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1985 ACTA UNIVERSITATIS CAROLINAE — MATHEMATICA ET PHYSICA VOL. 26. NO. 2 

Decomposition Properties in Module Categories 

ROBERT WISBAUER 

Diisseldorf*) 

Received 26 February 1985 

The characterization of rings R by properties of the category of left R-modules can be 
extended to the investigation of R-modules M by the study of the category a[M] subgenerated 
by M. Here we consider modules M of finite length, for which every object in a[M] is direct sum 
of (homogeneously) uniserial modules . For M -= R our main results give (old and new) charac­
terizations of a left artinian ring to be serial or a left and right principal ideal ring. 

Charakterizace okruhu vlastnostmi jejich modulu j e rozsirena na vySetfovani modulu 
studiem kategorii tSmito moduly generovanymi. 

XapaKTepH3aHHH KOJieu; CBoftcTBaMH Moayjieii pacmnpaeTCH Ha HCCJieflOBamie MOflyjieft 

H3y-IeHHeM KaTerOpHH nOpOHCAeHHBIX 3THMH MOflVJIflMH. 

Contents: \. Preliminaries. 2. QF-3 modules and their duals. 3. Modules of 
serial representation type. 4. Modules flat or FP-injective over their endomorphism 
rings. 5. Modules of homoserial representation type. 

1. Preliminaries 

Let R denote an associative ring with identity and P-MOD (MOD-P) the cate­
gory of unitary left (right) modules over R. Morphisms will be written on the opposite 
side of the scalars. For modules M, N in JR-MOD we say that N is subgenerated 
by M, if it is a submodule of an M-generated module. By <J[M] we denote the full 
subcategory of R-MOD whose objects are all R-modules subgenerated by M. A finitely 
generated, projective generator in <r[M] is called progenerator in <r[M]. If there is 
a progenerator P in <r[M], then the category <r[M] is equivalent to End(RP)-MOD. 
In case M is a module of finite length, then every finitely generated module in <r[M] 
has finite length, and there is only a finite number of non-isomorphic simple modules 
in a\M] (factors of submodules of M). 

(1.1) Lemma. Let M be an R-module and assume that there is an artinian 
progenerator in <r[M]. Then for every N e ff[M] there is an artinian progenerator in 
a[JV]. 

*) Mathematisches Institut der Universitat, UniversitatsstraBe 1, 4000 Diisseldorf, BRD . 

57 



Proof. Let P be an artinian progenerator in o\M\ For N e <r[M] take the 
reject K := Rej(P9 N) = n{Kerf/fe HomR(P, N)}. Since N is P-generated it is 
also P/K-generated and hence N e o\PjK\. On the other hand, P/K is finitely co-
generated by N and therefore P/Ke<r[N]. Since K is a fully invariant submodule 
of P, the factor module P/K is a progenerator in cr[P/K] = 0"[N]. 

The next result can be obtained by standard arguments known from K-MOD: 

(1.2) Lemma. Let M be an P-module of finite length and El9 ...9Ek the non-
isomorphic simple modules in <J[M]. Assume their M-injective envelopes El9 ..., Ek 

to be finitely generated and set W = ® Ei9 S = End(RW). Then 
(1) 5 is a right artinian ring; l-k 

(2) RWis an injective cogenerator of finite length in cr[M]; 
(3) Ws is an injective cogenerator in MOD-S; 
(4) the functors HomR( —, RW) and Hom( —, Ws) define a duality between the finitely 

generated modules in <x[M] and MOD-S; 
(5) if there is a finitely generated cogenerator in MOD-S, then there is a progenerator 

in <r[M]. 

(1.3) An K-module M of finite length is said to be of finite representation type, 
if there are only a finite number of nonisomorphic indecomposable modules in <r[M] 
(see [20]). In this case the M-injective envelopes of the simple modules in o\M] 
are finitely generated, and the endomorphism ring of the minimal cogenerator in 
<r[M] is also of finite representation type. Hence it follows from (1.2) that there is 
a progenerator in <J[M]. In addition, since every indecomposable module in o\M] 
is finitely presented, every module in <J[M] is direct sum of finitely generated modules, 
i.e. M is pure semisimple (see Heaulme [11]). 

2. QF-3 modules and their duals 

Any K-module which cogenerates the K-module M is called an M-cogenerator. 
An M-cogenerator is said to be minimal, if it is a direct summand of every M-cogenera­
tor in <T[M]. A module M is called QF-3 module, if there is a minimal M-cogenerator 
in <r[M]. Obviously, a ring R is left QF-3 ring, if and only if RR is QF-3 module. The 
following properties of QF-3 modules are immediately evident: 

(2.1) Proposition. Let M be a finitely generated QF-3 module with minimal M-
cogenerator Q in <J[M]. Then 
(1) Q is a finitely generated, M-injective submodule of M; 
(2) Q = ® £i9 where El9 ...9Er are the non-isomorphic simple submodules of M 

(E{ = M-injective envelope of E^)\ 
(3) Q cogenerates M" and hence M also cogenerates M; 
(4) End(RQ) is a semiperfect ring. 
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The next result gives characterizations of QF-3 modules and provides examples for 
modules of this type: 

(2.2) Proposition. For a finitely generated P-module M the following statements 
are equivalent: 
(a) M is QF-3 module; 
(b) there are finitely many non-isomorphic simple submodules El9..., Er of M 

such that Q = © £, is an M-cogenerator and Q c= M (N). 

If M is M-projective, then to (a) is equivalent: 
(c) There are finitely many simple submodules El9 ..., Er in M such that Q = © £t 

is an M-projective M-cogenerator. l - r 

If M is a finitely cogenerated R-module, then to (a) is equivalent: 
(d) M cogenerates M. 
If M is M-projective and finitely cogenerated, then to (a) is equivalent: 
(e) M is projective in <r[M]. 

The proof is easily obtained by standard arguments known for QF-3 rings (see 
Tachikawa [16]) taking into account that every projective module in a\M\ is a sub-
module of a direct sum of copies of M. 

A very general definition of Quasi-Frobenius modules is given in Hauger-
Zimmermann [10]. For noetherian modules this definition reduces to: A noetherian 
module M is called QF module, if it is an injective cogenerator in tr[M] (see Wisbauer 
[19]). Several characterizations of noetherian QF modules are given in [10]. Obvious­
ly, these modules are also QF-3 modules. 

Dualizing the notion of QF-3 modules we make the following definitions: 
A module which generates the module M is an M-generator. An M-generator is 
called minimal, if it is a direct summand of every M-generator in <x[M]. The modules 
dual to QF-3 modules are those modules M which have a minimal M-generator. 
Recall that an R-module M is a-semi perfect, if every factor module of M has a pro­
jective cover in 0"[M] (Wisbauer [18]) and that M/Rad (M) is semisimple in this case. 

(23) Proposition. Let M be a finitely generated cr-semiperfect module, El9..., Ek 

the (non-isomorphic) simple factor modules of M and P(M), P(Ff) their projective 
covers in <T[M]. If M has a minimal M-generator P, then 
(1) P is a finitely generated, M-projective factor module of M; 
(2) P ~ © P(£,), P generates P(M) and hence M also generates P(M). 

(3) End (RP) is a semiperfect ring. 

The proof is dual to that of (2.2). Modules which generate their projective cover 
in R-MOD are called pseudo-projective modules in Bican [2], It is evident that every 
semiperfect ring has a minimal K-generator (as left and right module). Also, every 
finitely generated, self-projective and c-semiperfect module M has a minimal M-
generator. 
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The following statement generalizes Proposition 10 in Azumaya [1]: 

(2.4) Proposition. Let the R-modul M be M-projective and a direct sum of 
indecomposable modules of finite length with only finitely many summands non-
isomorphic. Suppose that 

(i) every indecomposable direct summand of M has a simple socle, 

(ii) the M-injective envelope of every simple submodule of M has a simple top. 

Then M is QF-3 module. 

Proof. We may assume that M has finite length and have to show that M 
contains the M-injective envelope of every simple submodule: Clearly, by (i) a simple 
submodule L c M i s the socle of one of the indecomposable summands — Mx — 
of M. Lis essential in Mx and hence also in the M-injective envelope M1. By (ii) Mt 

has a simple top T = M^/Rad (Mi) and — since Mx is M-generated — there is an 
indecomposable summand M2 of M and an epimorphism f: M2 -> T The diagram 

M2 

O -> Rad (Mx) -> Mt-+ T-+ O 

can be completed by g: M2 -> M1 to a commutative diagram. Since (M2) g cj: 
4: Rad (Mi), g is an epimorphism by (ii). Mx being projective, the submodule 
( M j ) ^ " 1 cz M2 decomposes into Ker g © Mv However, by (i) ( M i ) a - 1 is inde­
composable and hence Ker g = 0 and M1 ~ M2 c M. 

Dualizing the above arguments we obtain: 

(2.5) Proposition. Let the K-module M be M-injective and direct sum of in­
decomposable modules of finite length with only finitely many summands non-iso-
morphic. Assume that every simple factor module of M has a projective cover in 
o\M] and that 

(i) every indecomposable direct summand of M has a simple top, 
(ii) the projective cover of every simple factor module of M has a simple socle. 
Then M has a minimal M-generator. 

3. Modules of serial representation type 

An ^-module is said to be uniserial, if its submodules are linearly ordered by 
inclusion. Direct sums of uniserial modules are called serial. We say that an R-
module M is of serial representation type, if every module in o\M~\ is serial. 

From the fact that every finitely M-generated uniserial module is a factor module 
of M we readily deduce: 

(3.1) Lemma. Let M be a uniserial K-module. 
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(1) If M is finitely generated and M-projective, then every finitely generated left 
ideal in End (RM) is principal. 

(2) If M is finitely cogenerated and M-injective, then every finitely generated right 
ideal in End (RM) is principal. 

The following simple observation is useful for our investigations: 

(3.2) Lemma. Let M be a direct sum of uniserial modules of finite length {Ui}iel 

with index set I. Assume that 
(i) there are only finitely many non-isomorphic modules in {UJ, 

(ii) the M-injective envelopes of uniserial modules in a\M\ are uniserial. 
Then M contains an M-injective summand. 

Proof. Set M0 = U1 © ... © Uk with all the non-isomorphic modules 
Ul9 ..., Uk in {UJ. Assume Ui to be a module with maximal length among the U/s. 
Then the M-injective envelope 01 is uniserial and M0-generated. Therefore 0X = 
= Trace (M0, 0t) = £ Trace (Uh 0X) = Trace (Ur, 0X) for some r = fc. This im-

l-k 

plies that 0X is a factor module of Ur and length (0t) ^ length (Ur). Now Ux #= 0t 

would mean length (01) > length (Ux) = length (Ur), a contradiction. Hence 
U! = 0l9 i.e. U! is M-injective. 

(3.3) Proposition. Let M be an K-module of finite length and of serial represen­
tation type. Then 
(1) the M-injective envelope of every simple module in a\M\ is a factor module of M; 
(2) the length of every indecomposable module in a\M\ is bounded by the length 

ofM; 
(3) every module N e a\M\ has an N-injective summand; 
(4) every indecomposable module in a\M\ is self-injective; 
(5) every self-projective module in a\M\ is QF-3 module; 
(6) every self-injective module N e a\M\ has an (N-projective) minimal N-generator; 
(7) every module N e a\M\ has a a\M\-projective factor module; 
($) every indecomposable N e a\M\ is o-[N]-projective; 
(9) the endomorphism ring of every indecomposable module in a\M\ is left and 

right principal ideal ring. 

Proof. (1) The M-injective envelope of a simple module is M-generated and 
uniserial; since M has finite length it is a factor module of M. 
(2) follows easily from (1) and implies that M is of bounded representation type 

and hence of finite representation type (see [20]). By (1.3) there is a progenerator 
in <r[M]. 

(3) is implied by (2) and Lemma (3.2); (3) implies (4). In view of (2) property (5) 
is shown by (2.4), and dually we get (6) from (1.1) and (2.5). 

(7) Every module N e a\M\ generates its N-injective envelope, which has an N-
projective factor module by (6); hence N also has an N-projective factor module. 

(8) is implied by (7) and (9) deduces from (3.1). 
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Having in mind that every finitely generated submodule of an M-generated 
module L is contained in a finitely M-generated submodule of L, we can show with 
familiar arguments: 

3.4) Lemma. Suppose that the K-module M has finite length and and every 
finitely generated indecomposable module in a\M~\ has a simple top. Then the 
M-injective envelope of every simple module in cr[M] is uniserial of finite length. 

We are now able to show: 

(3.5) Theorem. For an K-module M of finite length the following statements are 
equivalent: 
(a) M is of serial representation type; 
(b) every finitely generated module N e G\M\ 

(i) is serial, or 
(ii) has an N-injective and an N-projective direct summand, or 

(iii) has an N-projective factor module; 
(c) every indecomposable module in cr[M] is uniserial; 
(d) every finitely generated indecomposable module in a\M~\ 

(i) is uniserial, or 
(ii) self-injective and self-projective, or 

(iii) has a simple socle and a simple top; 
(e) there is a progenerator P in a\M~\ and for every fully invaiiant submodule 

K c P 
(i) the factor module P/K is QF-3 module, or 

(ii) the factor module P/K has a P/K-injective submodule; 
(f) there is a progenerator P in o\M~\ and End (RP) is an artinian serial ring; 
(g) there is a finitely generated injective cogenerator Q in a\M\ and for every fully 

invariant submodule L a Q 
(i) L has a minimal L-generator, or 

(ii) L has an L-projective factor module. 

Proof. The implications (a) => (b.i) => (d.i) and (a) => (c) => (d.i) are trivial. 
Also (b.ii) => (d.ii) => (d.iii) are immediately evident. 

(a) => (b.ii) and (a) => (e) were shown in Proposition (3.3). 

(d.iii) => (d.i) follows from (3.4) since under the given conditions every in­
decomposable module in G\M\\ is an essential extension of a simple module. 

(d.i) => (a) The M-injective envelopes of the simple modules are uniserial of 
finite length. This implies that every indecomposable module is uniserial with length 
smaller than the length of M. Hence M is of finite representation type (see [20]) 
and pure semisimple by (1.3). 

(e.ii) => (d.ii) Let N be a finitely generated indecomposable module in G\M\\ 
and set K := Reject (P, N) = n{Kerf/fe HomR(P, N)}. Then tr[P/K] = <r[N] 
(see proof of (1.1)) and P/K <= Nr, r e N. P/K contains the P/K-injective envelope £ 
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of a simple submodule E c PJK which — as a direct summand — is P/K-projective 
and isomorphic to a submodule of N, hence N ~ £. 

(a) => (b.iij) => (g.ii) and (g.i) => (g.ii) are readily obtained from (3.3) and (3.4). 

(g.ii) => (d.ii) is shown by an argument dual to the proof of (e.ii) => (d.ii): For 
a finitely generated indecomposable module N e o\M\ consider the trace of N in Q. 

(a) o (f) is clear by the equivalence of o\M\ and End (RP)-MOD and the pro­
perties of artinian serial rings. 

Remarks. (1) Let {Ut}ieI be a representing family of the finitely generated 
modules in ff[M], U = © Uh and consider the functor ring of o\M\ (Heaulme [11]): 

iel 

T = HomR(U, U) = {fe HomR(U, U)\(U)f = 0 almost everywhere}. Using 
results in [11] and transferring arguments from Fuller-Hullinger [8] to our setting 
one can show that a module M of finite length is of serial representation type if and 
only if T is a QF-2 ring. 

(2) Generalizing decomposition theorems of abelian groups Singh introduced 
two conditions on a module which he numbered by (I) and (II) (Singh [14]). Evidently, 
condition (I) posed on the module M (N) is equivalent to the property that every 
finitely generated module in o\M\ is serial. There should be a contribution by Surjeet 
Singh on these modules in this volume. 

(3) For M = R the preceding theorem gives new and old characterizations of 
a left artinian ring to be serial. For example, for rings (a) o (d.ii) was shown in 
Fuller [7] and (a) o (e.ii) is due to Azumaya [1]. It was shown in Skornyakov [13] 
that a ring whose left modules are serial is necessarily left artinian. 

4. Modules flat or FP-injective over their endomorphism rings 

For an K-module M set S = End (RM) and consider the homomorphisms 
f: Mk -> Mr, k, r e N. Recall that M is flat over 5 if and only if Kerf is M-generated 
for all k, r e N (or k e N, r = 1). Dually, M is FP-injective (coflat) over 5, if the 
cokernel off is cogenerated by M for any k, r e N (resp. k = 1, r e N). Evidently, 
if M is a generator (cogenerator) in o\M\, then it is flat (FP-injective) over S. Results 
in Camillo-Fuller [5] for K-MOD can be generalized to 

(4.1) Proposition. For an K-module M the following properties are equivalent: 

(a) every N e o\M\ is flat over End (RN); 
(b) every self-injective N e o\M\ is flat over End (RN); 
(c) every N e o\M\ is generator in cr[N]. 

Proof, (a) o(c) can be immediately deduced from [5]. Since every N-injective 
module in <x[N] is N-generated, we see with similar arguments that (b) implies that 
every submodule of an N-injective module in <T\N\ is N-generated, hence (b) => (c). 
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Dually we obtain: 

(4.2) Proposition. For an K-module M the following properties are equivalent: 

(a) every N e o\M\ is FP-injective over End (RN); 
(b) every N e o\M\ is coflat over End (RN); 
(c) every N e c\M\ is cogenerator in cr[N]. 

If there is a progenerator of finite length in o\M\ then (a) is equivalent to: 

(d) every self-projective module N e cr[M] is FP-injective (coflat) over End (RN). 

Proof. The equivalence of (a), (b) and (c) is seen dually to (a) <^(c) in (4.1). 
The progenerator of finite length in o\M\ guarantees the existence of a progenerator 
in G\N\ (see (1.1)); dually to (b) => (c) in (4A) we can show that by (d) the factors 
of projective modules in cr[N] are cogenerated by N, i.e. (d) => (c). 

Modules with these properties will occur in the next paragraph. 

5. Modules of homo-serial representation type 

A uniserial module N is called homogeneously uniserial or homo-uniserial, 
if all the finitely generated submodules of N have isomorphic tops. Direct sums of 
homo-uniseiial modules are named homo-serial. We say that an R-module M is of 
homo-serial representation type, if every module in cr[M] is homo-serial. If M is 
homo-uniserial, then there is only one simple module in cr[M] and we observe: 

(5.1) Lemma. Let M be a homo-uniserial R-module. Then 

(1) If M is finitely generated and self-projective, then M is a progenerator in o~[M]. 

(2) If M is finitely cogenerated and self-injective, then M is an (injective) cogenerator 

in cr[M]. 

These facts can be used to sharpen the results on modules of serial representation 
type to the homo-serial case: 

(5.2) Proposition. Let M be an R-module of finite length and of homo-serial 
representation type. Then 

(1) every indecomposable module N e o\M\ is an injective cogenerator and projec­
tive generator in (T\N\; 

(2) every self-projective module N e o\M\ is an injective cogenerator in G\N\ 
(QF module); 

(3) every self-injective module L e cr[M] is a projective generator in o\L\ (QF 
module); 

(4) every module N e o\M\ is generator and cogenerator in o\N\; 
(5) for two indecomposable modules Nl5 N2 in o\M\ with M-injective envelopes 

Ni, N2 we have N1 ~ N2 or HomR(Nl5 N2) = 0; 
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(6) if N is a finite direct sum of non-isomorphic indecomposable M-injective modules, 
then End (RN) is a left and right principal ideal ring. 

Proof. (1), (2) and (3) follow from (3.3), (2.4), (2.5) and (5.1). 

(4) For any module N e c\M~\ denote by P the direct sum of the projective covers 
of the (finitely many) simple modules in c[N] . By [2] and [3] P is injective co-
generator and projective generator in c[P] = 0"[N]. Since P is a direct summand 
of Nk

9 k e N, N is also generator and cogenerator in cr[N]. 
(5) The modules Nl9 N2 are isomorphic if and only if they have isomorphic (simple) 

socles. Otherwise HomR(N]? N2) = 0. 
(6) Let N be direct sum of homo-uniserial, self-projective and self-injective modules 

N1? ...9Nk. By Lemma (3.1) all the End(RN,) are left and right principal ideal 
rings. It follows from (5) that End (RN) is a ring product of the End (RNt) and 
hence also a left and right principal ideal ring. 

Let us split the characterization of modules of homo-serial representation type 
in two parts: In the first theorem we list equivalent conditions all of which imply the 
existence of a progenerator in <T[M]. In the second theorem we give properties 
which are equivalent if we assume that there is a progenerator in cr[M]: 

(5.3) Theorem. For an P-module M of finite length the next statements are 
equivalent: 

(a) M is of homo-serial representation type; 
(b) every finitely generated module in tx[M] is homo-serial; 
(c) every (finitely generated) indecomposable module N e a\M~\ is 
(i) homo-uniserial, or 

(ii) self-projective and cogenerator in cr[N]; 
(d) every self-injective module N e a\M\ is projective in c[N ] ; 
(e) there is a finitely generated injective cogenerator Q in a\M\ and 
(i) every fully invariant submodule L c Q is a projective generator in cr[L], or 

(ii) every fully invariant submodule L c Q is L-projective. 
If M satisfies these conditions, then there is a progenerator in tr[M]. 

Proof. The equivalence of (a), (b) and (c.i) is easily obtained from (3.5). We have 
already seen that (a) implies (cii), (d) and (e). 

(c.ii) => (c.i) Let N be a finitely generated indecomposable module in cr[M] and E 
a simple module in o\N\\. N being a cogenerator in cr\N~\ it contains the N-injective 
envelope of E as direct summand. This implies that N is self-injective with simple 
socle E. So every finitely generated indecomposable module in a\M\ is self-injective 
and self-projective and hence uniserial by (3.5). Since E is the only simple module 
in 0"[N], N has to be homo-uniserial. 

(d) => (c.ii) Let N e cr[M] be finitely generated and indecomposable and denote 
by N the N-injective envelope of N in c[N] . By assumption Nis projective in cr[N] = 
= cr[N] and so N is contained in a direct sum of copies of N. Therefore the N-
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injective envelope ^ o f a simple submodule E a N is contained in N as a direct sum-
mand. Hence N = E is self-injective and self-projective. For every K e o~[N] with 
N-injective envelope K the sum N © K is self-injective and therefore projective 
in cr[N © K] = o[N]. This implies that K is projective in o[N] and consequently 
cogenerated by N. 

(e.ii) => (c.ii) For a finitely generated indecomposable module N e o[M] the 
module L = Trace (N, Q) is a fully invariant submodule of 0, o[L] = cr[N], and N 
is self-injective and self-projective. L is an injective cogenerator in o[L] and — as 
projective module in o[N] — contained in a direct sum of copies of N. Therefore N 
is also a cogenerator in cr[N]. 

It was already seen in (3.5) that the conditions of the theorem imply the existence 
of a progenerator in o-[M]. 

We finally come to the second part of the investigation of modules of homo-serial 
representation type: 

(5.4) Theorem. Let M be an R-module of finite length and suppose that there 
is a progenerator P in cr[M]. Then the following statements are equivalent: 

(a) M is of homo-serial representation type; 
(b) every (self-injective) N e o[M] is flat over End (RN); 
(c) every (self-injective) N e cr[M] is generator in tr[N]; 
(d) every (self-projective) N e o[M] is FP-injective (coflat) over End (RN); 
(e) every (self-projective) N e o[M] is cogenerator in o[N]; 
(f) every (finitely generated) indecomposable N e o[M] is generator and cogenerator 

in o[N]; 
(g) every self-projective module in o[M] is self-injective; 
(h) for every fully invariant submodule K c P we have 

(i) P/K is QF module, or 
(ii) P/K is cogenerator in cr[P/K], or 

(iii) P/K is self-injective; 
(j) there is a finitely generated injective cogenerator in cr[M] and every fully invariant 

submodule L a Q is generator in cr[L]; 
(k) there is a progenerator in o[M] whose endomorphism ring is a left and right 

principal ideal ring. 

Proof. We have already seen that (a) implies all the other assertions of the 
theorem, (b) o (c) and (d) o (e) follows from § 4. 

(c) => (j) Let N be a finitely generated indecomposable module in cr[M]. By 
(c) N generates the N-projective cover of a simple module in cr[N] and hence is iso­
morphic to it and has a simple top. By Lemma (3.4) the injective envelopes of simple 
modules in o[M] are finitely generated and hence we get (j). 

(j) => (f) Let N e o[M] be finitely generated and indecomposable and set 
L = Trace (N, Q). Then o[L] = o[N] and since L is N-generated by definition and 
generator in o[N] by (j), N is also a generator in cr[N] and therefore N-projective. 
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This implies that N is isomorphic to a direct summand of a direct sum of copies of 
the L-injective module L and hence N-injective. Since there is only one simple module 
in cr[N], N is a cogenerator in ff[N]. 

(f) => (a) It follows easily from (f) that every finitely generated indecomposable 
module in <r[M] is self-injective and self-projective and we are done by (5.3). 

(h.ii) and (h.iii) both imply that M is of serial representation type by (3.5). 
For a finitely generated indecomposable N e a [M] set K = Reject (P, N) and have 
o~[P/K] = cr[N]. If P/K is cogenerator in cr[N], then the same is true for N and N 
is homo-uniserial. If P/K is injective in cr[N], then it is generated by N and N is 
a generator in <r[N] and homo-uniserial. So in each case we have (a) by (5.3). 

(e) => (h.ii) and (g) => (h.iii) are trivial. 
(k) => (a) Let P0 be a progenerator in o\M\ and End (RP0) a left and right 

principal ideal ring. Then cr[M] is equivalent to End(RP0)-MOD and the (left 
artinian) ring End (RP0) is of homo-serial representation type. 

Remarks. (1) The notion of a semiinjective module as studied in Tuganbaev 
[17] can also be used to describe modules of homo-serial representation type (com­
pare Theorem (4.7) in [17]). 

(2) For M = R the last two theorems give us a long list of characterizations 
for a left artinian ring to be left and right principal. Observing that some of the con­
ditions imply that R is left artinian we obtain — mostly with new proofs — results 
of Bobylev [3], Byrd [4], Camillo-Fuller [5], Damiano [6], Goursaud [9], Roux 
[12], Snider [15] and others. 
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