Acta Universitatis Carolinae. Mathematica et Physica

Tomáš Kepka

Varieties of left distributive semigroups

Acta Universitatis Carolinae. Mathematica et Physica, Vol. 25 (1984), No. 1, 3--18
Persistent URL: http://dml.cz/dmlcz/142523

Terms of use:

© Univerzita Karlova v Praze, 1984

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

Varieties of Left Distributive Semigroups

T. KEPKA
Department of Mathematics, Charles University, Prague*)

Received 30 March, 1983

In the paper, left distributive semigroups and their varieties are investigated.
V článku se vyšetřují levodistributivní pologrupy a jejich variety.
В статье изучаются многообразия леводистрибутивных полугрупп.

1. Introduction

A semigroup satisfying the identity $x y z=x y x z$ (resp. $z y x=z x y x$) is said to be left (resp. right) distributive. We denote by L the variety of left distributive semigroups.

Throughout the paper, let W be a free semigroup over an infinite set X of variables. For $r, s \in W$, let $\operatorname{Mod}(r=s)$ designate the variety of semigroups satisfying the identity $r=s$ and put $\mathrm{M}(r=s)=L \cap \operatorname{Mod}(r=s)$. Further, we denote by $o(r)$ and $(r) o$ the first and the last variable occurring in r and by $\operatorname{var}(r)$ the set of variables contained in r. We put $l(x)=1$ for every $x \in X$ and $l(r s)=l(r)+l(s)$.

Let S be a semigroup. Then the relations $p(S)$ nad $q(S)$ defined by $(a, b) \in p(S)$ and $(c, d) \in q(S)$ iff $a e=b e$ and $e c=e d$ for every $e \in S$ are congruences of S. Further, denote by $\operatorname{Id}(S)$ the set of idempotents of S.

Put $R_{1}=\mathrm{M}(x y=x y x)=\operatorname{Mod}(x y=x y x), T_{1}=\mathrm{M}\left(x y=x^{2} y\right), T=\mathrm{M}\left(x y^{2}=\right.$ $\left.=x^{2} y^{2}\right), \quad R=\mathrm{M}\left(x^{2} y=x^{2} y^{2}\right), \quad A=\mathrm{M}(x y z=u v w)=\operatorname{Mod}(x y z=u v w), \quad A_{1}=$ $=\mathrm{M}(x y=u v)=\operatorname{Mod}(x y=u v)$ and $I=\mathrm{M}\left(x=x^{2}\right)$.

2. Some Properties Of Left Distributive Semigroups

2.1 Proposition. Let $S \in L$. Then:
(i) $a b a, a b^{2}, a^{3} \in \operatorname{Id}(S)$ for all $a, b \in S$.
(ii) $\operatorname{Id}(S)$ is a left ideal of S.
*) 18600 Praha 8, Sokolovská 83, Czechoslovakia.
(iii) S satisfies the identities $x y z=x y x z=x y^{2} z, x^{n} y=x^{2} y$ and $(x y)^{n}=x y^{n}=x y^{2}$ for every $n \geqq 2$.
(iv) $S / p(S) \in R_{1}$ and $S / q(S) \in T_{1}$.
(v) For $n \geqq 2$, the mapping $a \rightarrow a^{n}$ is an endomorphism of S iff $S \in T$.
(vi) $\operatorname{Id}(S)$ is an ideal of S iff $S^{3} \subseteq I d(S)$ and iff $S \in R$.
(vii) The set $I(a, b)=\{c ; a c=b c\}$ is either empty or a right ideal for all $a, b \in S$.
(viii) The set $K(a, b)=\{c ; c a=c b\}$ is either empty or an ideal for all $a, b \in S$.

Proof. Easy observations.
2.2 Proposition. Let $S \in L$.
(i) $S \in A$ iff $\operatorname{Id}(S)$ is a one-element set.
(ii) If $S \in T$ and $f(a)=a^{3}$ then every block of $\operatorname{ker}(f)$ is an A-semigroup.
(iii) If $S \in R$ then $S / I d(S)$ is an A-semigroup.
(iv) If $S \in R \cap T$ then $\operatorname{ker}(f) \cap\left((\operatorname{Id}(S) \times I d(S)) \cup \mathrm{id}_{S}\right)=\mathrm{id}_{s}$.
(v) If $S \in R \cap T$ then S is a subdirect product of an idempotent semigroup and of an A-semigroup.

Proof. Easy.
2.3 Proposition. Let $S \in R_{1}$. Then:
(i) $S^{2} \subseteq \operatorname{Id}(S), \operatorname{Id}(S)$ is an ideal and $S / I d(S) \in A_{1}$.
(ii) $S \in R$ and S satisfies the identities $x y=x y^{2}=x y x$.
(iii) $S / q(S) \in I$.

Proof. Easy.
2.4 Proposition. Let $S \in T_{1}$. Then:
(i) S satisfies the identities $(x y)^{2}=x^{2} y^{2}=x y^{2}$ and $x^{2}=x^{3}$.
(ii) The mapping $f(a)=a^{2}$ is a homomorphism of S onto $\operatorname{Id}(S)$ and every block of $\operatorname{ker}(f)$ is a semigroup with zero multiplication.
(iii) $S / p(S) \in I$.

Proof. Easy.
2.5 Lemma. Let $S \in L$. Denote by G the set of all $a \in S$ such that the left translation by a is injective and put $H=S-G$.
(i) Every element of G is a left unit of S.
(ii) If G is non-empty then $q(S)=\mathrm{id}, G$ is a subsemigroup of S, G is a semigroup of right zeros and $S \in T_{1}$.
(iii) If H is non-empty then it is a prime ideal of S.
(iv) If G is non-empty and $S \in R_{1}$ then $G=\{1\}$ is a one-element set and 1 is a unit of S.

Proof. Easy.
2.6 Lemma. Let $S \in L$ be subdirectly irreducible. Then either G is non-empty or $q(S) \neq$ id.

Proof. All the left translations of S are endomorphisms.
2.7 Lemma. Let $S \in L$ be subdirectly irreducible such that G is non-empty. Then exactly one of the following four cases takes place:
(i) $S=G$ is a two-element semigroup of right zeros.
(ii) $H=\{0\}$ is a one-element set, 0 is a zero element of S and G is a two-element semigroup of right zeros.
(iii) H contains at least two elements, $S \in R_{1} \cap I$ and $p(S)=$ id.
(iv) H contains at least two elements, $S \notin I, S \notin R, p(S) \neq \mathrm{id}$.

Proof. By $2.5, S \in T_{1}$ and $q(S)=$ id. Denote by r the least non-trivial congruence of S. Then $(a, b) \in r$ for some $a, b \in S, a \neq b$. Clearly, $H=K(a, b)$. If H is empty then (i) is true. If $H=\{0\}$ then $s \cup$ id is a congruence of S whenever s is a congruence of G and consequently (ii) is true. Hence, suppose that H contains at least two elements. Since H is an ideal, $a, b \in H$ and $a a=a b$. Now, let $p(S)=$ id. By 2.1(iv), $S \in R_{1}$ and consequently $S \in I$ by 2.2. Finally, let $p(S) \neq \mathrm{id}$. Then $(a, b) \in p(S)$, $a b=b b$ and either $a \neq a a$ or $b \neq b b$. Therefore $S \notin I$. On the other hand, if $S \in R$ then $\operatorname{Id}(S)$ is an ideal, $\operatorname{Id}(S)$ is a one-element set, S is an A-semigroup and G is empty, a contradiction.
2.8 Lemma. Let $S \in L$ be as in 2.7 (iii). Then $G=\{1\}$ is a one-element set, 1 is a unit of S, H is subdirectly irreducible and $p(H)=\mathrm{id} \neq q(H)$.

Proof. Easy.
2.9 Proposition. Let $S \in T \cap R$ be subdirectly irreducible. Then exactly one of the following four cases takes place:
(i) S is a two-element semigroup of right zeros.
(ii) S contains a zero element 0 and $S-\{0\}$ is a two-element semigroup of right zeros.
(iii) $S \in I \cap R_{1}$ and $p(S)=$ id.
(iv) S is an A-semigroup.

Proof. With respect to 2.2 , we can assume that S is idempotent. Then either $p(S)=$ id and the result follows from $2.1(\mathrm{iv})$ or $q(S)=$ id and we can use 2.6 and 2.7.
2.10 Lemma. Let $S \in R_{1}$. Then there exists a congruence r of S such that S / r is commutative and every block of r containing at least two elements is a semigroup of left zeros.

Proof. Define a relation r by $(a, b) \in r$ iff either $a=b$ or $a=d b$ and $b=c a$ for some $c, d \in S$. Then r is a congruence of S and S / r is commutative, since $S \in R_{1}$. Let B be a block of r and $a, b \in B, a \neq b$. We have $a=d b, b=c a$ and $a b=a c a=$
$=a c=d b c=d c a c=d c a=d b=a$. Further, $(a, b) \in r$ implies $(a a, a b) \in r$ and $a a \in B$. If $a \neq a a$ then $a=a^{3} \in \operatorname{Id}(S), a=a a$, a contradiction.
2.11 Proposition. The following conditions are equivalent for a semigroup S :
(i) $S \in R$ and S satisfies the identity $x y u v=x u y v$.
(ii) S is both left and right distributive.

Proof. (i) implies (ii). $a b c=a b a c=a a b c=a a b b c=a a b b c c=a a b c c=$ $=a a c b c=a c a b c=a c b c$ for all $a, b, c \in S$. (ii) implies (i). $a b c d=a b c b d=a c b d$ and $a a b=a b a b=a a b b$ for all $a, b, c, d \in S$.
2.12 Proposition. Let S be a subdirectly irreducible left and right distributive semigroup. Then exactly one of the following six cases takes place:
(i) S is a two-element semigroup of right zeros.
(ii) S contains a zero element 0 and $S-\{0\}$ is a two-element semigroup of right zeros.
(iii) S is a two-element semigroup of left zeros.
(iv) S contains a zero element 0 and $S-\{0\}$ is a two-element semigroup of left zeros.
(v) S is a two-element semilattice.
(vi) S is an A-semigroup.

Proof. By 2.11, $S \in R$ and $a b b=a b a b=a a b b$ for all $a, b \in S$. Hence $S \in$ $\in T \cap R$ and we can assume that $S \in I \cap R_{1}$ (see 2.9). Similarly, using the right hand form of 2.9 , we can assume that S satisfies the identity $y x=x y x$. However, then S is clearly commutative.
2.13 Lemma. The following conditions are equivalent for an idempotent semigroup S :
(i) S satisfies the identity $x y z x=x z y x$.
(ii) S is medial.
(iii) S is both left and right distributive.

Proof. Only the first implication is not immediate. We have $a b c d=a b c d a b c d=$ $=a c d b a b c d=a c b a b d c d=a c b d b a c d=a c b d a c b d=a c b d$ for all $a, b, c, d \in S$.
2.14 Lemma. Let $S \in L$. Then $S^{2} \subseteq I d(S)$ iff S satisfies the identity $x y=x y^{2}$.

Proof. Obvious.

3. Finitely Generated Left Distributive Semigroups

Denote by W_{1} the set of all terms from W of the following three types:
I. $x_{1}, x_{1}^{2}, x_{1}^{3} ; x_{1} \in X$.
II. $x_{1}^{i} x_{2} \ldots x_{n-1} x_{n}^{j} ; i, j \leqq 2, x_{1}, \ldots, x_{n} \in X$ pair-wise distinct.
III. $x_{1}^{i} x_{2} \ldots x_{n} x_{k} ; i \leqq 2,1 \leqq k<n, x_{1}, \ldots, x_{n} \in X$ pair-wise distinct.
3.1 Lemma. Let $r, s \in W$. Then there exist $p, q \in W_{1}$ such that $\mathbf{M}(r=s)=\mathbf{M}(p=q)$.

Proof. Apply 2.1(iii).
Denote by W_{2} the set of all the terms $t \in W$ such that $f(t) \in \operatorname{Id}(S)$ for all $S \in L$ and all homomorphisms f of W into S. Put $W_{3}=W_{1}-W_{2}$ and denote by W_{4} the subsemigroup of W generated by $\left\{x^{3} ; x \in X\right\}$.
3.2 Lemma. (i) $W_{4} \subseteq W_{2}$.
(ii) Let $t \in W_{1}$. Then $t \in W_{3}$ iff $t=x_{1}^{i} x_{2} \ldots x_{n}$ for some $i \leqq 2,1 \leqq n$ and pair-wise different variables x_{1}, \ldots, x_{n}.

Proof. Easy.
3.3 Proposition. Every finitely generated left distributive semigroup is finite.

Proof. Apply 3.1.

Let V be a variety of left distributive semigroups. For each positive integer n, let $a(V, n)$ designate the number of elements of the free V-semigroup of rank n.
3.4 Example. (i) Consider the following groupoid $S_{1}=\{a, b, c, d, e\}$: $a a=a b=$ $=b a=b b=b, c a=c b=c c=c d=c e=c, a c=d a=d b=d c=d d=d e=$ $=d, a d=a e=b c=b d=b e=e a=e b=e c=e d=e e=e . \quad$ Then $\quad S_{1} \in R_{1}$, $S_{1} \notin T$ and S_{1} does not satisfy the identity $x y x=x^{2} y x$.
(ii) Consider the following groupoid $S_{2}=\{a, b, c\}: a a=a, a b=b a=b b=$ $=b c=b, a c=c a=c b=c c=c$. Then $S_{2} \in I \cap R_{1}, S_{2}$ does not satisfy $x y z x=$ $=x z y x$ and S_{2} is not right distributive.
(iii) Consider the following groupoid $S_{3}=\{a, b, c\}: a a=a b=a c=b a=c a=$ $=c b=c c=a, b b=b, b c=c$. Then $S_{3} \in T_{1}, S_{3}$ satisfies $x y^{2}=y x^{2}$ and $S_{3} \notin R$.
(iv) Consider the following groupoid $S_{4}=\{a, b, c, d\}: a a=a c=a d=c a=$ $=c b=c c=c d=c, \quad a b=d a=d b=d c=d d=d, \quad b a=b b=b c=b d=b$. Then $S_{4} \in R_{1}, S_{4}$ satisfies $x^{2}=x^{2} y$ and $S_{4} \notin T$.
3.5 Lemma. Let $r, s \in W_{1}$ be two different terms. Then $L \nsubseteq \operatorname{Mod}(r=s)$.

Proof. Suppose, on the contrary, that $L \subseteq \operatorname{Mod}(r=s)$. Clearly, $\operatorname{var}(r)=\operatorname{var}(s)$, $o(r)=o(s),(r) o=(s) o$ and either $l(r), l(s) \leqq 2$ or $3 \leqq l(r), l(s)$. Using this and 3.4, the result follows easily.
3.6 Proposition. $a(L, n)=3 n+\sum_{m=1}^{n}(4+2 m) n(n-1) \ldots(n-m)$ for every $n \geqq 1$. Proof. Apply 3.1 and 3.5.

We have $a(L, 1)=3, a(L, 2)=18, a(L, 3)=93, a(L, 4)=516, a(L, 5)=$ $=3255, \ldots$.

4. Idempotent Left Distributive Semigroups

Put $\quad I_{0}=\operatorname{Mod}(x=y), \quad I_{1}=\operatorname{Mod}(x=x y), \quad I_{2}=\operatorname{Mod}\left(x=x^{2}, \quad x y=y x\right)$, $I_{3}=\operatorname{Mod}(x=y x), \quad I_{4}=\operatorname{Mod}\left(x=x^{2}, x y z=x z y\right), \quad I_{5}=\operatorname{Mod}(x=x y x), \quad I_{6}=$ $=\operatorname{Mod}\left(x=x^{2}, x y z=y x z\right), I_{7}=\operatorname{Mod}\left(x=x^{2}, x y=x y x\right), I_{8}=\operatorname{Mod}\left(x=x^{2}\right.$, $x y z x=x z y x)$ and $I_{9}=I=\operatorname{Mod}\left(x=x^{2}, x y z=x y x z\right)$.
4.1 Proposition. (i) $I_{0} \subseteq I_{1} \subseteq I_{4} \subseteq I_{7} \subseteq I_{9}, I_{1} \subseteq I_{5} \subseteq I_{8}, I_{2} \subseteq I_{6} \subseteq I_{8}, I_{0} \subseteq I_{2} \subseteq$ $\subseteq I_{4} \subseteq I_{8} \subseteq I_{9}, I_{0} \subseteq I_{3} \subseteq I_{5}, I_{3} \subseteq I_{6}$.
(ii) The varieties I_{0}, \ldots, I_{9} are the only subvarieties of I.

Proof. The inclusions are clear from 2.13. Moreover, $I_{2} \nsubseteq I_{5}, I_{3} \nsubseteq I_{7}$ and $I_{7} \nsubseteq$ $\nsubseteq I_{8}$ by 3.4 (ii) and it is easy to see that the varieties I_{0}, \ldots, I_{9} are pair-wise different. Further, it is an easy consequence of 2.12 that every subvariety of I_{8} is equal to one of $I_{0}, \ldots, I_{6}, I_{8}$. The rest of the proof is divided into two parts.
(i) Let $r, s \in W_{1}$ be such that $V=\mathrm{M}\left(x \doteq x^{2}, r=s\right) \subseteq I_{7}$. We can restrict ourselves to the case $r=x_{1} \ldots x_{n}$ and $s=y_{1} \ldots y_{m}$ where $1 \leqq n, m, x_{1}, \ldots, x_{n} \in X$ are pairwise different and $y_{1}, \ldots, y_{m} \in X$ are pair-wise different. If $\operatorname{var}(r) \neq \operatorname{var}(s)$ then it is easy to see that $V \subseteq I_{5}$ and we have $V=I_{0}, I_{1}$. Suppose that $\operatorname{var}(r)=\operatorname{var}(s)$. Then $n=m$ and there is a permutation p of $\{1, \ldots, n\}$ such that $s=x_{p(1)} \ldots x_{p(n)}$. If $p(1) \neq 1$ then $V=I_{0}, I_{2}$. Let $p(1)=1, p \neq$ id and let $2 \leqq i \leqq n-1$ be the least number with $p(i) \neq i$. Using the substitution $x_{1}, \ldots, x_{i-1} \rightarrow x, x_{i} \rightarrow y$ and x_{i+1}, \ldots $\ldots, x_{n} \rightarrow z$, we see that $V \subseteq I_{4}$, and hence $V=I_{0}, I_{1}, I_{2}, I_{4}$.
(ii) Let V be a subvariety of I. We can assume that V is contained neither in I_{7} nor in I_{8}. By 2.9, V is equal to $\left(V \cap I_{7}\right)+\left(V \cap I_{8}\right)$. Hence $V \cap I_{7} \nsubseteq I_{8}$ and $I_{7} \subseteq V$ by (i). Similarly, $V \cap I_{8} \nsubseteq I_{7}$ and $I_{3} \subseteq V$. However, by $2.9, I_{9}=I_{3}+I_{7}$.
4.2 Lemma. Let $4 \leqq n$ and let p be a permutation of the set $\{1,2, \ldots, n\}$ such that $p(1)=1, p(n)=n$ and $p \neq$ id. Then $I_{8}=\mathrm{M}\left(x=x^{2}, x_{1} \ldots x_{n}=x_{p(1)} \ldots x_{p(n)}\right)$.

Proof. Easy.

5. A - Semigroups

Put $A_{5}=A=\operatorname{Mod}\left(x y z=u^{3}\right), A_{4}=\operatorname{Mod}\left(x y z=u^{2}\right), A_{3}=\operatorname{Mod}\left(x y z=u^{3}\right.$, $x y=y x), \quad A_{2}=\operatorname{Mod}\left(x y z=u^{2}, x y=y x\right), A_{1}=\operatorname{Mod}(x y=z x)$ and $A_{0}=$ $=\operatorname{Mod}(x=y)$.
5.1 Proposition. (i) $A_{0} \subseteq A_{1} \subseteq A_{2} \subseteq A_{3} \subseteq A_{5}, A_{2} \subseteq A_{4} \subseteq A_{5}$.
(ii) The varieties A_{0}, \ldots, A_{5} are the only subvarieties of A.

Proof. Easy.

6. The Varieties $\boldsymbol{P}_{\boldsymbol{i}, \boldsymbol{j}}$

For all $0 \leqq i \leqq 5$ and $0 \leqq j \leqq 9$, let $P_{i, j}=A_{i}+I_{j}$.
6.1 Lemma. (i) Every subvariety of $T \cap R$ is equal to $P_{i, j}$ for suitable i and j.
(ii) $P_{5,9}=T \cap R$.

Proof. Use 2.9, 4.1 and 5.1.
6.2 Lemma. Let $i \neq 2$, 3. Then $S \in P_{i, j}$ iff $S \in T \cap R, I d(S) \in I_{j}$ and $S / I d(S) \in A_{i}$.

Proof. Denote by V the class of all such semigroups S. Then V is a variety, and therefore $V=P_{i, j}$.
6.3 Lemma. (i) $P_{0, j}=I_{j}$ and $P_{i, 0}=A_{i}$.
(ii) $P_{2, j}=P_{4, j}$ and $P_{3, j}=P_{5, j}$ for every $j \neq 0,2$.
(iii) Suppose that either $i \neq 2,3$ or $j=0,2$. Then $S \in P_{i, j}$ iff $S \in T \cap R, \operatorname{Id}(S) \in I_{j}$ and $S / I d(S) \in A_{i}$. Moreover, $A_{i}=P_{i, j} \cap A$ and $I_{j}=P_{i, j} \cap I$.

Proof. (i) This is obvious.
(ii) Put $V=P_{3, j} \cap A$. Let $G \in P_{3, j}$ be a free semigroup generated by x and y. Clearly, $x y \neq y x$ in G. On the other hand, $V \nsubseteq A_{1}$ and consequently $x y, y x \notin \operatorname{Id}(G)$. Let f be the natural homomorphism of G onto $G \mid I d(G)$. Then $f(x y) \neq f(y x)$ and $G \mid I d(G) \notin A_{3}$. But $A_{3} \subseteq V$, and therefore $V=A$. The rest is similar.
(iii) For $i \neq 2,3$, see 6.2 . If $j=0$ then the result is obvious. If $j=2$ then we can proceed similarly as in the proof of 6.2.
6.4 Proposition. Every subvariety of $T \cap R=\mathrm{M}\left(x y^{2}=x^{2} y\right)$ is equal to one of the following fortyfour varieties: $L_{0}=P_{0,0}=I_{0}=A_{0}, L_{1}=P_{0,1}=I_{1}, \ldots, L_{9}=$ $=P_{0,9}=I_{9}, L_{10}=P_{1,0}=A_{1}, \ldots, L_{14}=P_{5,0}=A_{5}, L_{15}=P_{1,1}, \ldots, L_{23}=P_{1,9}$, $L_{24}=P_{2,2}, L_{25}=P_{2,1}=P_{4,1}, L_{26}=P_{4,2}, L_{27}=P_{2,3}=P_{4,3}, L_{28}=P_{2,4}=P_{4,4}$ $L_{24}=P_{2,2}, L_{25}=P_{2,1}=P_{4,1}, L_{26}=P_{4,2}, L_{27}=P_{2,3}=P_{4,3}, L_{28}=P_{2,4}=$ $=P_{4,4}, L_{29}=P_{2,5}=P_{4,5}, L_{30}=P_{2,6}=P_{4,6}, L_{31}=P_{2,7}=P_{4,7}, L_{32}=P_{2,8}=$ $=P_{4,8}, L_{33}=P_{2,9}=P_{4,9}, L_{34}=P_{3,2}, L_{35}=P_{3,1}=P_{5,1}, L_{36}=P_{5,2}, L_{37}=$ $=P_{3,3}=P_{5,3}, L_{38}=P_{3,4}=P_{5,4}, L_{39}=P_{3,5}=P_{5,5}, L_{40}=P_{3,6}=P_{5,6}, L_{41}=$ $=P_{3,7}=P_{5,7}, L_{42}=P_{3,8}=P_{5,8}, L_{43}=P_{3,9}=P_{5,9}$.

Proof. Apply 6.1 and 6.3.
6.5 Proposition. $P_{i, j} \subseteq P_{k, l}$ iff $I_{j} \subseteq I_{l}$ and either $A_{i} \subseteq A_{k}$ or $l \neq 0,2, i=4, k=2$ or $l \neq 0,2, i=5, k=3$.

Proof. Apply 6.1 and 6.2.

7. The Varieties $S_{i, j}, R_{i, j}$ and $T_{i, j}$

Put $S_{1}=\mathrm{M}\left(x^{2}=x^{3}, x y^{2}=x y x\right), \quad S_{2}=\mathrm{M}\left(x^{2}=x^{3}\right), \quad S_{3}=\mathrm{M}\left(x y^{2}=x y x\right)$ and $S_{4}=L$. Let $1 \leqq i \leqq 4$ and $0 \leqq j \leqq 9$. Denote by $S_{4, j}$ the class of all $S \in L$ such that $I d(S) \in I_{j}$ and put $S_{i, j}=S_{i} \cap S_{4, j}$.
7.1 Lemma. (i) $S_{1}=S_{2} \cap S_{3}, S_{2} \subseteq S_{4}$ and $S_{3} \subseteq S_{4}=L$.
(ii) $S_{i, j}$ is a subvariety of L and $S_{i, j} \cap I=I_{j}$.
(iii) $A_{5} \subseteq S_{3 . j}, S_{4, j}$ and $A_{5} \nsubseteq S_{1, j}, S_{2, j}$.
(iv) $S_{1, j}=S_{2, j} \cap S_{3, j}, S_{4,9}=L, S_{4,0}=A_{5}=S_{3,0}$ and $S_{2,0}=A=S_{1,6}$.

Proof. Obvious.
Put $R_{1}=\mathrm{M}(x y=x y x), R_{2}=\mathrm{M}\left(x y=x y^{2}\right), R_{3}=R \cap S_{1}=\mathrm{M}\left(x^{2}=x^{3}\right.$, $\left.x y^{2}=x y x, x^{2} y=x^{2} y^{2}\right), \quad R_{4}=R \cap S_{2}=\mathrm{M}\left(x^{2}=x^{3}, x^{2} y=x^{2} y^{2}\right), R_{5}=R \cap$ $\cap S_{3}=\mathrm{M}\left(x^{2} y=x^{2} y^{2}, x y^{2}=x y x\right)$ and $R_{6}=R=\mathrm{M}\left(x^{2} y=x^{2} y^{2}\right)$.
7.2 Lemma. $R_{1}=R_{2} \cap R_{3}, R_{3}=R_{5} \cap R_{4}, R_{2} \subseteq R_{4}, R_{4}+R_{5} \subseteq R_{6}$.

Proof. Obvious.
For $0 \leqq j \leqq 9$ and $1 \leqq i \leqq 6$, let $R_{i, j}=S_{4, j} \cap R_{i}$.
Further, let $T_{1}=\mathrm{M}\left(x y=x^{2} y\right), \quad T_{2}=T \cap S_{2}=\mathrm{M}\left(x^{2}=x^{3}, x y^{2}=x^{2} y^{2}\right)$, $T_{3}=T=\mathrm{M}\left(x y^{2}=x^{2} y^{2}\right)$. For $0 \leqq j \leqq 9$ and $1 \leqq i \leqq 3$, let $T_{i, j}=S_{4, j} \cap T_{i}$.
7.3 Lemma. $T_{1} \subseteq T_{2} \subseteq T_{3}$.

Proof. Obvious.

8. Auxiliary Results

8.1 Lemma. Let $r, s \in W$ be such that $o(r) \neq x \in X$ and $o(r) \neq o(s)$. Then $\mathrm{M}(x r=x s) \subseteq T$.

Proof. Put $V=\mathrm{M}(x r=x s)$ and let $y \in X$ be such that $y \notin \operatorname{var}(x r s)$. Then $V \subseteq$ $\subseteq \mathrm{M}(x r y=x s y)$ and we have $x r y=x x_{1}^{k_{1}} \ldots x_{n}^{k_{n}} y$ and $x s y=x y_{1}^{l_{1}} \ldots y_{m}^{l_{m}} y$ where $1 \leqq n, m, k_{1}, \ldots, k_{n}, l_{1}, \ldots, l_{m}, x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m} \in X$ and $x \neq x_{1} \neq y_{1}$. Using the substitution $x_{i} \rightarrow y$ for every $x_{i} \neq x, y_{1}, y_{j} \rightarrow y$ for every $y_{j} \neq x, y_{1}, y \rightarrow y$ and $x, y_{1} \rightarrow x$, we see that $x r y=x s y$ implies in L at least one of the following two identities: $x y^{2}=x^{2} y, x y^{2}=x^{2} y^{2}$. However, $\mathrm{M}\left(x y^{2}=x^{2} y\right)=T \cap R$ and $\mathrm{M}\left(x y^{2}=\right.$ $\left.=x^{2} y^{2}\right)=T$.
8.2 Lemma. Let $r, s \in W$.
(i) If $o(r) \neq o(s)$ then $\mathrm{M}(r=s) \subseteq T$.
(ii) If $o(r) \neq o(s)=x$ and either $s=x^{2}$ or $s=x^{2} t$ for some $t \in W$ then $\mathrm{M}(x r=s) \subseteq T$.
(iii) If $x, y, z \in X$ and $y \neq z$ then $\mathrm{M}(x y r=x z s) \subseteq T$.

Proof. (i) Let $x \in X$ be such that $x \notin \operatorname{var}(r s)$. Then $\mathbf{M}(r=s) \subseteq \mathbf{M}(x r=x s) \subseteq T$ by 8.1.
(ii) Let $y \in X$ be such that $y \notin \operatorname{var}(r s)$. Then $\mathrm{M}(x r=s) \subseteq \mathrm{M}\left(x r y=x^{2}(t) y\right) \subseteq T$.
(iii) Let $u \in X$ be such that $u \notin \operatorname{var}(x y z r s)$. Using the substitution $w \rightarrow y$ for every variable $w \in \operatorname{var}(u y r s), w \neq x, z$, and $x, z \rightarrow x$, we see that $x y r u=x y s u$ implies in L at least one of the following two identites: $x y^{2}=x^{2} y, x y^{2}=x^{2} y^{2}$.
8.3 Lemma. Let $r, s \in X$.
(i) Suppose that $x \in X$ is such that $x \notin \operatorname{var}(r)$ and either $s \neq x, x^{2}$ or $s \neq t x$ for every $t \in W$ with $x \notin \operatorname{var}(t)$. Then $\mathrm{M}(r x=s) \subseteq R$.
(ii) If $\operatorname{var}(r) \neq \operatorname{var}(s)$ then $\mathrm{M}(r=s) \subseteq R$.

Proof. (i) Using the substitution $w \rightarrow x$ for every variable $w \in \operatorname{var}(r s), w \neq x$, and $x \rightarrow y$, we see that the identity $r x=s$ imples in Lat least one of the following twentyfour identities: $x y=x, x y=x^{2}, x y=x^{3}, x^{2} y=x, x^{2} y=x^{2}, x^{2} y=x^{3}$, $x y=y^{3}, x^{2} y=y^{3}, x y=x y x, x^{2} y=x y x, x y=x^{2} y x, x^{2} y=x^{2} y x, x y=x y^{2}$, $x^{2} y=x y^{2}, x y=x^{2} y^{2}, x^{2} y=x^{2} y^{2}, x y=y x, x^{2} y=y x, x y=y x^{2}, x^{2} y=y x^{2}$, $x y=y^{2} x, x^{2} y=y^{2} x, x y=y^{2} x^{2}, x^{2} y=y^{2} x^{2}$. Every of these identities implies in L the identity $x^{2} y=x^{2} y^{2}$.
(ii) Let $x \in X$ be such that $x \notin \operatorname{var}(x)$ and $x \in \operatorname{var}(s)$. If s is equal to x then $\mathrm{M}(r=s)$ is the trivial variety. In the opposite case we have $s x \neq x, x^{2}$ and $\mathrm{M}(r=s) \subseteq$ $\subseteq \mathrm{M}(r x=s x) \subseteq R$ by (i).
8.4 Lemma. Let V be a subvariety of L. If $V \cap I \subseteq I_{6}$ then $V \subseteq T$. If $V \cap I \subseteq I_{5}$ then $V \subseteq R$.

Proof. First, let $V \cap I \subseteq I_{6}$. Then $a b c=b a c$ for all $a, b, c \in I d(S), S \in V$. Consequently, $V \subseteq \mathrm{M}\left(x^{2} y z^{2}=y^{2} x z^{2}\right)$ and $V \subseteq T$ by 8.2(i). Now, let $V \cap I \subseteq I_{5}$. Then $V \subseteq \mathrm{M}\left(x^{3}=x^{2} y x^{2}\right)$ and $V \subseteq R$ by $8.3(\mathrm{ii})$.
8.5 Lemma. (i) Let $r, s \in W$ be such that $o(r) \neq o(s)$ and $\operatorname{var}(r) \neq \operatorname{var}(s)$. Then $\mathrm{M}(r=s) \subseteq T \cap R$.
(ii) Let V be a subvariety of L such that $V \cap I \subseteq I_{3}$. Then $V \subseteq T \cap R$.

Proof. Use 8.2(i), 8.3(ii) and 8.4.
8.6 Lemma. Let $r, s \in W$ and $V=\mathbf{M}(r=s)$.
(i) If $r, s \in W_{4}$ then $V=S_{4, j}$ for some j.
(ii) If $r, s \in W_{2}$ then $V \cap T=T_{3, j}$ for some j.
(iii) If $r \in W_{2}$ then either $V \cap T \subseteq R$ or $V \cap T=T_{3, j}$ or $V \cap T=T_{2, j}$ for some j. Proof. Let $I_{j}=V \cap I$. Then $V \subseteq S_{4, j}$ and $V \cap T \subseteq T_{3, j}$.
(i) Let $S \in S_{4, j}$ and let f be a homomorphism of W into S. Then $f\left(W_{4}\right) \subseteq I d(S)$, and hence $f(r)=f(s)$. Thus $S \in V$ and $V=S_{4, j}$.
(ii) Let $S \in T_{3, j}$ and let f be a homomorphism of W into S. Put $g(x)=x^{3}$ and $k(a)=a^{3}$ for all $x \in X$ and $a \in S$. Then g can be extended to an endomorphism of W, say h, and k is an endomorphism of S. We have $h(W)=W_{4}$ and $k(S)=\operatorname{Id}(S)$. Moreover, $I d(S) \in I_{j} \subseteq V \cap T$ and $f h(W) \subseteq I d(S)$. Consequently, $f h(r)=f h(s)$. On the other hand, it is easy to see that $f h=k f$. Therefore $k f(r)=k f(s)$. But $f(r)$, $f(s) \in I d(S)$, and so $f(r)=f(s)$.
(iii) We can assume that $s \in W_{3}$, i.e., $s=x_{1}^{i} x_{2} \ldots x_{n}, 1 \leqq n, i \leqq 2$ and $x_{1}, \ldots, x_{n} \in X$ pair-wise different. Put $U=\mathrm{M}\left(s=s^{3}\right)$. It is clear that $V \cap T=U \cap T \cap \mathbf{M}\left(r=s^{3}\right)$. Since $r, s \in W_{2}, \mathrm{M}\left(r=s^{3}\right) \cap T=T_{3, k}$ for some k. If $n=1$ and $i=1$ then $U=I$ and $V \cap T=I_{k}$. If $n=1$ and $i=2$ then $U=S_{2}$ and $V=T_{2, k}$. Suppose that $n \geqq 2$. Then $U=\mathrm{M}\left(x_{1}^{i} x_{2} \ldots x_{n}=x_{1}^{i} x_{2} \ldots x_{n-1} x_{n}^{2}\right) \subseteq R$ by 8.3(i).
8.7 Lemma. Let $x, y \in X, r, s \in W, x \notin \operatorname{var}(r s)$, and $V=\mathrm{M}(x y r=x y s)$. If either $V \subseteq R$ or $x y r, x y s \in W_{2}$ then either $V=S_{4, j}$ or $V=R_{6, j}$ for some j.

Proof. If $x y r, x y s \in W_{2}$ then $V=\mathrm{M}\left(x y r^{3}=x y s^{3}\right)$. Now, we can assume that $r=x_{1}^{3} \ldots x_{n}^{3}$ and $s=y_{1}^{3} \ldots y_{m}^{3}$. If $x=y$ then the result follows from 8.6(i). Hence suppose that $x \neq y$ and put $I_{j}=V \cap I$. Then I_{j} satisfies $y x_{1} \ldots x_{n}=y y_{1} \ldots y_{m}$ and $V \subseteq S_{4, j}$. Conversely, let $S \in S_{4, j}$. Then S satisfies $y^{3} x_{1}^{3} \ldots x_{n}^{3}=y^{3} y_{1}^{3} \ldots y_{m}^{3}$ and hence $S \in V$.

9. Auxiliary Results

9.1 Lemma. Let $i, j \leqq 2 \leqq n$, let $x_{1}, \ldots, x_{n} \in X$ be pair-wise different and let p be a permutation of $\{1, \ldots, n\}$ with $p(1) \neq 1$. Put $r=x_{1}^{i} x_{2} \ldots x_{n}, s=x_{p(1)}^{j} x_{p(2)} \ldots x_{p(n)}$ and $V=\mathrm{M}(r=s)$. Then either $V \subseteq T \cap R$ or $V=T_{3,6}$.

Proof. By 8.2(i), $V \subseteq T$. If $p(n)=n$ then $V \subseteq R$ by 8.3(i) and we can assume $p(n)=n$. Then $3 \leqq n, I_{1} \ddagger V$ and $V \cap I=I_{6}$. Consequently, $V \subseteq T_{3,6}$. Conversely, let $S \in T_{3,6}$ and $a_{1}, \ldots, a_{n} \in S$. Then $a_{1}^{3} \ldots a_{n-1}^{3} a_{n-1}^{3}=a_{p(1)}^{3} \ldots a_{p(n-1)}^{3} a_{n-1}^{3}$ and $a_{1} \ldots a_{n}=a_{1}^{2} a_{2} \ldots a_{n}=a_{1}^{3} a_{2}^{3} \ldots a_{n-1}^{3} a_{n-1}^{3} a_{n}=a_{p(1)}^{3} \ldots a_{p(n-1)}^{3} a_{n-1}^{3} a_{n}=a_{p(1)} \ldots$ $\ldots a_{p(n-1)} a_{n-1} a_{n}=a_{p(1)} \ldots a_{p(n-1)} a_{n}$.
9.2 Lemma. Let $r, s \in W, o(r) \neq o(s)$ and $V=\mathrm{M}(r=s)$. Then either $V \subseteq T \cap R$ or $V=T_{2, j}$ or $V=T_{3, j}$ for some j.

Proof. By 8.2(i), $V \subseteq T$ and we can assume that $\operatorname{var}(r)=\operatorname{var}(s)$. Taking into account 8.6(iii), we may restrict ourselves to the case $r, s \in W_{3}$. Then $r=x_{1}^{i} x_{2} \ldots x_{n}$ and $s=y_{1}^{j} y_{2} \ldots y_{m}$. We have $n=m, y_{k}=x_{p(k)}$ for a permutation p such tht $p(1) \neq$ $\neq 1$. The result follows now from 9.1.
9.3 Lemma. Let $i \leqq 2,3 \leqq n, x_{1}, \ldots, x_{n} \in X$ be pair-wise distinct and let p be a permutation of $\{2, \ldots, n\}$ with $p(2) \neq 2$. Put $r=x_{1} x_{2} \ldots x_{n}, s=x_{1}^{i} x_{p(2)} \ldots x_{p(n)}$ and $V=\mathrm{M}(r=s)$. Then:
(i) $V \subseteq T$.
(ii) $V \subseteq T \cap R$ if $p(n) \neq n$.
(iii) $V=T_{3,8}$ if $p(n)=n$.

Proof. (i) Use 8.2(iii).
(ii) Use (i) and 8.3(i).
(iii) By 4.2, $V \cap I=I_{8}$ and $V \subseteq T_{3,8}$. Conversely, let $S \in T_{3,8}$ and $a_{1}, \ldots, a_{n} \in S$. Then we have $a_{1} \ldots a_{n}=a_{1}^{3} \ldots a_{n-1}^{3} a_{1}^{3} a_{n}=a_{1}^{3} a_{p(2)}^{3} \ldots a_{p(n-1)}^{3} a_{1}^{3} a_{n}=a_{1}^{2} a_{p(2)} \ldots$ $\ldots a_{p(n-1)} a_{n}$.
9.4 Lemma. Let $3 \leqq n, x_{1}, \ldots, x_{n} \in X$ be pair-wise different and let p be a permutation of $\{1, \ldots, n\}$ with $p(1)=1$ and $p \neq$ id. Put $V=\mathrm{M}\left(x_{1}^{2} x_{2} \ldots x_{n}=x_{1}^{2} x_{p(2)} \ldots\right.$ $\ldots x_{p(n)}$). Then:
(i) $V=R_{6,4}$ if $p(n) \neq n$.
(ii) $V=S_{4,8}$ if $p(n)=n$.

Proof. Similar to that of 9.3 .
9.5 Lemma. Let $i, k, q, t \leqq 2 \leqq n$ and let $x_{1}, \ldots, x_{n} \in X$ be pair-wise distinct and p a permutation of $\{1, \ldots, n\}$. Put $V=\mathrm{M}\left(x_{1}^{i} x_{2} \ldots x_{n-1} x_{n}^{k}=x_{p(1)}^{q} x_{p(2)} \ldots x_{p(n-1)} x_{p(n)}^{t}\right)$. Then either $V \subseteq T \cap R$ or $V=S_{4, j}$ or $V=T_{m, j}$ or $V=R_{6, j}$ for some m and j.

Proof. It is divided into nine steps.
(i) Let $p(1) \neq 1$. Then we can apply 9.2.
(ii) Let $p(1)=1, k=t=1$ and $i=q=2$. This case is clear from 9.4.
(iii) Let $p(1)=1, p(2) \neq 2, k=t=1$ and $i+q \leqq 3$. In this case, we can use 9.3.
(iv) Let $p(1)=1, p(2)=2, k=t=1$ and $i=q=1$. If $p=$ id then $V=L$. Hence assume $p \neq$ id. Then $4 \leqq n$. If $p(n) \neq n$ then $V \subseteq R$ by $8.3(\mathrm{i}), V \cap I=I_{4}$ and it is easy to see that $V=R_{6,4}$. Now, let $p(n)=n$. Then $V \cap I=I_{8}$ and $V \subseteq S_{4,8}$. Conversely, if $S \in S_{4,8}$ and $a_{1}, \ldots, a_{n} \in S$ then $a_{1} \ldots a_{n}=a_{1} a_{2}^{3} \ldots a_{n-1}^{3} a_{2}^{3} a_{n}^{3}=$ $=a_{1} a_{2}^{3} a_{p(3)}^{3} \ldots a_{p(n-1)}^{3} a_{2}^{3} a_{n}=a_{1} a_{2} a_{p(3)} \ldots a_{p(n-1)} a_{n}$ and $S \in V$.
(v) Let $p(1)=1, p(2)=2, k=t=1$ and $i=1, q=2$. By 8.2 (ii), $V \subseteq T$. If $p(n) \neq n$ then $V \subseteq T \cap R$ as it follows from 8.3(i). Let $p(n)=n$ and $3 \leqq n$. Then we can see easily that $V=T \cap \mathrm{M}\left(x_{1}^{2} x_{2} \ldots x_{n}=x_{1}^{2} x_{2} x_{p(2)} \ldots x_{p(n)}\right)$. If $p \neq \mathrm{id}$ then $V=T_{3,8}$ and if $p=1$ then $V=T_{3,9}$ by 9.4.
(vi) Let $p(1)=1, k=t=2, i=2$ and $q=1$. Then $V \subseteq T$ by 8.2 (ii) and we can use 8.6(ii).
(vii) Let $p(1)=1, k=t=2$ and $i=q=1$. If $p(2)=2$ then the result follows from 8.7. If $p(2) \neq 2$ then $3 \leqq n, V \subseteq T$ by 8.2 (iii) and the result follows from 8.6 (ii).
(viii) Let $p(1)=1, k=t=2$ and $i=q=2$. In this case, it suffices to use $8.6(\mathrm{i})$.
(ix) Let $p(1)=1, k=2$ and $q=1$. If $p(n) \neq n$ then $V \subseteq R$ by $8.3(\mathrm{i})$. If $p(n)=n$ then the inclusion $V \subseteq R$ is obvious. Hence we have $V=R \cap \mathrm{M}\left(x_{1}^{i} x_{2} \ldots x_{n-1} x_{n}^{2}=\right.$ $=x_{1}^{q} x_{p(2)} \ldots x_{p(n-1)} x_{p(n)}^{2}$). The result is now clear from (vi), (vii) and (viii).
9.6 Lemma. Let $r, s \in W$ and $V=\mathrm{M}(r=s) \cap T$. Then either $V \subseteq T \cap R$ or $V=$ $=T_{i, j}$ for some i and j.

Proof. According to 8.3 (ii) and 8.6 (iii), we can assume that $r, s \in W_{3}$. However, then 9.5 may be applied.

10. The Lattice Of Subvarieties Of T

10.1 Lemma. (i) $T_{1 . j} \cap A=A_{1}, T_{2, j} \cap A=A_{4}, T_{3, j} \cap A=A_{5}, T_{1, j} \cap I=T_{2, j} \cap I=$ $=T_{3, j} \cap I=T_{3, j} \cap I=I_{j}$ for every $0 \leqq j \leqq 9$.
(ii) $T_{1, j}=P_{1, j}, T_{2, j}=P_{4, j}$ and $T_{3, j}=P_{5, j}$ for $j \in\{0,1,3,5\}$.

Proof. Use 6.4 and 8.4.
10.2 Lemma. Let $1 \leqq i, j \leqq 3$ and $0 \leqq p, q \leqq$. Then $T_{i, p} \cap T_{i, q}=T_{r, s}$ for some r, s and $T_{i, p} \subseteq T_{i, q}$ iff $i \leqq j$ and $I_{p} \subseteq I_{q}$.

Proof. Easy.
10.3 Lemma. The varieties $T_{i, j}, 1 \leqq i \leqq 3,0 \leqq j \leqq 9$, are pair-wise distinct.

Proof. Use 10.2.
10.4 Lemma. Let V be a subvariety of T. Then either V is contained in R or $V=T_{i, j}$ for some i and j.

Proof. Assume that $V \nsubseteq R$. By 9.6, V is the intersection of some $T_{i, j}$ and the rest is clear from 10.2.
10.5 Proposition. (i) Every subvariety of T is equal to one of the following sixtytwo varieties: $L_{0}, \ldots, L_{43}, L_{44}=T_{1,2}, L_{45}=T_{1,4}, L_{46}=T_{1,6}, L_{47}=T_{2,2}, L_{4,8}=T_{1,7}$, $L_{49}=T_{2,4}, L_{50}=T_{3,2}, L_{51}=T_{2,6}, L_{52}=T_{1,8}, L_{53}=T_{2,7}, L_{54}=T_{3,4}, L_{55}=$ $=T_{1,9}, L_{56}=T_{3,6}, L_{57}=T_{2,8}, L_{58}=T_{3,7}, L_{59}=T_{2,9}, L_{60}=T_{3,8}$ and $L_{61}=$ $=T_{3,9}$.
(ii) $L_{44}, \ldots, L_{61} \ddagger L_{43}=T \cap R, T_{i, p} \subseteq T_{j, q}$ iff $i \leqq j$ and $I_{p} \subseteq I_{q}$ and $P_{m, n} \subseteq T_{r, s}$ iff $I_{n} \subseteq I_{s}$ and either $r=3$ or $r=2, m=0,1,2,4$ or $r=1, m=0,1$.

Proof. (i) Let V be a subvariety of T such that $V \nsubseteq R$. By 10.4 and 10.1(ii), $V=T_{i, j}$ where $i=1,2,3$ and $j=2,4,6,7,8,9$. Conversely, if i and j are such numbers then $T_{1,2} \subseteq T_{i, j}$, and hence $T_{i, j} \nsubseteq R$.
(ii) This assertion is easy.

11. Auxiliary Results

11.1 Lemma. Let $i, j, k \leqq 2,0 \leqq n, x, x_{1}, \ldots, x_{n} \in X$ be pair-wise different and let p be a permutation of $\{1, \ldots, n\}$ and $V=\mathrm{M}\left(x^{i} x_{1} \ldots x_{n-1} x_{n}^{j}=x^{k} x_{p(1)} \ldots x_{p(n)} x\right)$. Then either $V \subseteq T$ or $V=S_{r, s}$ for some r and s or $V=R_{t, q}$ for some t and q.

Proof. We must distinguish six cases.
(i) $n=0$. Then either $V=L$ or $V=S_{2,9}$ or $V=I$.
(ii) $1 \leqq n, i=j=k=2$. Then 8.6(i) may be applied.
(iii) $1 \leqq n, i=k=2, j=1$. By $8.3(\mathrm{i}), V \subseteq R$ and $V=R \cap U, U=\mathrm{M}\left(x^{i} x_{1} \ldots\right.$ $\left.\ldots x_{n-1} x_{n}^{2}=x^{2} x_{p(1)} \ldots x_{p(n)} x\right)$. But $U=S_{4, s}$ and $V=R_{6, s}$.
(iv) $1 \leqq n, i+k=3$. By $8.2(i i), V \subseteq T$.
(v) $1 \leqq n, i=k=1, j=2$. If $p(1) \neq 1$ then $V \subseteq T$ due to 8.2 (iii), and therefore we can assume $p(1)=1$. Clearly, if $S \in S_{3,7}$ and $a, b_{1}, \ldots, b_{n} \in S$ then $a b_{1} \ldots b_{n}^{2}=$ $=a\left(b_{1} \ldots b_{n}\right)^{2}=a b_{1} \ldots b_{n} a$ and $S \in V$. Now, let $p \neq \mathrm{id}$. Using similar arguments as in the preseding case, we see that $V=S_{3,4}$.
(vi) $1 \leqq n, \quad i=j=k=1$. Then $V \subseteq R, \quad V=R \cap \mathrm{M}\left(x x_{1} \ldots x_{n-1} x_{n}^{2}=x_{p(1)} \ldots\right.$ $\left.\ldots x_{p(n)} x\right)$ and either $V=R_{5,7}$ or $V=R_{5,4}$ by (v).
11.2 Lemma. Let $i, j \leqq 2,0 \leqq n, x, x_{1}, \ldots, x_{n} \in X$ be pair-wise different and let p be a permutation of $\{1, \ldots, n\}$ and $V=\mathrm{M}\left(x^{i} x_{1} \ldots x_{n} x=x^{j} x_{p(1)} \ldots x_{p(n)} x\right)$. Then either $V \subseteq T$ or $V=S_{4,9}$ or $V=S_{4,8}$.

Proof. Similar to that of 11.1.
11.3 Lemma. Let $i, j, k \leqq 2 \leqq n, 1 \leqq q<n, x, x_{1}, \ldots, x_{n} \in X$ be pair-wise distinct and let p be a permutation of $\{1, \ldots, n\}$ and $V=\mathrm{M}\left(x^{i} x_{1} \ldots x_{n-1} x_{n}^{j}=x^{k} x_{p(1)} \ldots\right.$ $\left.\ldots x_{p(n)} x_{p(q)}\right)$. Then either $V \subseteq T$ or $V=S_{4, r}$ or $V=R_{6, r}$ for some r.

Proof. It is divided into five parts.
(i) $i=j=k=2$. In this case, we can use 8.6(i).
(ii) $i=k=2, j=1$. Clearly, $V \subseteq R$ and we can use 8.7.
(iii) $i+k=3$. Then $V \subseteq T$.
(iv) $i=k=1$ and $p(1) \neq 1$. Then $V \subseteq T$ by 8.1.
(v) $i=k=1$ and $p(1)=1$. If $j=2$ then we can use 8.7.

If $j=1$ then $V \subseteq R$ and 8.7 may be used again.
11.4 Lemma. Let $i, j \leqq 2 \leqq n, 1 \leqq r, s<n, x, x_{1}, \ldots, x_{n} \in X$ be pair-wise distinct and let p be a permutation of $\{1, \ldots, n\}$ and $V=\mathrm{M}\left(x^{i} x_{1} \ldots x_{n} x_{r}=x^{j} x_{p(1)} \ldots\right.$ $\left.\ldots x_{p(n)} x_{p(s)}\right)$. Then either $V \subseteq T$ or $V=S_{4, q}$ or $V=S_{6, q}$ for some q.

Proof. Similar to that of 11.3 .
11.5 Lemma. Let $i, j \leqq 2 \leqq n, 1 \leqq k<n, x, x_{1}, \ldots, x_{n} \in X$ be pair-wise distinct and let p be a permutation of $\{1, \ldots, n\}$ and $V=\mathrm{M}\left(x^{i} x_{1} \ldots x_{n} x=x^{j} x_{p(1)} \ldots\right.$ $\left.\ldots x_{p(n)} x_{p(k)}\right)$. Then either $V \subseteq T$ or $V=S_{r, s}$ or $V=R_{t, s}$.

Proof. Clearly, $V \cap I=I_{7}$ and $V \subseteq \mathbf{M}\left(x_{p(k)}^{3} \ldots x_{p(n)}^{3} x_{p(k)}^{3}=x_{p(k)}^{3} \ldots x_{p(n)}^{3}\right)$. Consequently, $V \subseteq U=\mathrm{M}\left(x^{i} x_{1} \ldots x_{n} x=x^{j} x_{p(1)} \ldots x_{p(n)}\right)$ and $V=U \cap S_{4,7}$. The result now follows from 11.1.
11.6 Lemma. Let $r, s \in W$ be such that $\operatorname{var}(r)=\operatorname{var}(s)$ and $o(r)=o(s)$. Put $V=$ $=\mathrm{M}(r=s)$. Then either $V \subseteq T \cap R$ or $V=T_{i, j}$ or $V=R_{p, q}$ or $V=S_{n, m}$.

Proof. We can assume that $r, s \in W_{1}$ and the result then follows from 9.5, 11.1, ..., 11.5.
11.7 Lemma. Let $r, s \in W$ be such that $\operatorname{var}(r) \neq \operatorname{var}(s)$ and let $V=\mathrm{M}(r=s)$. Then either $V \subseteq T \cap R$ or $V=R_{6, j}$ or $V=R_{4, j}$.

Proof. By 8.3 (ii), $V \subseteq R$ and we can assume that $o(r)=o(s)=x$. The rest is divided into nine parts.
(i) $r=x^{2} p$ and $s=x^{2} q$ where $p, q \in W$ and $o(p) \neq x \neq o(q)$. Then $V=R_{6, j}$ by $8.6(\mathrm{i})$.
(ii) $r=x^{i} p, s=x^{j} q, p, q \in W, o(p) \neq x \neq o(q), i+j=3$. Then $V \subseteq T \cap R$ by 8.2(ii).
(iii) $r=x p, s=x q, p, q \in W, o(p)=o(q) \neq x,(p) o \neq x \neq(q) o$. Then we can assume that $x \notin \operatorname{var}(p q)$ and the result follows from 8.7.
(iv) $r=x p, s=x q, p, q \in W, x \neq o(p) \neq o(q) \neq x$. Then $V \subseteq T \cap R$ by 8 .2(iii).
(v) $r=x p, s=x q, p, q \in W, o(p)=o(q) \neq x,(p) o \neq x=(q) o$. We can assume that $p=x_{1} \ldots x_{n}, x \notin \operatorname{var}(p), q=y_{1} \ldots y_{m}(x), x_{1}=y_{1}, x \neq y_{i}$. Then $V \cap I=I_{1}$ and it is easy to see that $V=R_{6,1}$.
(vi) $r=x p, s=x q, p, q \in W, o(p)=o(q) \neq x=(p) o=(q) o$. We can assume that $p=x_{1} \ldots x_{n} x, q=y_{1} \ldots y_{m} x, x_{1}=y_{1}$. Then $V \cap I=I_{5}$ and $V=R_{6,5}$.
(vii) $r=x$. Then $V \subseteq I$.
(viii) $r=x^{3}$ and $s=x^{i} q, q \in W, o(q) \neq x$. If $i=1$ then $V \subseteq T \cap R$ by 8.2(ii). If $i=2$ then 8.6(i) can be used.
(ix) $r=x^{2}, s=x^{i} q, q \in W, o(q) \neq x$. Then $V \subseteq S_{2}$ and $V=\mathrm{M}\left(x^{3}=s\right) \cap S_{2}$. The result now follows from (viii).
11.8 Proposition. Let $r, s \in W$. Then $\mathbf{M}(r=s) \in\left\{P_{i, j}, R_{n, m}, T_{p, q}, S_{t, k}\right\}$.

Proof. Apply 8.2, 11.6 and 11.7.

12. The Lattice Of Subvarieties Of R

12.1 Lemma. (i) $R_{1, j} \cap A=A_{1}=R_{2, j} \cap A, R_{3, j} \cap A=A_{4}=R_{4, j} \cap A, R_{5, j} \cap$ $\cap A=A_{5}=R_{6, j} \cap A, R_{1, j} \cap I=R_{3, j} \cap I=R_{5, j} \cap I=I_{j} \cap I_{7}$ and $R_{2, j} \cap I=$ $=R_{4, j} \cap I=R_{6, j} \cap I=I_{j}$ for every $0 \leqq j \leqq 9$.
(ii) $R_{2, j}=P_{1, j}, R_{4, j}=P_{4, j}, R_{6, j}=P_{5, j}$ for every $j=0,2,3,6$.
(iii) $R_{1,0}=R_{1,3}=P_{1,0}, R_{1,2}=R_{1,6}=P_{1,2}, R_{3,0}=R_{3,3}=P_{4,0}, R_{3,2}=R_{3,6}=$ $=P_{4,2}, R_{5,0}=R_{5,3}=P_{5,0}$ and $R_{5,2}=R_{5,6}=P_{5,2}$.
(iv) $R_{1, j}=R_{2, j}, R_{3, j}=R_{4, j}$ and $R_{5, j}=R_{6, j}$ for every $j=0,1,2,4,7$.

Proof. Easy.
12.2 Lemma. $R_{2,3} \subseteq R_{1,3}$.

Proof. Easy.
12.3 Lemma. Let $i \in\{1,3,5\}, 0 \leqq j, k \leqq 9$ be such that $I_{k} \cap I_{7}=I_{j}$. Then $R_{i, k}=$ $=R_{i, j}$.

Proof. Easy.
12.4 Lemma. Let $1 \leqq i, j \leqq 6$ and $0 \leqq r, s \leqq 9$. Then $R_{i, r} \cap R_{j, s}=R_{p, q}$ for some p and q.

Proof. Easy.
12.5 Proposition. Let $1 \leqq i, j \leqq 6$ and $0 \leqq r, s \leqq 9$. Then $R_{i, r} \subseteq R_{j, s}$ iff at least one of the following three conditions is satisfied:
(i) $R_{i} \subseteq R_{j}$ and $I_{r} \subseteq I_{s}$.
(ii) $(i, j) \in\{(2,1),(2,3),(2,5),(4,3),(6,5)\}, I_{r} \subseteq I_{s}$ and $I_{r} \subseteq I_{7}$.
(iii) $i \in\{1,3,5\}, R_{i} \subseteq R_{j}$ and $I_{r} \cap I_{7} \subseteq I_{s}$.

Proof. Use 12.1, 12.2 and 12.3.
12.6 Proposition. Every subvariety of R is equal to one of the following sixtytwo varieties: $L_{0}, \ldots, L_{43}, L_{62}=R_{1,1}, L_{63}=R_{3,1}, L_{64}=R_{1,4}, L_{65}=R_{2,5}, L_{66}=$ $=R_{5,1}, L_{67}=R_{3,4}, L_{68}=R_{1,7}, L_{69}=R_{2,8}, L_{70}=R_{4,5}, L_{71}=R_{5,4}, L_{72}=R_{3,7}$, $L_{73}=R_{2,9}, L_{74}=R_{4,8}, L_{75}=R_{6,5}, L_{76}=R_{5,7}, L_{77}=R_{4,9}, L_{78}=R_{6,8}$ and $L_{79}=R_{6,9}$.

Proof. Let V be a subvariety of R such that $V \nsubseteq T$. It follows from 11.8 and 12.4 that $V=R_{i, j}$ for some $1 \leqq i \leqq 6$ and $0 \leqq j \leqq 9$. According to 12.1 and 12.3, $V=L_{62}, \ldots, L_{72}$. On the other hand, $L_{62} \nsubseteq T$ by 3.4(iv).

13. The Main Result

13.1 Lemma. (i) $S_{1, j} \cap A=S_{2, j} \cap A=A_{4}, S_{3, j} \cap A=S_{4, j} \cap A=A_{5}, S_{1, j} \cap I=$ $=S_{3, j} \cap I=I_{j} \cap I_{7}, S_{2, j} \cap I=S_{4, j} \cap I=I_{j}$.
(ii) $S_{1,0}=S_{2,0}=S_{1,3}=P_{4,0}, \quad S_{3,0}=S_{4,0}=S_{3,3}=P_{5,0}, \quad S_{2,3}=P_{4,3} \quad$ and $S_{4,3}=P_{5,3}$.
(iii) $S_{3} \cap T=T_{3,7}$.
(iv) $S_{1,2}=S_{2,2}=S_{1,6}=T_{2,2}, \quad S_{3,2}=S_{4,2}=S_{3,6}=T_{3,2}, \quad S_{2,6}=T_{2,6} \quad$ and $S_{4,6}=T_{3,6}$.
(v) $S_{1,1}=S_{2,1}=R_{3,1}, S_{3,1}=S_{4,1}=R_{5,1}, S_{1,5}=R_{3,1}, S_{3,5}=R_{5,1}, S_{2,5}=$ $=R_{4,5}$ and $S_{4,5}=R_{6,5}$.

Proof. Easy.
13.2 Lemma. Let $0 \leqq i \leqq 9$ and $I_{j}=I_{i} \cap I_{7}$. Then $S_{1, i}=S_{1, j}$ and $S_{3, i}=S_{3, j}$. Proof. Easy.
13.3 Lemma. Let $1 \leqq i, j \leqq 4$ and $0 \leqq r, s \leqq 9$. Then $S_{i, r} \cap S_{j, s}=S_{p, q}$ for some p and q.

Proof. Easy.
13.4 Lemma. $S_{2,3} \nsubseteq S_{1,3}$.

Proof. Easy.
13.5 Lemma. Let $i=0,1,2,4,7$. Then $S_{1, i}=S_{2, i}$ and $S_{3, i}=S_{4, i}$.

Proof. Easy.
13.6 Proposition. Let $1 \leqq i, j \leqq 4$ and $0 \leqq r, s \leqq 9$. Then $S_{i, r} \subseteq S_{j . s}$ iff at least one of the following three conditions is satisfied:
(i) $S_{1} \subseteq S_{j}$ and $I_{r} \subseteq I_{s}$.
(ii) $i \in\{1,3\}, S_{i} \subseteq S_{j}$ and $I_{r} \cap I_{7} \subseteq I_{s}$.
(iii) $(i, j) \in\{(2,1),(2,3),(4,3)\}, I_{r} \subseteq I_{s}$ and $r \in\{0,1,2,4,7\}$.

Proof. Use $13.1, \ldots, 13.5$.
13.7 Theorem. Every subvariety of L is equal to one of the following eightyeight varieties: $L_{0}, \ldots, L_{79}, L_{80}=S_{1,4}, L_{81}=S_{1,7}, L_{82}=S_{2,8}, L_{83}=S_{2,9}, L_{84}=S_{3.4}$, $L_{85}=S_{3,7}, L_{86}=S_{4,8}$ and $L_{87}=S_{4,9}=L$.

Proof. Apply 11.8, 13.1, ..., 13.5 .

