and the number of isomorphism classes of two-element distributive groupoids is equal to 4 .

Proof. Easy.
5. For every positive integer $n \geqq 1$, let $a(n)$ (resp. $b(n), c(n), d(n)$) designate the number of isomorphism classes of non-medial (resp. idempotent non-medial, medial, idempotent medial) distributive groupoids of order n.
5.1. Proposition. $a(82)=18$ and $b(82)=12$.

Proof. First, let G be a non-medial distributive groupoid of order. 82 by [3], G contains a non-medial subquasigroup Q of order 81 . Now, according to $4.1(\mathrm{i})$, G is isomorphic to one of the groupoids $Q[1], Q[2]$ and $Q[3]$. Conversely, as proved in [4], there exist up to isomorphism just six non-medial distributive quasigroups of order 81 and the result follows from 3.5.
5.2. Remark. According to 5.1, [2], [3] and [4], we have the following table:

n	1	2	3	\ldots	80	81	82
$a(n)$	0	0	0	\ldots	0	6	18
$b(n)$	0	0	0	\ldots	0	6	12
$c(n)$	1	4	19	\ldots	$>10^{79}$	$>10^{80}$	$>10^{81}$
$d(n)$	1	3	13	\ldots	$>10^{79}$	$>10^{80}$	$>10^{81}$

References

[1] Bol, G.: Gewebe und Gruppen, Math. Ann. 114 (1937), 414-431.
[2] Ježek, J., Kepka, T. and Němec, P.: Distributive groupoids, Rozpravy ČSAV 91/3, Praha 1981, 96 pp.
[3] Ježek, J. and Kepka, T.: Non-medial distributive groupoids of small orders (to appear).
[4] Kepka, T. and Němec, P.: Commutative Moufang loops and distributive groupids of small orders, Czech. Math. J. 31 (1981), 633-669.

[^0]: *) 18600 Praha 8, Sokolovská 83, Czechoslovakia.

