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The properties of the set of all solutions of the system
® ey =0, § =L
hjéXjéHj, j=l,.:.,n

-are investigated under the assumption that r;; are continuous functions which have at most one
root x{) on the interval [k, H,J; it is supposed further that sgnr;;(x})) + sgnr;(x}) if xj <
< x§’< xJ. It is shown that the question whether the set of solutions of (#) is nonempty can be
answered in general via solving an appropriately constructed set covering problem. A small
numerical is solved.

Studuji se vlastnosti mnoZiny feSeni soustav rovnic tvaru
maxr;(x)=0, i=1,....m
(%) 1s j;u” 4 ’
‘ hjé xjé Hj’ j= l,...,n

za pfedpokladu, Ze 7; I R! — R! jsou spojité funkce, které maji na intervalu [hj, H;] nejvyse
_jeden kofen x{") a hodnota t&hto funkci m&ni v bod¥ x{’ své znaménko. V &lanku je ukazéno,
Ze otadzka zda mnoZina feSeni soustavy (*) je neprdzdnd muZe byt zodpov&zena feSenim vhodn&
konstruované ulohy o pokryti zndmé z diskrétni optimalizace. Re¥i se maly ilustrativni numericky
priklad.

McenemyoTcst cBORCTBA MHOXECTBA PEINEHHMI CHCTEM ypaBHEHHH BHAA

maxr;(x)=0, i=1,..,m
(%) 1§j§n'j ! ’ ’

hjg xj§ H;, j=1..,n
Ipeanonaraercs, yro 7;;: R!— R! — HenpepsiBHEIE DYHKIME HMEIOITHE HA HHTEpBAJE [h,, Hj]
‘GonpIme Beero omuH KOpeHb x4Y) u 3auenme sTux dyuxumit Mensier B nyskTe x§) cBolt 3nax. B crathe
JI0Ka3aHO, YTO BOMPOC O TOM CyIIECTBYET JIX PEIICHAE CACTEMBI (*) IPH 33 JaHHBIX IPEIIOIOKEHAAX
HJIA HET MOXHO CBECTH K PEmIEHMIO NOAXOIAIMMM 00pa3oM COCTaBIIERHOM 3a[aYd O MOKDLITHH H3
AUCKPETHOM onTHMM3auuH. PemaeTcs Majbl{ HMJUTFOCTPATHBHBIA BHIYHCIIHTEJIBLHBIN IIpAMED.

1. Introduction

The properties of systems of so called extremally linear equations were investigated
in the paper [3]. It will be shown here that in a certain sense similar properties hold

*) Malostranské ndm. 25, 118 00 Praha 1 - Mal4 Strana, Czechoslovakia
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for a substantially larger class of systems, namely for systems of the so called max-
separable equations of the form
(L.1) maxr(x;) =0, ieS

JjeN

h; < x; < H; JEN

where N = {1,...,n}, S = {1,...,m}, hj, H; are given finite numbers and each
equation r;;(x;) = 0 has on the interval [h;, H;] at most one root x{; each function
r,; is continuous and the value r,j(x;) changes its sign in the point x!".

Further, we shall show that the question whether the system (1.1) describes a non-
empty set or not can be answered in general under the assumptions given above via
solving a set covering problem (this problem and its solution is investigated e.g.
in [1]).

A small numerical example is-solved.

2. The properties of the system of max-separable equations

In this section the properties of the system (1.1) under the assumptions given
in the preceding section are investigated. To simplify the explanations we shall
introduce the following notations for all j € N:

T; ={ieS|3x{?e[h;, H;] and r,(x;) < 0 for x; < x$, x; € [h;, H;]}
T; = {ieS|3x{? e[h;, H;] and r;(x;) > 0 for x; < x{", x;e[h;, H;]}
19 = S\ (T} U T7)

max x{?, if T; +0 minx{?, if T/ + 0
X, = ( *€Ti° g, =( s
J J
h; otherwise H; otherwise
L =[x 7]

Si(x;) = {ie S| ryx) =0} Vx;
Vij={xje[h;, H]|ryx;) S0} VieS, jeN

The set of all solutions of the system (1.1) will be denoted by M.
We shall make now the following assumptions (A1)—(A3), which exclude the
cases, in which the set M is trivially empty:

(A1) Vii£0 VieS, jeN

(A2) L;+0 VjeN

(A3) 'L{v(sj(fj) uSi7)) =S5
Jje
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Lemma 2.1.
If any of the assumptions (A1), (A2) is not fulfilled, then the set M is empty.

Proof.

Suppose (A1) is not fulfilled.

Then ¥, = 0 for some peS, keN, so that rn(x,) > 0 for all x,e[h,, H,].
Therefore we obtain for the p-th equation in the system (1.1) max rpi(%;) = ralx,) >

> 0 for all x,€[h,, H,], so that the p-th equation of (1. 1) cannot hold and thus
M=0.
Suppose (A2) is not fulfilled.
Then L, = @ for some p € N. Since we suppose of course h, < H,, L‘,> = ( means
that x, > y,.
Suppose that the indices k, g are defined as follows:
%, = maxx{’ = x, j, = min x{? = x@
1Ty~ feTp+
Ifnow x, € [h,, H,], itis either x, < X,0rx, > ,.If x, < X, = x, itis r, (x,) > 0
and thus
max r,.;(x;) = ri,(x,) > 0
JjeN

Similarly if x, > y, = x{?, we obtain:

max r, pj(xj) g rpq(xq) >0
JeN

so that some of the equations of the system (1.1) cannot be fulfilled. Q.E.D.

Lemma 2.2.
x = (%1, %X, ..., X,) EM=>x;€L; VjeN
Proof.
Suppose there exists an index pe N such that x,¢ L, = [ip, 7,)- Then it is
either x, < X,orx, > y,. If T, = 0, then x, < X, = h, and thus x ¢ M. Similarly
if T;’ = @, then x, > yj, = H, and again x ¢ M. Suppose now that T, + @ and let

%, = max x? = x{. Then similarly as in the proof of Lemma 2.1 we obtain:
x, < ;:P= Tip(Xp) > 0 so that max r,(x;) Z 7,(x,) > 0 and thus x e M.
Similarly if T, + @, we have J «
X, >y, = nrlin xP = x@ = r, (x,)> 0so that mAX ra(x)) = r,,(x,) > Oand x ¢ M.
ieTp+ je
’ ' Q.E.D.
Lemma 2.3.

Suppose j € N. Then
X Sx;Sy;=>ryx;) <0 VieS
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Proof.

It follows from the assumptions about r;; as well as from the definition of the sets
T}, T}, V;; and the points X;, 7; that for any ieS

% S x;=ry(x;) £0 VieT;
X,-é}_’jﬁr,-,-(xj)§0 ViET}
hj<x; SHj=ry(x) <0 VieT] QE.D.

Remark 2.1.

It follows immediately from Lemma 2.3 and the definition of X;, y; that for all
jeN

X;<x;<Jj=>rx;)<0 VieS=S,x;)=90
%; S x; 2 J;= S(x)) = 5,(%) v 5,(7)) .
Theorem 2.1.
x = (%1, X3, .., x,) e M« (U S;(x;) = S) & (x;€ L; VieN).
JjeN

Proof.
Suppose U S;(x;) = S and x;e L; Vje N. Let ke S be arbitrary. Then we have
jeN )
according to Lemma 2.3: r,(x;) <0 VjeN (because x;€L;VjeN), and there
exists an index p € N such that k € S,(x,) so that r,(x,) = 0. Therefore max r, (x;) =
JeN

= 0. Since k € S was arbitrary and x; € L; < [h;, H;] for all j €N, we obtain that
= (x5 X35 ..., X,) € M. Suppose now that the right hand side of the <> -relation
in the Theorem 2 1 does not hold. It means that either U S (x ;) = Sor3peN such

that x, ¢ L,. We shall show that in this case x ¢ M. If U Six;) S, there exists an

index k € S such that i ¢ S,(x;) for all j € N so that r,,(x ) % 0 for all j e N and thus

max r,(x;) + 0 so that x¢ M. If x, ¢ L, for some peN, it follows immediately
JjeN

from Lemma 2.2 that x ¢ M. Q.E.D.

Lemma 2.4,
If the assumption (A3) is not fulfilled, then the set M is empty.

Proof.
Suppose that (A3) is not fulfilled and let p be such an index from S that

r¢VU (S4(%)) v 8,(7,))
je
Suppose there exists x = (x;, ..., x,) € M. It would be according to Theorem 2.1

US(x)=S and x;eL; VjeN
JjeN
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It follows then immediately from Remark 2.1 that
peS =US)x;) = U(S5(%) v Si(7)»
JeN JjeN

which is the contradiction. Therefore M = 0. Q.E.D.

3. Relations to the set covering problem

In this section we shall show how to find out whether a given system of the form
(1.1) has a solution or not, via solving an appropriately constructed set covering
problem in the sense of [1].

It follows immediately from Theorem 2.1 that x € M if and only if x; € L; for all
Jj € N and there exist subsets N = N, N® < N such that N U N® + 9, x; = %
forjeNW,x; = j;forjeN®and U Sj(x;) = S.Reallyifx;e L;and x; # %

JeN(DUN@Q)
and x; # y; for all j, then S;(x;) = O for all j and the element (xy, ..., x,) cannot
solve the system (1.1), because U S,(x;) + S (compare Theorem 2.1). Therefore
JjeN

to construct an element x = (x,, ..., x,) € M means to choose from each of the pairs
{Si(x,), S{(7;)} j€ N = N exactly one set in such a way that the resulting system
of sets covers the set S and then put

x;=7, if jeN and S,(y;) was chosen
x;=73;, if jeN and Sy(y;,) waschosen
xjeL; arbitrary, if jeN\N

The resulting point (x;, ..., x,) will belong to M according to Theorem 2.1.

In the other words, if we want to find out whether the set M is empty or not, we
have to find out whether such choice is possible at least from all pairs {S(%;), S,(7,)},
Jj€N (i.e. for the case N = N). Remark that if X; = 7, then S;(%;) = S,(5;) and it
remains again to choose only one of the two identical sets. Therefore we have to
answer the following question for a given system of the form (1.1): Is it possible to
choose exactly one set of each pair

{S(%)). 87}, jeN
in such a way that the resulting system of sets covers the set S? If the answer to this
question is “no”, then M = @; if the answer is “yes”, then M =+ @ and if we put
x; = %; if S/(X;) was chosen, and x; = J; otherwise, then (X, ..., X,) € M. We shall
show in the sequel that this problem leads in general to solving an appropriately
chosen set covering problem in the sense of [1].
Let us define the numbers a,;, b;; Vi€ S, j € N as follows:

_ /1, if ieS(%)) b= (L if ieS(y)
% =\0 otherwise 7 \0 otherwise

17



Let us consider the following set covering problem
o(u,v) =Y (u; + v;) > min
JeN
subject to
Yoagu;+ Y b2l VieS uj+v;21 VjeN
(3.1) jeN jeN
u;=0 or 1, v;=0 or 1 VjeN

It is easily seen that if the set of feasible solutions of the problem (3.1) is empty
then it must be U (S,(x;) S,(7,)) * S and thus according to Lemma 2.4 the set M

is empty. If the assumptlon (A3) is fulfilled, then the set of feasible solutions of (3.1)
is nonempty (e.g. ii; = 1, 5; = 1Vj gives a feasible solution), the problem has always
an optimal solution (u°"*, v°**) and it holds:

(popt = (p(uop(, Uopt) >n

Theorem 3.1.

Let (u°P*, v°P*) be the optimal solution of the problem (3.1). Then it holds M + @ <>
< q)”'; (p(u°‘", U"p') = n.

Proof.
Suppose M # @ and x = (xy, ..., X,) € M. Therefore there exist sets N*) < N,
N® c N such that N U N® # Qand x; = %; if jeN®, x; = j; if je N® and

Si(x;) = S (compare the considerations above). Let us defined (i7, 7) as
JeENMUN)
follows:

l_ij=1’ l_]j:O if jeN(l)’
i, =0, 5,=0 if jeN®

and choose it; = 0 or 1, 5; = 0 or 1 arbitrarily in such a way that it; + 9; = 1 for all
jENN(N®W U N). Tt is then

Zau J+Zbl1 J—'Z?U i+zbij5j;- 1

JeN jeN(2)
since
U S (x.l) U U S](yl) = NS ij(xj) =S

ii; + 9; =1 for all je N and (p(u, ) = n, and (&7, 7) is an optimal solution of the
problem (3.1) (since ¢(u, v) 2 n for all feasible u, v).

Suppose now that ' = ¢(u°®', v°*") = n. We have to show that M # 0. Let
us set forall je N:

v = i opt _ opt __
x-’-~xi If uj 1, Uj =0

% =7 if uPP=0, o =1



Then it is obviously ;€ L;Vje Nand U S ,-(55 ;) = S so that according to Theorem
JjeN

21, % = (%,...,%,) e M and thus M + 0. . Q.E.D.

Remark 3.1.
It follows immediately from Theorem 3.1 that

M=0<0" >n.

The procedure, which enables us to find out whether the set M is empty or not
can be summarrized as follows:

(1) Verify the assumptions (A1) —(A3); if any one of them is not fulfilled then M = @,
otherwise go to (2); '

(2) Find the optimal solution of (3.1) using one of the methods for solving the set
covering problems (see e.g. [1])

(3) Ife*™' = n,thenM + @
If **>n, then M =90.

Remark 3.2.

The verification of (A1)—(A3) can be carried out algorithmically without sub-
stantial difficulties by comparing the sign of the values of rj(h;), r;,(H;) and using
one of the well known procedures for determining the root xf-') in case that

sgnr;(h;) + sgn r (H;).
4. A numerical example

Let us consider the system
max{ ix; — 4, 3x; —6, —2x3+4, — x4 + 6} =0
max{ x; —6, 2x,—8, x3—8, —2x,—20}=0
max {—x; + 1, —2x, + 4, — x3+ 1, —4x, + 4} =0
max {—xp, — x,+1, —=2x;—4, x4— 84 =0
1<x, 29, 1£x,<5, 0<x;510, 0=5x, <10
Itisinthiscasen = m = 4, N = {1,2,3,4), S = {1,2,34}
TV ={L2}, Ty ={3}, T{={4}, x" =8, xP=6 x"=1
T = (L2}, Ty ={3,4), To=0 sV =2 xP =4 xP=2 x=1
T3 = {2}, T35 ={1,3}, T9={4}, xP =2, *P =8 x> =1
Ty ={4), T; ={1,3}, T¢={2}, x{P =6, xP =1 x=8
F=1, j,=6 8(%)={3, 8, =12}
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X, =2, J2=2, 5y(%)=5,(72) = {1, 3}
3=2, y3=258, Ss(fs) = {1}» Ss(fs) = {2}’
o =6, jo=28, Si%)={1}, S.(ys)={4}.

The assumptions (A1) —(A2) are fulfilled. The matrices |a;;]|, | b;;] have the form:

x|

0111 0100
0000 1010
A=l1100] B=lo100
0000 0001

The set covering problem has the form

4
o(u,v) = Y (u; + v;) > min
ji=1

U, + uz + Uy + vy, =1

vy + v3 =1

Uy + u + v, 21
vy =1

u_,+v_,gl Vj=1,2,3,4

uj=<é, Uj=<(1), vj=1,2,3,4.

The optimal solution of this problem is
(u®, v**) = (0,1,1,0,1,0,0, 1)

(P(uopt, vopt) — 4 =M + 0
Let us set

£1=j71=6, £2=')32=2, i3=i3=23 §4=:V-4=8
Then it is
Sl(il) = {2} s Sz(iz) = {1’ 3} s S3(5é3) = {1} ’ S4(5é4) = {4}
so that ’

4
%;eL; VjeN and USj(x;)={1,2,3,4}=S
j=1
and therefore according to Theorem 3.1 X € M.
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