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In this paper we find out a large class of P-cyclic hypergroups with period introduced in [4]. 

V clanku sestrojime velkou tridu P-cyklickych hypergrup s periodou. 

B flOKJia^e M W nocTpoHM 6oJibruoH KJiac P-iiHKJiHreCKHx rHneprpynn c nepHOAOM. 

In this paper we use the definition of hypergroup introduced by F. Marty [3] 
in 1934. 

Definition [1], [2], Let H be a non empty set equipped with a hyperoperation, 

*: H x H -> 0>(H): (x, y) !—> x * y c H , * * y #= 0 

(We set A * B = IJ a * b and a * B = {a} * B, A * b = A * {b}) 
aeA 
beB 

which is associative x * (y * Z) = (x * y) * Z, Vx, y, z e H9 

and the condition x*H = H*x = H, V x e H i s valid, then 
the hyperstructure <H, *> is called a hypergroup. 

We will study cyclic hypergroups as they are introduced by Wall in [5] i.e. hyper
groups <H, *> that have an element h e H, called generator, such that 

H = hu h2 u ... u hnu . . . . 

If there exists an integer n > 0 such that 

(1) H = huh2u...uh" 

then the hypergroup <H, *> is called cyclic with finite period. If n is the minimal 
number for which the relation (1) is valid then we say that h has period n. The cyclic 
hypergroup <H, *> is called "cyclic with period" [4] if all the generators have the 

*) The results of the paper were presented at Charles University during authors' stay in Prague, 
Spring 1986. 



same period. The cyclic hypergroups are the ones, that have been called P-cyclic 
hypergroups [4] and defined as follows: 

Let (Hn, •) be a cyclic group with n-elements and P c: H. If we consider the 
hyperoperation 

*p: H x H -> 9>(H): (x, y) i-* x *p y = x . y({e} u P) 

(where e is the unit element of (H, •)) then the <H„, *p> is a cyclic hypergroup with 
period ^n. 

In the following we deal with singletons for P i.e. P = {ax} where a is a generator 
of (Hn, •). A large class of P-cyclic hypergroups with period is obtained. We write ZM 

for the powers of Z in the group, and Z[M] for the powers in hypergroups, and we 
write Zv["] instead of (Zv)["]. 

First we prove the following: 

Theorem 1. If (n, x) = 1, n > 2, then the P-cyclic hypergroup <H„, *flX> is not 
cyclic with period. 

Proof. Since (n, x) = 1 we have (n, x, n) = 1, hence [4], the element an = e is 
a generator of period n. On the other hand from Thm. 2 [4] we obtain that the 
element ax is a generator with period [n/2] + 1 where [n/2] = Z when n = 2Z or 
n = 2Z + 1. 

Therefore <H„, *aX} is not cyclic with period. 
In order to prove our main theorem we first prove the following Lemmas. 

Lemma 1. Let (Hn, •), n > 2, be a finite cyclic group. We suppose that n = xk 
and x = X. Then for the P-cyclic hypergroups <H„, *a<M> where (<p, x) = 1 and for 
all n e No such that (fi, ipX, n) = 1 the following is valid: 

The set aM[v], where 1 = v = x, has exactly v elements different from the elements 
of the set 

a"[1] u a"[2] u . . . u a " [ v _ 1 ] . 

Proof. The set 

fll«[v] = { ^ ^v + 9* ? ̂ v + Cv-lXpAj = {aw + x<px. o = x < v} 

has at the most n elements. 
We can also write 

^ [ i ] U f l ^ [ 2 ] u . . . u aM[v-i] = {av+t<pz: i = s ^ v and o = t < s} 

First we prove that 
a^[v]n(^[1]u...u^[v-1]) = 0 . 

Suppose the contrary. Then we can write 

a»v + x<pX = ans + t<pX ^ ^ + x(pX = ^ s + t<pty m o d „ ^ 

=> /i(v — 5) + cpX(x — t) = 0 mod n => A I /x(v — s) 



but (fi, X) — 1 (since (fi, <pX, n) = 1) hence X \ v — s which is a contradiction. It 

remains to prove that the set aM[v] has v different elements. Supposing the contrary, 

we can find x + y with 

0 _ x, y < v , such that a^+x** = a»v+y<pX => (x - y) <pX = 0 mod n => 
=> (x — y) <p = 0 mod x => x\ x — y 

which is a contradiction. 

Lemma 2. With the assumptions of Lemma 1 we have the following: 

The set a M [ v + 1 ] where x — I _ v _ A — 1, has exactly x elements different from 

the elements of the set 

a * 1 3 u f l M [ 2 ] u . . . u a ' , C v ] . 

Proof. We observe that in the set 

fl(u[v+l] _ (an(v+l)^ an(v+l) + <pX^ ^ flAt(v+l) + v<pAj 

we have 
aџ(v+l) + x<pX _ д Д ( v + D д д ( v + l ) + (x+l)<pA _ a д ( v + l ) + <pA 

Therefore 

anlv+U = [ ^ ^ ( v + l ) ^ a / i ( v + l ) + <pA? _ ^ M ( v + l ) + (x-l)<pA| _ (an(v+l) + x<pX. Q < X < JA 

We shall prove that 

a n (a" [ 1 ] u a" [ 2 ] u . . . u a д [ v ] ) = 0 . 

Indeed, suppose that 

afi(v+i)+x<px _ ans+t<px w h e r e i _ s _ v and 0 _ t < s. 

Then //(v + 1 — s) + <p/l(;c — t) = 0 mod n and so .A | v + 1 — s which is a con

tradiction. 

Finally we observe, as in Lemma 1, that the set 

a M [ v + l ] = {an(v+l) + x<pX. Q _ ^ < X J 

has .* different elements. 

Lemma 3. With the same assumptions as in Lemma 1 we have the following: 
The set aM[A+<?] where 1 _ Q < x, has exactly x - Q elements different from the 

elements of the set 

a / i [ 1 ] u . . . u a / i [ A + e - 1 ] . 

Proof. We observe that in the set 

aHlX + Q} _ (an(X + Q) an(X + Q) + <pX ^ ali(X + Q) + (X + Q-l)<pX} 

we have 
afi(X + Q) + x<pX _ an(X + Q) an(X + Q) + (x+l)<pX __ an(X + Q) + <pX e t ( . 



Therefore 

a/*[A + 0] _ (QH(X + Q) ^ anU + Q) + (x-l)<p^ _ | Ll(X+Q) + OJ(pX: Q < ^ < ^ | 

and we deduce, as in Lemma 1, that the set QW+Q] has exactly x elements. 

Now we want to find which of the elements of the s e t afi[X+el belong to the set 

7 д [ i ] u . . U Я^А + е-1] _ {ďs+t<pX. [ g 5 ^ Я + O - 1, 0 = Г < s} 

i.e. we want to find out Oj's such that 

aџ(X + Q) + co(pk _ aџs + tq>X • fi(X + O — s) + *M(ctf — l) = 0 mod n 

o O — s = 0 mod A <=> O = s . 
In this case we have 

id + <pA(co — t) = 0 mod n or ^ + </?(cO — t) = 0 mod x . 

But (cp, x) = 1 so there exist /l1? A2 e Z such that Xtcp + 22x = 1, therefore X^JLL + 
+ X2x\i + </>(cO — t) = 0 mod x or cp(Xl/j. + co — t) = 0 mod % or Axju + co — t = 
= 0 mod x. 

Finally co = (t — li/i) mod K and since O = s and 0 = t < s we can take t = 
= 0, V 2,..., O — 1. This means that we have O different values for co, therefore O 
elements of the set aM[A+(?] belong to the set 

O"[1]u . . . u ^ [ A + e _ , ] Q.E.D. 

Theorem 2. Let (Hn, •) be a finite cyclic group, where n > 2, n = xX, x = X. Then 

the P-cyclic hypergroups <H„, *a<pA} where a is a generator of (Hn, •) and (cp, x) = V 

are cyclic with period x + X — 1. 

Proof. We know ([4], Th. 1) that an element a}1 is a generator of <H„, *a<"A> iff 
(\i, cpX, n) = 1. 

Let a" be a generator of <H„, *a<"A>. Then, according to the Lemmas 1,2, 3 the set 

a"[1] u a"[2] u ... u tf"[x+A'-1] 

contains exactly n different elements, i.e. every generator a" has period x + X — 1. 
Precisely, 

(x _ 1W 
the set a^ r i ] u ... u a^x~11 has exactly — elements (Lemma 1) 

the set a" [ x ] u ... u a^[A] has exactly (A — x + 1) x elements (Lemma 2) and 
(x — \) x 

the set aA t [ A + 1 ] u ... u a ^ x + A _ 1 i has exactly — elements (Lemma 3) 

Therefore the set a^11 u ... u art*+x-li c o n t a m s n elements. 

Theorem 3. Let (Hn, •) be a finite cyclic group where n = x(x + 1) > 2, and let 
a be a generator. Then the P-cyclic hypergroups <Hn, *a<p*>, where (<D, x + 1) = l, 
are cyclic with period 2x. 

In order to prove this theorem we shall prove the following Lemmas. 



Lemma 4. The set a"[v+1], V/i e No with (JLL, cpx, n) = 1 and 1 = v < x, has exactly 
v + 1 elements different from the elements of the set a^[1] u a^21 u .. . u a^. 

Proof. We follow the same procedure as in Lemma 1, and deduce that 

^ [ v + 1 ] n ( ^ [ 1 ] u . . . u a ^ [ v ] ) = 0 . 

Moreover, since (cp, x + 1) = 1, it is clear that the v + 1 elements of aM[v+1] are 
different from each other. 

Lemma 5. The set a"-*+c-5 V/xe/Vo with (jn,cpx,n) = 1 and 1 = Q = x, has 
exactly x — Q + 1 elements different from the elements of the set aM[1] u aM[2] u ... 
... u a^

x+e~l\ 

Proof. The proof of this Lemma goes as in Lemma 3. 

Proof of theorem 3. The element a!1 is a generator of <Hn, *
a<pxy iff 

(/z, (/>x, x(x + 1)) = 1. Therefore according to the Lemma 4 the set aM[1] u aM[2] u ... 
... u AM[x] has x(x + l)/2 different elements and from Lemma 5 we see that the set 

a / i [*+i]u u ani2xi n a s x^x _|_ ^j2 n e w different elements. This means that the 
set aM[I] u a^21 u ... u a^2*1 has exactly x(x + 1) = n elements and so aM[1] u ... 
...u<r" [2* ] = Hn. 
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