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ACTA UNIVERSITATIS CAROLINAE — MATHEMATICA ET PHYSICA VOL. 26. NO. 1 

N-pure-high Subgroups of Abelian Groups 

J. BECVAR 

Department of Mathematics, Charles University, Prague*) 

Received 13 November 1984 

The paper is concerned with jV-pure-high subgroups of abelian groups, the study of which 
is pгoposed by L. Fuchs in his book Infinite Abelian Groups (Pгoblem 14). 

Článek se zabývá jV-servantn -vysokými podgrupami Abelových grup, jejichž studium 
navrhuje L. Fuchs ve své monogгafii Infinite Abelian Groups (Pгoblem 14). 

B cтaтьe изyчaютcя jV-cepвaнтнo-выcoкиe пoдгpyпnъi aбeлeвыx rpyпп, иccлeдoвaниe 
кoтopыx пpeдлaгaeтcя пpoблeмoй Ho 14 в клигe Бecкoнeчныe aбeлeвы гpyппы Л. Фyкca. 

1. Introduction, history and some basic information 

The concept of N-high subgroup was introduced into the theory of abelian groups 
by J. M. Irwin and E. A. Walker [6, 9] in 1961. Since then many papers have been 
written investigating the various properties of N-high subgroups. One of first ques
tions, namely, for which subgroups N it is true that all N-high subgroups are pure, 
was posed by Irwin and Walker in [6, 9]. This question has been investigated in 
several papers (Irwin, Walker, Charles, Khabbaz, Reid), the final result has been 
done by R. S. Pierce [11]. Some generalizations and related results have been written 
later (Megibben, Rochlina, Keane, Becvaf). 

L. Fuchs, inspired with these relevant questions, proposes the study of N-pure-
high subgroups in problem 14 of his book [5]. K. Benabdallah dealt with this problem 
in [1]. 

1.1. Definition. Let N be a subgroup of a group G. We say that a subgroup H 
of G is N-pure-high in G if it is maximal among the pure subgroups disjoint from N. 

Zorn's lemma guarantees the existence of N-pure-high subgroups. Moreover, 
each N-pure-high subgroup of G is contained in an N-high subgroup of G. A natural 
problem arises to characterize such subgroups N of a group G for which all N-pure-
high subgroups are N-high. From this point of view, the mentioned theorem of Pierce 
describes all subgroups N of a group G for which N-pure-high and N-high subgroups 
of G coincide. We reformulate the Pierce's result in the following way: 

*) 186 00 Praha 8, Sokolovska 83, Czechoslovakia. 
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1.2. Theorem. ([11]). If N is a subgroup of a group G then the following asser
tions are equivalent: 

(i) A subgroup H of G is N-pure-high in G if and only if H is N-high in G. 
(ii) For each prime p either N[P] .= p^G or G/N is torsion and there is a natural 

number n such that pn + 2 G[p] c N[p] c p"G. 

The necessary and sufficient condition for a subgroup N under which all N-
pure-high subgroups are N-high has not yet been found. In 1974, K. Benabdallah 
gave the following partial solution (see also theorem 14, [4]): 

1.3. Theorem (Theorem 2, [1]). Let N be a subgroup of a group G. If one N-high 
subgroup is torsion, all N-high subgroups are torsion and N-pure-high subgroups 
are N-high. 

It is easy to see that the assumption and the first assertion of 1.3 are mutually 
equivalent and that they are also equivalent with the condition that G/N is torsion: 

1.4. Remark For a subgroup N of a group G, the following conditions are 
equivalent: 

(i) G/N is torsion. 
(ii) There is a torsion N-high subgroup of G. 

(iii) Each N-high subgroup of G is torsion. 

Hence the theorem of Benabdallah obtains this form: If G/N is torsion then 
each N-pure-high subgroup of G is N-high in G. The converse is not true; it follows 
already from Pierce's theorem 1.2. 

If G is a torsion group then N-pure-high subgroups of G are exactly pure N-high 
subgroups of G by 1.3. If G is a torsion free group then N-pure-high and N-high 
subgroups of G coincide, since N-high subgroups are neat and neat subgroups of 
a torsion free group are pure. Consequently, the study of N-pure-high subgroups is 
useful only in the theory of mixed groups. For example, if G does not split then no 
Grhigh subgroup of G is pure in G and hence Grpure-high subgroups of G are not 
Grhigh in G. 

The purpose of this paper is to investigate N-pure-high subgroups (of mixed 
groups). An important result is theorem 2.5 which asserts that the torsion parts 
of N-pure-high subgroups of G are pure Nr-high in Gt. A few corollaries of this 
theorem give a comparison of some elementary properties of N-pure-high and 
N-high subgroups. If N is a subgroup of a group G and H is an N-high subgroup 
of G then the following assertions hold: 

(i) If g e G and pg e H for a prime p then geN © H (9.8, [5]). 
(ii) H is neat in G. 

(iii) G[p] = N[p] ® if[P] for each prime p. 
(iv) N © H is essential in G. 
(v) G/(N © H) is torsion. 
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The proof of these assertions (in written sequence) can be easily proved. If H is an 
N-pure-high subgroup of G then the assertions (i) —(iii) hold too (see 2.6 (iii) —(iv)). 
However, the assertions (iv) and (v) hold if and only if H is N-high in G (see 2.7). 
Moreover, if M is an N-high subgroup of G containing an N-pure-high subgroup H 
of G then MJH is torsion free (see 2.6 (v)). 

All groups in this paper are assumed to be abelian groups. We follow the ter
minology and notation of [5]. In addition, a subgroup H of a group G is said to be 
p-absorbing resp. absorbing in G if (GJH)p = 0, resp. (GJH)t = 0. Obviously, every 
p-absorbing subgroup of G is p-pure in G and if S is a pure subgroup of G then 
5 + Gt is absorbing in G. The set of all primes is denoted by P. 

2. Torsion parts of /V-pure-high subgroups of G are Nr-high in Gt 

We shall often use the following lemma. 

2.1. Lemma. Let N, A and S be subgroups of a group G such that 

(i) A n N = 0 = 5 n N, 
(ii) A <= G„ 

(iii) if Ap + 0 then Sp <= Ap, 
(iv) A and 5 are pure in G. 

Then A + S is pure in G and (A + S) n N = 0. 

Proof. If a + s = p'a, where a e A, s 6 S and g e G, then o(a) s = o(a) p'<7 and 
there is s e 5 with o(a) s = o(a) p's by (iv). Hence s — p's e 4̂ by (iii). Further 
a + s — pls = pl(g — s)e A and by (iv), there is a e A such that a + s — p's = 
= p'a. Consequently a + s = p'(a + s). 

If a + s = ti, where a e A, s e 5 and n e N, then o(a) s = o(a) ne S n N = 0 
and hence s e A by (iii). Consequently a + s = neAnN = Q and (A + S) n 
n N = 0. 

2.2. Corollary. Let N be a subgroup of a group G and R = { p e P ; N p = 0}. 
Then the following assertions hold: 

(i) Each N-pure-high subgroup of G contains © Gp. 
pfcR 

(ii) Each N-pure-high subgroup of G is p-absorbing in G for each p e R. 

Proof. Let H be an N-pure-high subgroup of G and A = © Gp. By lemma 2.1, 
peR 

H + A is a pure subgroup of G and (H + A) n N = 0. With respect to the maxi-
mality of H, we have A = H.\i pg s H, where g e G and p e R, then p# = ph for 
some h e H. Hence g — h e Gp ^ H and g e H. 

In the following text, we shall often work with a subgroup T which is defined 
by the equality (G/N), = T/N. 
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2.3. Lemma. Let N be a subgroup of a group G and (G/N)r = T/N. Then the 
following assertions hold: 

(i) Tis absorbing in G and N + Gt ^ T 
(ii) T/(N + G,) = (G/(N + Gt%. 

(iii) T is a maximal essential extension of N + Gt in G. 
(iv) Tis a pure hull of N + Gt in G. 
( v ) r = G n i ) , where D is a divisible hull of N + Gt contained in a divisible 

hull E of G. 

Proof, (i) GJNJTJN ^ GJT and hence G/T is torsion free. Since N + G,/N is 
torsion, N + Gt .= T 

(ii) Obviously T/(N + Gr) <= (G/(N + Gt))t. If a e G and kg e N + Gt for 
some integer k then m# e N for some integer m and hence g e T 

(iii) If x e T \ (N + Gt) then by (ii), o =j= kx = n + t (n e N, t e Gt) for some 
integer k and hence N + Gt is essential in T. If N + G, is essential in a subgroup K 
of G then K/(N + Gf) is torsion and X £ T by (ii). 

(iv) Tis pure in G by (i) and hence TJGt is pure in G\Gt. Let K/G, be the inter
section of all pure subgroups of G\Gt containing (N + G^)JGt. Then X is the pure 
hull of N + Gt in G and N + Gt != X .= T Now, K is pure and essential in T and 
hence X = T 

(v) If £ is a divisible hull of G and D a divisible hull of N + Gt which is con
tained in E then N + Gt is essential i n D n G and hence D n G ^ T. If f e T then 
kteN + Gt ^ D for an integer k, kf = kd for an element d e D and hence t — d e 
e Et c D and f e D. 

2.4. Remark. Let N be a subgroup of a group G and (G/N)f = T/N. Then 

(i) if N is pure in G then T = N + Gt9 

(ii) if N is a maximal essential extension of N in G then N + Gt .= T. 

2.5. Theorem. Let N be a subgroup of a group G, (G/N)r = T/N and Ybe a sub
group of G with G, c Y c T. Then 

(i) If H is an N-pure-high subgroup of G then H r\ Y = Ht and H, is a pure 
N n Y-high subgroup of Y 

(ii) Each pure N n Y-high subgroup of Y is the torsion part of an N-pure-high 
subgroup of G. 

Proof Since Y/(N n Y) s (Y + N)/N = T/N, Y/(N n Y) is torsion and N n Y-
high subgroups of Y are torsion (see 1.4). 

(i) If H is an N-pure-high subgroup of G then obviously H n Y = Ht and Hr 

is pure in Y. Let A be a pure subgroup of Y such that Ht ^ A and A n N n Y = 0. 
By lemma 2.1, A + H is pure in G and (A + H) n N = 0. With respect to the 
maximality of H, we have A = Ht. Hence Ht is N n Y-pure-high in Yand by theorem 
1.3, Hf is pure N n Y-high in Y 
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(ii) Let A be a pure N n Y-high subgroup of Y. Since A is torsion, A is pure in G. 
If H is a N-pure-high subgroup of G containing A then by (i), Ht = H n Y = A. 

2.6. Corollary. Let N be a subgroup of a group G and (G/N)f = T/N. If H is an 
N-pure-high subgroup of G then the following assertions hold: 

(i) Hr is pure Nrhigh in Gt. 
(ii) Ht is pure N-high in Tand in N + Gt. 

(iii) G[p] = N[p~\ e H[p\ for each prime p. 
(iv) If g e G and pg eH for some prime p then a G N[p] e H. 
(v) If M is an N-high subgroup of G containing H then MJH is torsion fre. 

(vi) Torsion parts of all N-pure-high subgroups of G are exactly all pure N,-high 
subgroups of Gf and exactly all pure N-high subgroups of N + Gt (resp. T). 

Proof. The assertions (i), (ii), (vi) follow immediately from 2.5. Since Ht is Nf-high 
in Gt, G[p] = N[p] e H[p] for each prime p. 

(iv) If g e G and pg e H then pg = ph for some he H, g — he G[p] = N(p) ® 
e H[p] and a G N[p] e H. Note that if p e R then geH - see 2.2 (ii). 

(v) If # e M and pg e H then pa = ph for some he H. Consequently g — he 
eM[p] = H[p] and geH. 

2.7. Corollary. Let N be a subgroup of a group G and If an N-pure-high sub
group of G. The following assertions are equivalent: 

(i) H is N-high in G. 
(ii) N e H is essential in G. 

(iii) (N e H)jH is essential in GJH. 
(iv) (H + Gt)lGt is (N + Gf)/Gr-high in G\Gt. 
(v) G/(N e H) is torsion. 

Proof, (i) -> (ii) Well-known and easy. 

(ii) -> (iii) Let g eG\N ® H. If k is the least natural number such that kg e 
€ N e H (see (ii)) then kg + H is a nonzero element of (N e H)jH by 2.6 (iv). 

(iii) -• (iv) Obviously (H + G,)/G, n (N + G)jGt = 0. Let K/G, be an 
(N + G,)/Grhigh subgroup of G\Gt containing (H + G^\Gt and k e K. There is an 
integer r such that rk = n + h, where neiV and he H (see (iii)). Hence n = rk — h e 
GK n N = Nt, o(n) rk = o(n) h = o[n) rh for some heH. Consequently k — Re 
e Gt, i.e. keH + Gt. 

(iv) -• (v) For each g e G there is an integer r such that r(g + G,) = (h + Gt) + 
+ (n + G,), where he H and n G N (see (iv)). Hence rg = h + n + t9 where t e Gt9 

and o(f) rgeH ®N. 
(v) -* (i) If M is an N-high subgroup of G containing H then M/H ^ 

s (M e N)/(H e N) -= G/(N e H) and M\H is torsion by (v). Hence M = H 
by (2.6) (v). 
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If H is an N-high subgroup of G then H is N n S-high in each subgroup S of G 
which contains H. A similar result holds for N-pure-high subgroups. 

2.8. Lemma. Let N be a subgroup of a group G and H be an N-pure-high 
subgroup of G. If S is a pure subgroup of G containing H then H is N n S-pure-high 
in S. 

Proof. Easy. 
In a sense, the next corollary is dual to the theorem 2.5. Corollary 2.10 after

wards gives a supplementary result. 

2.9. Corollary. Let N be a subgroup of a group G and H be an N-pure-high 
subgroup of G. 

(i) If S is a pure subgroup of G such that H ^ S ^ H + Gt then H is pure 
N n S-high in S. 

(ii) H is pure Nrhigh in H + Gf. 

Proof If S is a pure subgroup of G such that H ^ S ^ H + Gt then H is 
N n S-pure-high in S by 2.8. Since S ^ H + Gt, S/(H © (N n S)) is torsion and H 
is pure N n S-high in S by 2.7. It is easy to see that H + Gt is pure in G and N n 
n (H + G,) = N,. Hence H is pure Nrhigh in H + G, by (i). 

2.10. Corollary. Let N be a subgroup of a group G and H an N-pure-high sub
group of G. If K/G, is an (N + G,)/Grhigh subgroup of GJGt containing (H + Gt)JGt 

then H is Nr-pure-high in K. 

Proof. Since GjGt is torsion free, K/G, is pure in GJGt and K is pure in G. 
Obviously Kn H = Nt. Finally, H is N,-pure-high in K by 2.8. 

3. Splitting pure IV-high subgroups 

3.1. Theorem. Let N be a subgroup of a group G and (G/N), = T/N. If H = 
= H, © B is a splitting N-pure-high subgroup of G then for each subgroup Y of G 
with Gt ^ Y _= T there is a Y-pure-high subgroup X of G such that B is N n X-high 
in X. Further B is a T-pure-high subgroup of G. 

Proof. Obviously B is pure in G and B n Y = 0 (see 2.5). Let X be a Y-pure-high 
subgroup of G containing B and S be an N n X-high subgroup of X containing B. 
Since S is pure in X (X is torsion free) and hence in G, Ht © S is pure in G and 
(Ht © S) n N = 0 by 2.1. Consequently S = B. For the rest put Y= T 

Note that N n X-high subgroups of X are exactly Tn X-high since N n X is 
essential in Tn X. 
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Conversely, if A is a pure Nrhigh subgroup of Gt and B is an N n X-high 
subgroup of a Y-pure-high subgroup X of G then A © B is contained in some N-
pure-high subgroup H of G by 2.L Obviously Ht = A, HnX = B and it is easy 
to see that H/A © 5 is torsion free. If Y = T (i.e. B is T-pure-high in G) then B is 
A-pure-high in H. If Y = Gt then H n (G, © X) = A © B. For, if h = t + x e 
eH n(Gt®X) then o(r) h = o(t) x e H n X = B, o(t) h = o(t) b for some b e B, 
h - b e Gt n H = A and h e A © B. 

3.2. Theorem. Let N be a subgroup of a group G and (G/N), = T/N, let Y be 
a subgroup of G such that Gt s Y .= T and X be a pure Y-high subgroup of G. 
If A is a pure Nrhigh subgroup of Gt and B an N n X-high subgroup of X then A © B 
is a splitting pure N-high subgroup of G. 

Proof. Since X is torsion free, B is pure in X and hence in G. By 2.1, A © B 
is pure in G and (A © B) n N = 0. Let H be an N-high subgroup of G containing 
A ® B; obviously Ht = A. Let he H. Since X is Y-high in G, kh = x + y for some 
x e X, y e Y and an integer k. Since B is N n X-high in X and A is N n Y-high in Y 
(see 2.5), we have rx = b + n and m>> = a + n, where b e B, a e A, n, n e N and 
m, r are integers. Hence kmrh = mb + mn + ra + rn, further kmrh — mb — ra = 
= mn + rn e H n N = 0, i.e. kmrh e A ® B. Since A © B is pure in G, kmrh = 
= kmr(a + b), where a e A, 5 e B. Consequently, h — a — b e Ht = A and 
h e A © B. 

3.3. Corollary. Let N be a subgroup of a splitting group G = Gr © X. If A is 
a pure Nrhign subgroup of Gt and B is N n X-high subgroup of X then A © B 
is a splitting pure N-high subgroup of G. 

3.4. Corollary. Let G be a group. The following assertions are equivalent: 

(i) G is splitting. 

(ii) For each subgroup N of G there is a splitting pure N-high subgroup of G. 

(iii) For each subgroup N of G there is a pure N-high subgroup of G. 

(iv) There is a pure G,-high subgroup of G. 

Proof, (i) -• (ii) follows from 3.3, (ii) -> (iii) -> (iv) is trivial, (iv) -> (i) is easy 
and well-known. 

The equivalence (i) <-+ (iii) from 3.4 is proved in [ l ] (theorem 5). On the other 
hand, it is proved in [7] (corollary of 3.1) that a reduced group G splits if and only 
if some N-high subgroup of G splits, where N ^ Gl n Gt. For the equivalence 
(i) <-> (iv) of 3.4 see [12] (proposition 5.1) and [ l ] (corollary on p. 481). 

Note that if one N-pure-high subgroup of a group G splits then all N-pure-high 
subgroups need not split (even if G itself splits) - see [8] (example on p. 190). 
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3.5. Theorem. Let N be a subgroup of a group G and (G/N), = TJN. All splitting 
pure N-high subgroups of G are exactly all direct sums of a pure N,-high subgroup 
of G, and a pure T-high subgroup of G. 

Proof. If H = Ht © B is a pure N-high subgroup of G then H, is a pure N,-high 
subgroup of G, by 2.5 and B is a T-pure-high subgroup of G by 3.1. If g e G then kg = 
= n + h9 where neN9he H and k is a nonzero integer. Hence kg eT® B,GJT® B 
is a torsion group and B is T-high in G by 2.7. Conversely, if A is a pure N,-high 
subgroup of G, and B a pure T-high subgroup of G then A ® B is a pure N-high 
subgroup of G by 3.2. 

Remark that T-high subgroups of G are exactly N + G,-high (see 2.3 (hi)). 

3.6. Theorem. Let N be a subgroup of a group G. A subgroup H = Ht® B 
is pure N-high in G if and only if Ht is a pure N,-high subgroup of G, and (G, © £)/G, 
is an (N + G,)/G,-high subgroup of G\Gt. 

Proof. Let H = Ht © B be a pure N-high subgroup of G. Thus (B © Gt)jGt n 
n (N + G,)/G, = 0; let K/G, be an (N + G,)/G,-high subgroup of GjGt containing 
(B © Gt)jGt. If k e K then rk = n + h9 where n e N, h e H and r is a nonzero 
integer, since H is N-high in G. Hence rk — h = / i e N n K _ = G , and rk = n + he 
eGt® B. Since G, © £ is absorbing in G, k e G, © 5. The rest follows from 2.5. 

Conversely, let A be a pure N,-high subgroup of G ane (B © Gt)jGt be an 
(N + G,)/G,-high subgroup of G\Gt. Since £ is pure in G, A © 2* is pure in G and 
(A ® B) n N = 0 by 2.L If H is an N-high subgroup of G containing A © B then 
G, © £ £ G, + H and (H + G,)/G, n (N + G,)/G, = 0. Hence Gt ® B = 
= Gt + H. If heH then h = t + b9 where t e G, and b e B9 Now teHt = A and 
h e A © B. Consequently H = A® B. 

4. Intersection of /V-pure-high subgroups 

The well-known theorem of Gratzer and Schmidt (9.6, [5]) describes the inter
section of all complements to a direct summand N of a group G. The intersection of 
all N-high subgroups has been described by F. V. Krivonos in 1975: 

4.1. Theorem (Proposition 9, [10]). If N is a nonzero subgroup of a group G 
and R = { p e P ; N p = 0} then © Gp is the intersection of all N-high subgroups of G. 

peR 

Proof. Let H be an N-high subgroup of G and A = © Gp. 
peR 

If h + a = n (h e H9 a e A, n e N) then o(a) n = o(a) he H n N = 0 and hence 
n = 0. Consequently (H + A) n N = 0 and A _= H. 

If g e G is an element of infinite order such that <a> n N = 0 and neN is 
a nonzero element then <a + n> n N = 0. If # e G \N , n e N and 0(0) = o(n) = 
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= p e P \ R then (g + n} n N = 0. In the both cases, an N-high subgroup of G 
containing <a + n) does not contain the element g. Hence A is the intersection of 
all N-high subgroups of G. 

Remark that K. Benabdallah and J. M. Irwin proved that the intersection of 
all N-high subgroups of a primary group G is trivial whenever N is a nontrivial 
subgroup of G (Lemma 1.2, [2]). For the original proof of 4.1 see [10]. The first 
step of our proof corresponds with our assertion 2.2 (i), the second step partially 
corresponds with the proof of the following theorem. 

4.2. Theorem. If N is a subgroup of a group G and R = {p e P; Np = 0} then 
0 Gp is the torsion part of the intersection of all N-pure-high subgroups of G. 
peR 

Proof. With respect to 2.2 it is sufficient to prove that for each prime p e P \ R 
and each element g e G[p] \ N there is an N-pure-high subgroup of G which does 
not contain the element g. We consider three cases: 
Case 1: There are elements at least of two different p-heights in N[p]. 
In this case there is an element n e N[p] such that the element g + n is of finite 
p-height. Hence the element g + n can be embedded in a finite cyclic direct summand 
y of G that is disjoint from N (27.2, [5]). Finally, yean be embedded in an N-pure-
high subgroup X of G and obviously g $X. 
Case 2: N[p] <= p°>Gp. 
If n e N[p] is a nonzero element then there is an Np-high subgroup Yof Gp containing 
<# + n). Now, yis pure in Gp by theorem 1.2 and hence yean be embedded in an 
N-pure-high subgroup X of G. It is easy to see that g $ X. 
Case 3: N[p] ^ pkGp\p

k + iGp. 
If there is a nonzero element n e N[p] such that g + n is of finite p-height then we 
proceed as in the case 1. Suppose g + nepwGp for each nonzero neN[p]. If 
pk + 1 G[p] # pw G[p] then there is a direct summand Y of Gp such that Y[p] = 
= pk+1 G[p] by theorem 4.4, [7]; if X is an N-pure-high subgroup of G containing Y 
then g $X. If pk + 1 G[p] = p" G[p] then Gp = B © D, where B is bounded and D 
is divisible, and D can be embedded in an N-pure-high subgroup X of G; obviously 
9*X. 

4.3. Corollary. Let N be a subgroup of a group G and R = {p e P; Np = 0}. 
If G/N is a torsion group then © Gp is the intersection of all pure N-high subgroups 

peR 

of G. 

Proof. The N-pure-high subgroups of G are exactly the pure N-high subgroups 
of G and all these subgroups are torsion, since G/N is torsion (see 1.3 and 1.4). Our 
corollary follows now from 4.2. 

Note that K. Benabdallah and J. M. Irwin proved that the intersection of all 
pure N-high subgroups of a primary group G is trivial whenever N is a nontrivial 
subgroup of G (lemma 1.2, [3]). 
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4.4. Proposition. Let N be a subgroup of a group G, (GJN)t = T/N. If Y is a sub
group of G such that Gt c Y c F, X is a Y-pure-high subgroup of G such that 
N n X + 0 and (G/(X © Y)), = K/(X © Y) then the intersection of all N-pure-high 
subgroups of G contains no element of infinite order from K. 

Proof. With respect to the theorem 2.5 it is sufficient to consider an element 
g E G\Tsuch that kg EX © Yfor a nonzero integer k. Hence kg = x + y, where 
x E X and y E Y. Since g $ T, we have x $ T 
Case l:y<f:®Gp(R = {pEP; Np = 0}). 

peR 

Let AL be a pure Nt-high subgroup of Gt such that y ^ A (see 4.3), let B be an N n X-
high subgroup of X containing x. By 2.1, A © B is contained in an N-pure-high 
subgroup H of G. If x + y e H then j e H n Y = H f = A — a contradiction. 
Hence g $H. 

Case 2: y e © Gp. 
peR 

Let A be a pure Nf-high subgroup of Gt and B be an N n X-high subgroup of X 
which does not contain x (see 4.1). By 2.1, A © B is contained in an N-pure-high 
subgroup H of G. If x + y e i f then XE H by 2.2 and XEH r\X = B — a contradic
tion. Hence g $H. 

4.5. Corollary. Let N be a subgroup of a group G, (G/N)r = T/N. If Y is a sub
group of G such that Gf <= Y _= T and X is a pure Y-high subgroup of G such that 
N n X + 0 then © Gp is the intersection of all splitting pure N-high subgroups of G. 

peR 

Proof. According to proof of 4.4 (in both cases we have A © B = H by 3.2). 

4.6. Corollary. Let N be a subgroup of a splitting group G. If N is not torsion 
then © Gp is the intersection of all splitting pure N-high subgroups of G. 

peR 

Corollary 4.6 can be easily proved also by means of theorem 3.6. 
If N is a torsion subgroup of a splitting group G then the intersection of all 

pure N-high subgroups of G can contain also elements of infinite order as the fol
lowing example shows. 

4.7. Example. Let G = <a> © <b>, where O(a) = 2 and o(b) = oo. The sub
groups <b> and <a + b> are obviously pure Gr-high in G. It is easy to see that the 
subgroup <kb>, where k 4= + 1 , and <a + kb>, where k + + 1 is an odd integer, 
are not Grpure-high in G. Further 

2(a + 2kb) = 4kb G <a + 2kb> n 4G . 

If <a + 2kb> is pure in G, 4kb e 4<a + 2kb>, i.e. 4kb = 4ra + 8rkb, 4k(l - 2r)b = 
= o and k = 0. Hence the subgroups <a + 2kb>, where k =t= 0 is an integer, are not 
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pure in G. Consequently, there are only two G,-pure-high subgroups of G. They are 
Gf-high in G and moreover, they are complements of Gt. Finally, <2i>> is the inter
section of all pure Gf-high subgroups of G. 

5. An example 

In the following theorem we shall investigate the well-known group from example 
2, § 100 [5]. 

oo 

5.1. Theorem. Let pupl9... be different primes, and A = J\ <̂ />> where 
1 = 1 

°(ai) = Pi- Let G = <̂ *> b0, bu b2, ...>, where b0 = (au a2,...) e A and for each 
/ = 1, 2 , . . . , bj has 0 for its j-th coordinate and satisfies 

p.bj = (au ...,aj_u0,aj+u ...) = b0 - aj. 
Then 

(i) If 5 is a pure subgroup of G then either S is torsion or S is a direct com
plement of a finite subgroup in G. 

(ii) If N is a finite subgroup of G then each N-pure-high subgroup of G is a direct 
complement of N in G. 

(iii) If N is an infinite subgroup of(5§F then the unique N-pure-high subgroup 
of G is ® Gp, where R = {p e P; Np = ($}. 

peR 

(iv) 0 is N-pure-high in G if and only if Gt ._. N. 
The proof of this result is based on the next lemmas. It is easy to see that Gt = 

00 

= At = 0 <af>. 
i = i 

5.2. Lemma. Let X be a subgroup of G. If X is not torsion then there is a natural 
number m such that mb0 e X. 

Proof. Let x = t + k0b0 + klb1 + ... + knbn be an element of infinite order 
(xeX, te Gt, kt are integers). Then 

(P iP2-- .P„)x = t' + kb0, 

where k is an integer and t' e Gt. Hence there is a natural number m such that 
mb0 eX. 

5.3. Lemma. Let 5 be a pure subgroup of G and g e G. 
(i) If kp2g e S for an integer k and a prime p then kpg e S. 
(ii) If m is the least natural number such that mg e S then m is square-free. 

Proof. Let kp2a e 5. Then kp2g = fcp2s for some seS and hence kp2(# — s) = 
= o and g - seGt. With respect to the form of G„ fcp(gf - s) = o and kpg e S. 
Obviously, (i) implies (ii). 
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5.4. Lemma. Let S be a pure subgroup of G and m be the least natural number 
such that mb0e S. Then 

(i) m is square-free. 
(ii) If (pj9 m) = 1 then a} e S, S is ^-absorbing in G and m is the least natural 

number with mb^eS. 

(iii) If m = pjmj then a} £ S and m} is the least natural number with mjbj e S. 

(iv) St = 0 <af>. 
1 = 1 
Pťłтn 

(v) mG Ç 5. 

(vi) G = S <яř>. 

Proof. By lemma 5.3, m is square-free. 
Suppose (pj, m) = 1. We have 

mpjb0 = mpj(pjbj + aj) = mpjbj e S . 

Since bj is divisible by pj9 it is mb,- e S by lemma 5.3. Further, ma} = mb 0 — mPjbj e 
e S and hence aj e S. If g e G and p7g e S then p7a = pjS for some s e S and hence 
Pj(g - s) = o, i.e. g - se <#,-> c 5 and g e 5. Consequently, 5 is /?rabsorbing 
in G. Finally, if mbj e S and m < m thMJnpjbj = m(fe0 — aj) = mb0 — wo,- and 
mb0 e 5 — a contradiction with the definition of m. 

Suppose m = Pjmj. We have 

mb0 = m(pj°j + a,) = mpjbj = mjpjbj e S . 

Since ft,- is divisible by pJy it is mjbj e S by lemma 5.3. Further rn}aj = 
= m/bo "~ Pjbj) = mjb0 — mbj $ S and hence aj $ S. If mbj e S and m < my 

then Pj-mbo = Pj™(Pjbj + #/) = pjmbjeS — a contradiction with the definition 
of m. 

The assertions (iv), (v) follow from (ii), (iii). Write T = ® <a,->. If g e G then 
Pi\m 

mg e S and mg = ms for some se S. Hence g — s = t e T9 g e S -\- T, i.e. G = 
= 5 + T. By (iv), S n T = 0 and consequently G = S 0 T. 

Proof of theorem 5.1. If S is a pure subgroup of G and S is not torsion then by 
lemma 5.2 there is a natural number m such that mb0 e S; let m be the least natural 
number with this property. By lemma 5.4, S is a complement of a finite subgroup of G. 

Let N be a finite subgroup of G and S be an N-pure-high subgroup of G. By 2.6 
(iii), Gt = N © S,. Since N is a direct summand of G and each complement of N 
in G contains S„ S is not torsion. By lemma 5.4, G = N ® 5. 

Let N be an infinite subgroup of G. If S is a pure subgroup of G and S is not 
torsion then N n 5 =1= 0. For, if N is not torsion then there is a natural number k 
such that kb0 e N n S by lemma 5.2 and if N is torsion then N n S =j= 0 by lemma 5.4. 
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Consequently, each N-pure-high subgroup of G is torsion. With respect to the form 
of Gr, H = © (aty is the unique N-pure-high subgroup of G by 2.2 (R = {p e P; 

PieR 

Np = 0}) and hence Gt = Nt © H. 
If N contains Gt then 0 is N-pure-high in G by (iii). If 0 is N-pure-high in G then N 

is infinite by (ii) and N ^ Gt by (iii). 

5.5. Remark. The group G is obviously of torsion-free rank 1, G does not split 
(see 5.1 (i)). 

If N is a finite subgroup of G then the intersection of all N-pure-high subgroups 
of G contains elements of infinite order by lemma 5.4 (compare with 4.3 — 4.6). 

If N is an infinite torsion subgroup of G then G/N is not torsion, there is a unique 
N-pure-high subgroup H of G, H is torsion and H is not N-high in G. 

If N is a subgroup of G which is not torsion then G/N is torsion, there is a unique 
N-pure-high subgroup H of G, H is torsion and N-high in G. 
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