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A Note on the Endomorphism Ring of a Module Artinian 
with Respect to a Preradical 

JOSEF JIRÁSKO*) 

Received 26 February 1985 

Endomorphism rings of some artinian and torsion modules are studied. 

Studují se okruhy endomorfizmů některých artinovských a torzních modulů, 

H3yHaiOTCfl KOJIbUa 3H,0;OMOp<})H3MOB HeKOTOpbIX apTHHOBBIX MOflyJTeH C KpVHeHHeM. 

In what follows R stands for an associative ring with unity and .R-mod denotes 
the category of all unitary left K-modules. Let us denote by S the endomorphism 
ring of M e K-mod. Let P(S) denote the ideal of S consisting of all endomorphisms 
with small images. Our aim is to investigate the nilpotency of P(S) for a module M 
artinian and torsion with respect to a preradical. 

The results as well as the methods used here are dual to those presented by J. S. 
Golan in [4]. 

We start with some basic definitions from the theory of preradicals. A preradical 
r for P-mod is a subfunctor of the identity functor. A preradical r is idempotent 
if r(r(M)) = r(M) for every M e P-mod, and is a radical if r(M/r(M)) = 0 for every 
M e K-mod. A preradical r is called -hereditary if r is left exact as a functor, cohere-
ditary if r preserves epimorphisms. For preradicals r, s, the preradical r o s is defined 
by (r o s) (M) = r(s(M)). For a preradical r and for every ordinal number a _ 1 
let us define the preradical ra as follows: r1 = r,ra+1 = r o ra, ra = f)rb; 1 = b < a 
for a limit. As it is very well known ? = f)ra is the idempotent core of a preradical r. 
For each left R-module M there is the least ordinal h = h(r, M) with rh(M) = 

= r 
,Һ+I (M) = ... . The ordinal h is called the r-colength of M. 
For a nonempty class of modules si the radical p* is defined by ps/(M) = 

= flKerf; fe Hom*(M, A), AesJ. 
In what follows 3~r, !Fr denote the class of all r-torsion, r-torsionfree modules 

respectively. 
The fact that N is a small submodule of a module M will be denoted byN < < M. 
Let N be a submodule of a module M. A cocomplement of N in M is a sub-

module S of M with N + S = M and N n S << M. A module M is called co-
complemented if each submodule of M has a cocomplement. 

*) Bělohorská 137, 169 00 Praha 6, Czechoslovakia. 
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Recall a module M hollow if each proper submodule of M is small in M . 

Let r be a preradical. A nonzero module M e &~r is called r-cosupporting if 
each proper submodule of M is r-torsionfree. 

Remark: Let r be a preradical and M e ?Tr. Then 

(i) if r is hereditary then M is r-cosupporting if and only if M is simple, 

(ii) if r is cohereditary and M is r-cosupporting then M is hollow. 

Let r be a preradical. A module M e &~r is called r-cofull if N e J% whenever 
N < < M. 

Remark: Let r be a hereditary preradical and M G ̂ ~r. Then M is r-cofull if 
and only if J(M) = 0. 

In the following Lemma we present without the proof elementary properties 
of cofull modules. 

Lemma 1: Let r be a preradical and N be a submodule of a module M. Then: 

(i) If M is r-cofull and i V e f r then N is r-cofull; 

(ii) If M G 5~r, (M,-; i el} is the family of submodules of M with MJMt r-cofull for 
each i el then Mjf] Mt is r-cofull; 

iel 

(iii) If r is idempotent M e «̂ ~r, N G J%, and M/N is r-cofull then M is r-cofull; 

(iv) If r is cohereditary and M is cocomplemented r-cofull then M/N is r-cofull. 

Let r be a preradical. A module M is called r-semicosupporting if M is an epi-
morphic image of a direct sum of finitely many r-cosupporting modules. 

Remark: For a left perfect ring and an idempotent cohereditary radical a mod
ule M is r-semicosupporting if and only if M is r-cofull and M has a finite corank 
in the sense of [7]. 

Let r be a preradical. A module M is called r-artinian if M satisfies the descending 
chain condition on r-torsion submodules. 

Remark: (i) If r is a hereditary preradical then a module M is r-artinian if and 
only if r(M) is artinian. 

(ii) If R is a left perfect ring, r is an idempotent cohereditary radical and M 
is an r-torsion r-artinian module then M is r-cofull if and only if M is r-semicosup
porting. 

Let r be a preradical. In what follows sdr will denote the class of all r-cofull 
modules. 

For a preradical r consider the following transfinite sequence of idempotent 
preradicals as follows: 

r0 = r, ra+1 = p^a 0 r a , ra = f)rb ; 0 = b < a for a limit. 

40 



Let r be a preradical and M e P-mod. We say that M has r-codimension if 
there is an ordinal number a with ra(M) = 0. 

Proposition 1: Let r be an idempotent preradical and s = p^r
 0 r. Any r-artinian 

module has finite s-colength. 

Proof: Let M be an r-artinian module. Put Mfl = (p^r
 0 r)a (M) for each ordinal 

number a. Then r(Ma + l) =" r(Ma) for every a = 1 and hence there is a natural 
number i with r(Mf) = r(M / + 1) = ... , M being r-artinian. Thus M l + 2 = (ps/r © r) 
(M / + 1) = M / + 1 . 

Let r be a preradical and M e P-mod having the r-codimenion. Then we have 
the descending sequence 

0 = ra(M) c . . . c r^M) c r0(M) = r(M) 

of r-torsion submodules of M. If M is r-artinian then only finitely many of these 
inclusions are proper. In this case there is a finite sequence of nonlimit ordinals 
<w(0), ..., n(k)) such that (i) n(0) = 0, (ii) if 0 ^ j< k then n(j + 1) = inf {i > n(j); 
r{M) * rnU)(M)} and (iii) rn(k)(M) = 0. 

We will say that the module M is of r-type <n(0), ..., n(k)}. 
Let M e P-mod and S = EndR(M). As it is very well known P(S) = {fe S; 

Imf < < M} is an ideal of S and P(S) = J(S) if M is quasi-projective. 

Remark: Let r be a preradical. If M is a r-torsion r-artinian module then P(S) 
is a nil ideal. 

Lemma 2: Let r be a preradical, M, N e P-mod, N e <Tr and fe HomR(M, N) 
with Imf < < N. Then f(M)f = p^'(N). 

Proof: By Lemma 1 (i), (ii) N/p^(N) is r-cofull. Let us denote X = (f(M)f + 
+ p^(N))lp^(N). Then I e f r and X < < N/p^(N) implies X = 0, N/p^(N) 
being r-cofull. Thus r(M)f = p^r(N). 

Proposition 2: Let r be a preradical and M e 2Tr. Then: 

(i) M P(S)' ^ (p^r
 0 r)

1' (M) for each positive integer i; 

(ii) If r is a radical, Mk = (p^" 0 r)k (M), Sfc = EndR(M/Mfc), Pk = P(Sfc), k natural 
then Pk = 0. 

Proof: (i) Let us denote M; = (p**r
 0 r)

1 (M) for each positive integer i. By 
Lemma 2 we have M P(S) <= M t . Suppose M P(S)k = Mk, k= 1, h e P(S)k and 
a e P(S). Then Ma <= p^(M) and p^(M) h <= (p^ 0 r) (Mfc) = Mfc+1 give Ma/z s 
-= Mfc+1. 

(ii) By induction similarly as in (i). 

Theorem: Let r be a preradical. Let M be an r-torsion r-artinian left P-module 
with endomorphism ring S, having r-codimension and of r-type <«(0), ..., n(k)>. 
For each 0 ^ i < k let s,- = r ^ . ^ . . ! and h(/) be the (p**8* o sf)-colength of M. 

41 



Then PVS) is a nilpotent ideal of S the index of nilpotency of which is not greater 
k-\ 

than the sum of the nonleading coefficients of the polynomial Yl{x + KO)-
1 = 0 

Proof: By Proposition 1 h[i) is finite for i = 0, 1, ..., k - 1. By Proposition 2 (i) 

MP(S)h(0) __ rB ( 1 )(M). As it is easy to see I m r j < < rn(l)(M) for g e P(S)"(0)+1. 

Let us suppose M P(S)s(/) c rn{i)(M), where 1 __ / __ fc - 1 and s(i) is the sum 
i - 1 

of the nonleading coefficients of Y\ (x + Kn))- Let u s denote s = s(i), t = 

= n(i + 1) — 1 and let us suppose Im h < < rn{i)(M) for h e P(S)V+1. Let us denote 
Mm = (p*rt o rt)

m (M) for each positive integer m. If A e P(S)S+ x then r/M) h c M x 

by Lemma 2. Further, M# _= r,(M) for g e P(S)S by assumption and consequently 
M P(S)2s+1 c M t . Let us suppose M P(S)js+j~1 c M ^ j , j > 1. If / i e P ( 5 ) s + 1 

then r,(M)h c= Mt implies M ^ i h c My. Therefore M P(S)ij + 1)s+j c Afy. Hence 
M P ( S f ( i ) + 1 ) s + f t ( i ) __ r n ( j + 1 ) (M). The sum of the nonleading coefficients of 

i - l 

(x + h(i)) [ ] (x + h(n)) is equal to s + /?(/) + h(i) s = (h(i) + 1) s + h(i). Let us 
n = 0 

put s' = (h(i) + l ) s + h(i). By assumption Im h << rt(M) for heP(S)s+l. If 
g e P(S)S+1 then Im hg << rt(M) g _= M t and consequently Im hg < < M x . 
Continue in this manner to prove Imf < < M/ l ( / ) = r / j ( ; + 1 ) (M) forfe P(S)S+1. 
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