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1986 ACTA UNIVERSITATIS CAROLINAE — MATHEMATICA ET PHYSICA VOL. 27. NO. 1 

On Strong Continuity of Derivatives of Mappings 

J. DURDIL 

Institute of Mathematics, Charles University*) 

Received 9 April 1985 

Relations between strong continuity of derivatives and uniformity of differentiability of 
mappings in locally convex spaces are studied; results are formulated for families of mappings. 

V práci je vyšetřována souvislost mezi zesílenou spojitostí derivací a stejnoměrnou diferenco-
vatelností zobrazení v lokálně konvexních prostorech; výsledky jsou formulovány pro systémy 
zobrazení. 

H3yHaK>TCH cooTHOHieHHfl Meiacfly ycHJieHHOň HenpepbiBHOCTbio npOH3BOflHBrx H paBHOMepHoň 
,ziH(i)4)epeHHHpyeMOCTbK) OTo6pa»ceHHH B jioKajifcHo BBnryKjn>rx npocTpaHCTBax; yTBepHCfleHHH 
4>opMyjiHpOBaHbi juni ceMeňcTB OTo6pa»ceHHH. 

Consider a mapping / between two locally convex linear topological spaces and 
suppose there exists its derivative / ' . In case of Banach spaces or more particularly 
if / is a real functional, various relations were obtained between properties of / 
and of/', namely as to compactness and continuity properties of/' due to their 
important role in applications (see [4], [6] —[9] and many others). Considerably 
less is known in case of general locally convex spaces, nevertheless there is for 
instance an interesting paper [5] concerning families of differentiable mappings 
in such spaces, or [2], [6] etc. Some results of [5] were completed or generalized 
later in [3] and the aim of our present paper is to give some further theorems in 
that direction. They are presented for families of mappings but nevertheless they 
provided new results even in case of single mappings, generalizing so some results 
of [6], [8], [9], 

Basic definitions and notations 

Throughout all the paper, the symbols X and Ywill denote arbitrary locally convex 
topological linear spaces over the real field R, °U and if will denote the collections 
of all open convex balanced neighbourhoods of 0 in X and Y (in respective topolo
gies), M will denote a subset of X and & and 0$M the collections of all bounded 

*) 186 00 Praha 8, Sokolovská 83, Czechoslovakia. 
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subsets of X and M, respectively. We shall denote by j£?(X, Y) the space of all con
tinuous linear mappings from X into Y with the topology of uniform convergence 
on bounded subsets of X, and by & the base of neighbourhoods of 0 in &(X, Y) 
consisting of all sets of the form 

(B, V) = {u e &(X,Y) : u(B) cz V} 

where B e J and Ve if. 
Let 3F be a family of mappings from M into Y This family is said to be weakly 

(strongly, respectively) equicontinuous (see also [5]) on M iff for each x0e M and 
each bounded net (xfl, a e A) in M, the weak convergence xa -- x0 (a e A) implies 
/(*fl) -*/(*(>) (respectively /(xfl) ->/(x0)) uniformly o v e r / e J5". The #* is said to 
be uniformly weakly (resp. strongly) equicontinuous on a set N cz M iff for any 
bounded nets (xa, A) and (xa, A) in N, the weak convergence xa — xa -- 0 (a e A) 
implies /(xfl) - /(xfl) -- 0 (resp. /(xfl) - f(x'a) -> 0) uniformly over fe &. 

The family J5" is said to be collectively precompact [5] in M iff for each B e @M 

the set {/(x) : x e B, fe 3F} is precompact in Y (let us recall that precompactness is 
equivalent to relative compactness in complete spaces). Note that the collective 
precompactness of the family £F' of derivatives / ' of mappings from <F (see below) 
means — according to this definition — precompactness of the set {/'(*) : x e B, 
/ e J5"} in the space S£(X, Y) for each B e @M. 

We say that F is collectively locally precompact at a point x0 e M (an analogy 
to the similar notion used in [9]) iff the validity of the condition above in the defini
tion of collective precompactness is required only for such B e $M which are weakly 
to x0 convergent nets. Obviously, both strong continuity and precompactness imply 
local compactness, but the converse does not hold. 

We shall use the following concept of differentiability (see [1], [5], [6]): A map
ping / : M -» Y is said to be Gateaux (Frechet, respectively) differentiable at a point 
x e M iff there exists u e S£(X, Y) such that for each heX (B e £, resp.) and Ve Y, 
there is a 3 > 0 such that 

f(x + th) - f(x) - u(th) e tV 

whenever \t\ _ 5 (whenever he B and |t| = 3, resp.); such mapping u is denoted 
by f'(x) and called a derivative of/ at x. Differentiability is called uniform on a set 
N cz M iff the 3 above can be chosen independently of x e N. 

A family of mappings is said to be equidifferentiable (Gateaux, Frechet or uni
formly) iff the mappings are differentiable in the respective sense and the 3 in the 
respective definition can be chosen the same for all mappings from the family. 

Throughout the paper, for a given family 3F of mappings, the following notations 
will be used for point sets and families of mappings induced by 3F: 

2F(x) = {f(x) :fe <F} , 3F' = {/' :fe 3F} , 

3F'(x) = {/'(*) :fe3F}, 3F(N) = {f(x) :xeN,fe<F}, 

and similar ones. 
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Pseudouniform differentiability 

Letf: M -> Ybe a Frechet or Gateaux diflFerentiable mapping with a derivative f ' . 
In Frechet case, the differentiability is called pseudouniform at a point x0 e M iflF 
an arbitrary 5 e J and Ve Y given, there exist 6 > 0 and U e % such that 

f(x + th)-f(x)~f'(x)thetV 

for all |r| ^ <5, ft e £ and x e ( x 0 + U) n M; in case of Gateaux differentiability, 
the definition of pseudouniformity is the same but only one-point sets B are considered 
in it. 

Let us remark that such a point x0, at which f is pseudouniformly diflFerentiable, 
is sometimes called a point of uniform differentiability off (see e.g. [2]) or the term 
locally uniform differentiability at x0 instead of pseudouniform differentiability 
at x0 is sometimes used. 

Evidently, uniform differentiability of f on N <= M implies pseudouniform 
differentiability of f on N (i.e. at every point of N) but the converse does not hold. 

In case the weak topology of X is considered in K, a slightly modified notion of 
pseudouniformity will be used: Frechet differentiability is called weak-pseudouniform 
at x0 e M iff for each B e ^ , Ve if and each bounded net (xfl, A) in M which weakly 
converges to x0, there exist a0e A and 8 > 0 such that 

f(x. + th)-f(x.)-f'(x.)thetV 

for all \t\ ^ 3, h e B and a e A, a > a0; in case of Gateaux differentiability, one-point 
sets B are considered only. 

It is easy to see that both uniform differentiability (with respect to the original 
topology as well as to the weak topology in X) and pseudouniform differentiability 
with respect to the weak topology in X imply weak-pseudouniform differentiability 
of a mapping f: M -> Y. 

A family J5" of mappings f: M -> Y is said to be pseudouniformly (or weak-
pseudouniformly) equidifferentiable at a point x0 e M iflF the mappings f are pseudo
uniformly (or weak-pseudouniformly, respectively) diflFerentiable at x0 and 5 and U 
(or a0, respectively) in the definitions above can be chosen the same for allfe !F. 

Main results 

In our paper [3] several sufficient or necessary and sufficient conditions were 
derived for collective precompactness of a family &' of derivatives and among them 
also one or two ones for strong equicontinuity of &' — but in semireflexive spaces 
only. We shall now prove some other theorems on strong equicontinuity of &' 
without any space restrictions. 
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Let X, Y, M and !F be as stated above and suppose that the mappings from &* 
are Gateaux differentiable in M (so that J5"' is defined on M). For the sake of simplicity 
suppose M to be open. 

Theorem 1. Let SF be strongly equicontinuous and Frechet equidifferentiable, 
both uniformly on bounded subsets of M. Then !F' is uniformly strongly equicon
tinuous on every set N c M such that N c= M. 

Proof. Let iV c M be an arbitrary set such that N c M and choose U e % such 
that N + U <= M. Let (xa, A) and (ya, A) be two bounded nets in N and suppose 
the net (xa — ya, A) is weakly convergent to 0. We are to prove that the corresponding 
net (f'(xa) — f'(ya), A) converges to 0 (in the topology of the space ££(X, Y) men
tioned above) uniformly over fe $*. 

Let a neighbourhood (B, V) (B e # , Ve 1T) of 0 in S£(X, Y) be given and let us 
denote W = \V. It follows from the boundedness of B and the uniform Frechet 
equidifferentiability of $F on the bounded set 

P = {xa: a e A} u {ya: a e A} 

that a S > 0 can be found so that SB c- U and 

rf(x, th) = f(x + th) - f(x) - f'(x) thetW 

for all x G P, he B, \t\ = S and fe # \ Furthermore, in view of the uniform strong 
equicontinuity of $F on the bounded set P + (SB u {0}), an a0 e A can be chosen 
so that 

/("(«,*)) -f(U'(a,h))e5W 

whenever (a, h) e A x (B u {0}), a > a0 and / e $F where w(a ft) = xa + Sh, u'(ah) = 
= ya + Sh and a partial order given by the relation 

(al9 h,) < (a2, h2) o a± < a2 

is considered in A x (B u {0}); in other words, it is 

f(xa)-f(ya)eSW and fyxa + Sh) - f(ya + Sh)e SW 

whenever ae A, a > a0, he B and fe $F. Hence it holds 

(/'(*.) - f'(y.)) h = ~s V(x<. + dh) ~ / (*.) - r/x„ Sh)] -
O 

- -. if(ya + *h) - f(ya) - rf(ya, Sh)] = 
0 

= -\f(xa + Sh) - f(ya + Sh)] -
o 
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-j\fi*.)-f(y.)]--r,{x„8h) + 
o o 

+ - rj(ya> Sh)eW-W-W+W=V 
s 

for all a e A, a > a0, h e B and fe & (we recall that both Wand Fare convex and 
balanced), which means 

f'(xa)-f'{ya)e{B,V) 

for a > a0 and fe J*\ It proves the theorem. 

Let us remark that in general the assumption of uniformity on bounded subsets 
is weaker than usually used assumption of local uniformity (i.e. uniformity on 
on a neighbourhood of each point). Both concepts coincide in the case of normed 
spaces. 

Corollary 1, Let IF and SF' be collectively precompact in M and suppose 3F is 
Frechet equidifferentiable uniformly on bounded subsets of M. Then !F' is uni
formly strongly equicontinuous on every subset N of M such that N c M . 

Proof. According to [3, Theorem 2.1], it follows from collective precompactness 
of 3F* in M that $F is uniformly weakly equicontinuous on bounded subsets of M 
and then, in view of collective precompactness of IF in M and [3, Theorem 2.3], 
also uniformly strongly equicontinuous on bounded subsets of M. Our assertion 
follows now immediately from Theorem 1. 

Corollary 2. Let 2F be Frechet equidifferentiable uniformly on bounded subsets 
of M and let !F(x0) be precompact in Y for at least one x0 e M. Suppose that 3F' 
is collectively procompact in M and that each mapping f'(x) e J?(X, Y) (x e M) is 
precompact. Then $F' is uniformly strongly equicontinuous on every subset N of M 
such that N cz M. 

This corollary follows immediately from Corollary 1 and [3, Theorem 2.4]. 
Note that collective joint precompactness (see [3], [5]) of 3F' can be assumed instead 
of our conditions concerning <F* and f'(x). 

A brief examination of the proof of Theorem 1 shows how the assumptions of 
Theorem 1 must modified to obtain an "original topology" analogue of it. Bearing 
into mind that the nets (xa) and (ya) considered in the proof are not necessarily 
bounded in that case, the analogue reads as follows: 

Theorem 2. Let <F be uniformly equicontinuous and uniformly Frechet equidif
ferentiable on M. Then !F' is uniformly equicontinuous on every subset N of M 
such that N cz M. 
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It is apparently the direct transcription of the well-known Vainberg's result [8], 
which concerns the case of a single mapping in Banach spaces, to our more general 
situation. 

Theorem 1 concerns uniform strong equicontinuity of #"'. The following theorem 
shows that a localization of the differentiability assumptions, imposed on 3F, yields 
the sufficient condition for simple strong equicontinuity. 

From now on, we shall suppose M to be weakly open. 

Theorem 3. Let $* be strongly equicontinuous uniformly on bounded subsets of M 
and weak-pseudouniformly Frechet equidifferentiable at a point x0 e M. Then SF' 
is strongly equicontinuous at x0. 

Proof. The proof is similar to that of Theorem 1. Let (xa, A) be a bounded net 
in M weakly convergent ot x0, let a neighbourhood (B, V) (B e 0&, VE V) of 0 
in $£(X, Y) be given. Debote W = \V and choose a weak neighbourhood U0 of 0 
in X so that x0 + U0 + U0 c M. The set B being bounded and hence also weakly 
bounded, there is a S0 > 0 so that S0B a U0. Let a0e A be such that xfl e U0 

whenever ae A and a >• a0. 
It follows from weak-pseudouniform equidifferentiability of $F at x0 that an 

ax e A, al > a0 and a 6 > 0, d = S0 can be found such that 

r/xa, th) = fxa + th) - f(xa) - f\xa) th E tW 

for all h E B, \t\ = S, f'E $F and a e A, a >• aY. In view of the continuity properties 
of J^, an a2E A, a2 !> # r can be chosen so that 

f(xa) - f(x0) ESW and f(xa + Sh) - f(x0 + Sh) e SW 

for all a E A, a >• a2, h E B and f E 3F. The same arguments as in the proof of 
Theorem 1 now show that 

f'(xa)-f'{x0)e(B,V) 

for all a e A, a >- a2 andfe 3F, which proves the theorem. 
An analogical assertion to Corollary 1 (in local form) can be now stated but we 

shall prove that it holds even under slightly weaker assumptions. To that aim, two 
propositions are needed. The first one is a localization of [3, Theorem 2.1] and the 
second one is an improvement of the local part of [3, Theorem 2.3]. The proofs of 
both propositions are evident — compare their original proofs with the definition 
of local compactness - and then omitted. 

Proposition 1. Let 3F be Gateaux equidifferentiable in a weakly open set U a X 
and suppose <F' is collectively locally precompact in U. Then SF is weakly equi
continuous in U. 

Proposition 2. Let 3F be weakly equicontinuous and collectively locally precompact 
in a weakly open set U c X. Then it is strongly equicontinuous in U. 
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Before we formulate the promised assertion, the following theorem will be useful 
to state. 

Theorem 4. Let 3F be weak-pseudouniformly Gateaux equidifferentiable at a point 
x0e M and strongly equicontinuous in a weak neighbourhood of x0. If $F' is col
lectively locally precompact on a weak neighbourhood of x0, then it is strongly 
equicontinuous at x0. 

Proof. Let x0 be a given point of M and let U0 be such a weak neighbourhood of 0 
in X that x0 + U0 + U0 c M, J5"' is collectively locally precompact on x0 + U0 

and <F is strongly equicontinuous on x0 + U0. Let 3F be weak-pseudouniformly 
Gateuax equidifferentiable at x0 and suppose to the contrary that &' is not strongly 
equicontinuous at x0. In that case, we can find a bounded net (xa, A) in M such that 
it converges weakly to x0 and simultaneously, the corresponding net (f'(xa), A) 
does not converge to / ' (x0) uniformly over / e 2F. Hence, there is a neighbourhood 
(B, V) e X of 0 in Se(X, Y), a cofinal directed subset A' of A and a mapping/, e & 
for each a E A', such that 

(1) fJxa)-f'a(x0)$(B,V) 

holds for all a e A'. 
The subnet (xfl, A') of the original net (xa, A) is weakly convergent to x0, hence 

we can assume that A' is such that xa e x0 + U0 for all a e A'. Double use of col
lective local precompactness of fF' on x0 + U0 then implies that there is a cofinal 
directed subset A" of A' such that the net (fa(xa) — fa(x0), A") is a Cauchy net in 
&(X,Y). 

Denote by Y the completion of Y and let us consider S£(X, Y) as embedded into 
its completion S£(X, f). The net (fa(xa) — fa(x0), A") has then its limit point in 
S£\X, f); denote it by z0. Apparently, the formula (1) implies z0 + 0, which means 
there is an h0EX such that z0(ho) 4= 0 in t and hence, a neighbourhood W of 0 
in Y can be found so that 

(2) z0(h0)tW. 

Eventually, find a neighbourhood V0 E "V such that 

(3) 4V0 cz Wn Y. 

(Evidently all the choice can be done in such way so that h0E B and 4V0 cz \V, 
but it is of no importance for the proof.) 

Now, choose tt > 0 so that tth0 cz U0. The point h0 and the neighbourhood V0 

being given, the weak-pseudouniform Gateaux equidifferentiability of $F at x0 

implies that there is an ax E A" and a t2 > 0 such that 

(4) r ' r / j c . , th0)EV0 

for all a E A", a > al9 \t\ ^ t2 a n d / e « f where 

rf(x,h)=f(x + h)-f(x)-f'(x)h. 
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Put t0 = min (tl912) and find a2 e A" so that xa e x0 + U0 whenever a e A"9 

a >• a2. Furthermore, find a0 e A" so that a0 > al9 a0 > a2 and both 

(5) fJxm)-fJx0)et0V0 

and 

(6) /,(*« + t0h0) - fjx0 + t0h0) e t0V0 

are valid for all a e A", a >• a0; it is possible to do so in view of the strong equi-
continuity of $F on x0 + U0. 

Using (3), (4), (5) and (6), we can conclude that for every a e A", a >• a0, the fol
lowing formula holds: 

(7) fa(xa)h0-fjxa)h0 = 

= t0
l[fjxa + t0h0) -fjxa) - rfa(xa, t0h0)] -

- to^fJxQ + t0h0) - fjx0) - rfa(x0, t0h0)] = 

= t0'[fJxa + t0h0) -fjx0 + toho)] -

- t0[fa(xa) -fjx0)] - t0
lrfjxa, t0h0) + 

+ t0
lrfJx0, t0h0) e V0 + V0 + V0 + V0 c: Wn Y. 

According to the construction of the net (fjxj) — fjx0), A"), it is 

UJxJ) - fjx0)] h0 -> z0(h0) (a e A") 

in the induced topology of Yand hence (7) implies z0^o) e W9 which contradicts (2). 
The theorem is proved. 
The following assertion is a direct consequence of the last theorem and two 

preceding propositions. 

Corollary 3. Let «f be a weak-pseudouniformly Gateaux equidiflferentiable at 
a point x0 e M, let both 3* and 2F' be collectively locally precompact in a weak 
neighbourhood of x0 in M. Then SF* is strongly equicontinuous at x0-

Corollary 4. Let both 3F and 3F' be collectively locally precompact in M. Then 3F' 
is strongly equicontinuous on each convex subset N of M such that N c M and that 
3F is weak-pseudouniformly Gateaux equidifferentiable on it. 

In view of the definition of local compactness, this corollary can be reformulated 
in the form of a necessary and sufficient condition for strong equicontinuity of de
rivatives as follows: 

Corollary 5. Let 3F be collectively locally precompact and weak-pseudouniformly 
Gateaux equidifferentiable in X (i.e. M = X is assumed). Then $*' is strongly 
equicontinuous in X if and only if it is collectively locally precompact in X. 

Our Theorem 3 asserts that weak-pseudouniform Frechet equidifferentiability 
of 3F at x0 — for families 3F strongly equicontinuous uniformly on bounded sets, 
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at least - is a sufficient condition for f to be strongly equicontinuous at x0. We 
shall now show that this property is also necessary. 

Theorem 5. Let 3F be a family of mappings Gateaux differentiable in a convex 
set M and suppose the corresponding family &' is strongly equicontinuous at x0 e M. 
Then !F is weak-pseudouniformly Frechet equidifferentiable at x0. 

Proof. Suppose to the contrary that there is a family fF which satisfies the as
sumptions of our Theorem but is not weak-pseudouniformly Frechet equidif
ferentiable at x0; it means a neighbourhood Ve *V of 0 in Y9 a bounded set B c X 
and a bounded net (xc, C) in M weakly convergent to x0 can be found such that for 
every 3 > 0 and c e C , there exist xCtSe{xb: be C9 b>-c}9 hcoeB9 tcae(09S) 
and fc8 e -iF such that xco + tcohcd e M and 

rc,/xCfd9 tCt0hCt5) $ tCtbV 
where 

rjx, th) = fjx + th) - fjx) - tfjx) h . 

In other words, considering the natural partial order in the set A = C x R+ defined 
by the relation 

(CD <5I) > (c2, ^2) <>cx> c2&Sl ^ S2, 

there are bounded nets (xfl, A) in M, (ha9 A) in B9 (ta9 A) in R+ and a net (ffl, A) in & 
such that xa -- x0 (a e A), fa -> 0 (a e A) and xa + ra/ifl e M and 

(8) ra(xa9taha)*taV 

for each a 6 A. 
On the other hand, according to the well-known mean value theorem (see e.g. [6]), 

the following inclusion holds for every a e A: 

(9) rjxa9 taha) = ffl(xfl + taha) - fa(xfl) - f;(xa) taha e 

€ ™ {f'a(xa + Xtaha) taha - fjxa) taha: X 6 [0, 1]} = 

= co {[f^xa + xtaha) - f^x0)] taha: x e [0,1]} -

-[fa(xa)-fjx0)]taha = 

= co {g(a9 x) taha: x e [0, 1]} - g(a9 0) 
where 

g{a9x)=fjxa + xtaha)~fjx0) 

Let us consider now the set D = A x [0, 1] with a partial order on it given by the 
relation 

(<*u *i) > (a2> T2) ^ f l i > f l 2 ; 

the set of all points u{ax) = xa + Tfflha, (a, r ) e D then forms a net, which is bounded 
and converges weakly to x0, and hence the corresponding net (g(a9 x)9 (a, x) e D) 
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converges to 0 in ££(X, Y) due to the strong equicontinuity of 3F' at x0. Choosing 
a closed convex balanced neighbourhood W of 0 in X so that W + W c V, we can 
therefore find an a0 e A such that g(a, T) e (B, W) whenever (a, z)e D and a >• a0. 
However, it follows then from (9) that 

rjxa, taha) G co (taW) - taW cz taV, 

which contradicts (8) and so proves the theorem. 

The results of Theorem 5, Theorem 3 and Corollary 3 can be now summarized 
as follows: 

Corollary 6. Let $F be a family of mappings Gateaux differentiable in a convex 
set M, let either SF be strongly equicontinuous uniformly on bounded subsets of M 
or both !F and &' be collectively locally precompact on a weak neighbourhood of 
a point x0 e M. Then the family 3F* of derivatives is strongly equicontinuous at 
x0 e M if and only if J* is weak-pseudouniformly Frechet equidifferentiable at x0. 

Some par t icu la r cases 

In case the spaces X or Y in assertions of the preceding section are of a special 
type, we can formulate some of our results in a simplier way. For instance if X is 
semireflexive, then each strongly continuous mapping from X into Y is auto
matically uniformly strongly continuous on every bounded subset of X due to the 
relative weak compactness of bounded sets in such space X. Therefore, the following 
theorem immediately follows from Corollary 6: 

Theorem 6. Let X be semireflexive, let 3F be strongly equicontinuous and Gateaux 
differentiable in a convex set M c: X. Then 3F' is strongly equicontinuous at a point 
x0 e M if and only if & is weak-pseudouniformly Frechet equidifferentiable at x0. 

Let us remark that a similar assertion, concerning the case of a single real functional 
in a reflexive Banach space, appeared in a sligthly different formulation in [9, 
Lemma 2]. 

If we restricted ourselves to the case of real functional on X, i.e. if Y = R, we 
can formulate several other useful consequences of our theorems. So, by means of 
Theorem 4, Proposition 1 and the fact that weak and norm convergences in R 
coincide, the theorems below can be easily proved: 

Theorem 7. Let X, M, <F be as in the preceding section but Y = R, i.e. !F be 
a family of Gateaux differentiable real functional; suppose 3F is weak-pseudo
uniformly Gateaux equidifferentiable at a point x0 e M. If <F' is collectively locally 
precompact in a weak neighbourhood of x0 in M, then it is strongly equicontinuous 
at x0. 
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Corollary 7. Let !F be a family of Gateaux differentiate real functionals o n M e l , 
let the family $*' be collectively locally precompact in M. Then 3F' is strongly equi-
continuous on every convex set N, N <= M, on which <F is weak-pseudouniformly 
Gateaux equidifferentiable. 

A similar assertion, but with more restrictive assumptions and concerning real 
functionals in Banach spaces only, was proved — using different arguments — in 
[9, Theorem l(i)]; that assertion (as well as the well-known classical results of [8]) 
follows now immediately from our Corollary 7. 

We shall finish with an assertion that combines the results of our Corollary 5 and 
Corollary 6 in the case of Y = R. 

Corollary 8. Let & be a family of Gateaux differentiable real functionals on 
a locally convex space X. Then any two of the following three properties imply 
the rest one (of course, the property (iii) trivially implies (ii)): 

(i) 3F is weak-pseudouniformly Gateaux equidifferentiable in X; 

(ii) <F' is collectively locally precompact in X; 

(iii) #"' is strongly equicontinuous in X. 
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