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1989 ACTA UNIVERSITATIS CAROUNAE—MATHEMATICA ET PHYSICA VOL. 30. NO. 1 

Max-Separable Equations and the Set Covering 

AMER F. JAJOU, KAREL ZIMMERMANN 
Department of Applied Mathematics, Charles University, Prague*) 

Received 4 May 1988 

The properties of the set of all solutions of tne systém 
max ru(Xj) = 0 , i -= 1,..., m 

V) láJžn 
hj^ Xj^ HJ9 j= 1,.:.,» 

are investigated under the assumption that ru are continuous functions which háve at most one 
root x^l) on the interval [hjt Hj]; it is supposed further that sgn ru(x'j) =f= sgn ru(x"j) if Xj < 
< jej1* < Xj. It is shown that the question whether the set of solutions of (*) is nonempty can be 
answered in generál via solving an appropriately constructed set covering problém. A small 
numerical is solved. 

Studují se vlastnosti množiny řešení soustav rovnic tvaru 
max ru(Xi) = 0 , i -= 1,..., m 

(*) I S J ^ n 
hj^ xj^ Hj9 j= 1,...,« 

za předpokladu, že ru: R1 -> R1 jsou spojité funkce, které mají na intervalu [hj, Hj\ nejvýše 
jeden kořen x*p a hodnota těchto funkcí mění v bodě x^1* své znaménko. V článku j e ukázáno, 
že otázka zda množina řešení soustavy (*) j e neprázdná může být zodpovězena řešením vhodně 
konstruované úlohy o pokrytí známé z diskrétní optimalizace. Řeší se malý ilustrativní numerický 
příklad. 

MccjieAyioTCH cBOftcTBa MHoacecTBa pemeHHň CHcreM ypaBHeHHň BHfla 
max ru(Xj) = 0 , i = 1,..;, m 

(*) Išjšn 
hj^ Xj^ Hj, j= 1,..., n 

ITpeflnojiaraeTCH, HTO ru: R1 —> R1 — HenpepwBHbie <j)yHKimH HMeionnie Ha HHTepBajie [hj, Hj] 
6ojibme Bcero OAHH F.opeHb x^ H 3HaneHHe 3THX $yHKirjH-i MeHHeT B irytíKTe xW CBoft 3HaK. B craTte 
AOKa3aHo, HTO Bonpoc o TOM cymeCTByeT JIH pememie CHCTCMH (*) ITOH 3aflaHHBix npeflnojioixeHHírx 
HJIH HeT M03KHO CBeCTH K pemeHHK> nOflXOfllUiniM o6pa30M COCTaBJIeHHOfi; 3a,ZjaiH O nOKpbITHH H3 
AHCKpeTHoň onTHMH3au.HH. PemaeTCK Mantiň HjijnocrpaTHBHbiH BkivHCJiHTejn»Hz>iig; npHMep. 

1. Introduct ion 

The properties of systems of so called extremally linear equations were investigated 
in the paper [3], It will be shown here that in a certain sense similar properties hold 

*) Malostranské nám. 25, 118 00 Praha 1 - Malá Strana, Czechoslovakia 
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for a substantially larger class of systems, namely for systems of the so called max-
separable equations of the form 

(1.1) max r^Xj) = 0 , i e S 
jsN 

hj =" Xj = Hj j e N 

where N = {1,... , n}, S = {1,..., m}, hj9 Hj are given finite numbers and each 
equation r0(xj) = 0 has on the interval \hj9 Hj] at most one root xj°; each function 
ru is continuous and the value rtJ(xj) changes its sign in the point xj0. 

Further, we shall show that the question whether the system (1.1) describes a non­
empty set or not can be answered in general under the assumptions given above via 
solving a set covering problem (this problem and its solution is investigated e.g.. 
in [1]). 

A small numerical example is solved. 

2. The properties of the system of max-separable equations 

In this section the properties of the system (1.1) under the assumptions given 
in the preceding section are investigated. To simplify the explanations we shall 
introduce the following notations for all j e N: 

Tj = {i e S | 3x<° e \hj, Hj] and r0(x,) < 0 for Xj < xf, Xj e \hj, Hj]} 

TJ = {i e S | 3xj*> e \hj, Hj\ and rtJ(xj) > 0 for x, < xf, Xj e \hj, Hj]} 

T° = S\(TJ uTj) 

lmax xj° , if TJ 4= 0 / min Xf , if T/ * 0 
ieTj- y. = /ieTj* 

Khj otherwise \Hj otherwise 

LJ = [*;• Pj] 
S,(x;) = { i eS|r ; , (x , ) = 0} Vx, 

Vij = {*je [hj> Hj] I rtJ(Xj) < 0} VieS, jeN 

The set of all solutions of the system (1.1) will be denoted by M. 
We shall make now the following assumptions (Al)—(A3), which exclude the 

cases, in which the set M is trivially empty: 

(Al) VtJ + 0 V i e S , jeN 

(A2) Lj * 0 V/ e N 

(A3) (J(Sj(Xj)uSj(yj)) = S 
jeN 
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Lemma 2.1. 
If any of the assumptions (Al), (A2) is not fulfilled, then the set M is empty. 

Proof. 
Suppose (Al) is not fulfilled. 
Then Vpk = 0 for some pe S, keN, so that rpk(xp) > 0 for all xp e \hp, Hp\ 

Therefore we obtain for the P-th equation in the system (1.1) max rpj(xj) = rpk(xp) > 
JeN 

> 0 for all xp e \hp, Hp~\, so that the P-th equation of (1.1) cannot hold and thus 
M = 0. 

Suppose (A2) is not fulfilled. 
Then Lp = 0 for some peN. Since we suppose of course hp ^ Hp, Lp = 0 means 

that xp > yp. 
Suppose that the indices k, q are defined as follows: 

xp = max xp
l) = xp

k), yp = min x<° = x(q) 

ieTp- ieTp + 

If now xp e \hp, Hp], it is either xp < xp or xp > yp. If xp < xp = xp
k), it is rkp(xp) > 0 

and thus 
max rkj(xj) = rkp(xp) > 0 

jeN 

Similarly if xp > yp = xp
q), we obtain: 

max rpJ(xJ) = rpq(xq) > 0 
jeN 

so that some of the equations of the system (1.1) cannot be fulfilled. Q.E.D. 

Lemma 2.2. 

x = (xl9 x2, ...,xn)eM => Xj e Lj Vj e N 

Proof. 
Suppose there exists an index peN such that xp$Lp = \xp,yp\ Then it is 

either xp < xp or xp > yp. If T~ = 0, then xp < xp = hp and thus x $ M. Similarly 
if Tp = 0, then xp > yp = Hp and again x $ M. Suppose now that T~ 4= 0 and let 
xp = max**0 = xp

k). Then similarly as in the proof of Lemma 2.1 we obtain: 
ieTp-

xp < xp=> rkp(xp) > 0 so that max rkj(xj) ^ rkp(xp) > 0 and thus xeM. 
jeN 

Similarly if T* 4= 0, we have: 

xp> yp = min j£° = xp
q) => rqp(xp) > 0 so that max rqj(xj) = rqp(xp) > 0 and x $ M. 

i€Tp+ jeN 

Q.E.D. 
Lemma 2.3. 

Suppose j e N. Then 

xj^xj^yj^r^xj)^*) Vi e S 
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Proof. 

It follows from the assumptions about r{j as well as from the definition of the sets 
Tf9 TJ , Vij and the points xj9 pj that for any i e S 

xj = xjorij(xj) = 0 VieTJ 

xj = yj=>rij(xj) = 0 VieTt 

hj = xj = Hj => r^xj) = 0 Vie T? Q.E.D. 

Remark 2.1. 
It follows immediately from Lemma 2.3 and the definition of xj9 yj that for all 

jeN 
Xj < Xj < yj =-> rtj(xj) < 0 Vi e S => SJ(XJ) = 0 

Xj = Xj = yj => SJ(XJ) c S/xy) u Sj(yj) . 

Theorem 2.1. 

x = (xl9x29...9xn)eMo(\JSj(xj) = S)&(xjeLj V / e N ) . 
JeN 

Proof. 
Suppose (J S/xy) = S and x,- e Lj Vj e N. Let k e 5 be arbitrary. Then we have 

according to Lemma 2.3: rkj(xj) = 0 VjeN (because XyeLyV/eN), and there 
exists an index p e N such that k e Sp(xp) so that rkp(xp) = 0. Therefore max rkj(xj) = 

JeN 

== 0. Since ke S was arbitrary and Xj e Ly c [ĥ ., H^] for all jeN, we obtain that 
X = (xl9 xl9..., xn) G M. Suppose now that the right hand side of the o -relation 
in the Theorem 2.1 does not hold. It means that either \J SJ(XJ) =# S or 3p e N such 

J6N 

that xp $ Lp. We shall show that in this case x $ M. If U SJ(XJ) 4= S, there exists an 
JeN 

index feeS such that i £ 5,(x,) for all j e N so that r^Xj) =# 0 for all J e N and thus 
max rij(xj) 4= 0 so that x $ M. If xp £ Lp for some P e N, it follows immediately 

JeN 

from Lemma 2.2 that x $ M. Q.E.D. 

Lemma 2.4. 

If the assumption (A3) is not fulfilled, then the set M is empty. 

Proof. 

Suppose that (A3) is not fulfilled and let p be such an index from S that 

pt\j(Sj(xj)uSj(yj)) 
jeN 

Suppose there exists x = (x1(..., x j e Af. It would be according to Theorem 2.1 

U SJ(XJ) = S and x} e Lj Vj e AT 
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It follows then immediately from Remark 2.1 that 

p e S = U Sj(Xj) <= U (SJ(XJ) u Sj(yj)) , 
jeN jeN 

which is the contradiction. Therefore M = 0. Q.E.D. 

3. Relations to the set covering problem 

In this section we shall show how to find out whether a given system of the form 
(1.1) has a solution or not, via solving an appropriately constructed set covering 
problem in the sense of [1]. 

It follows immediately from Theorem 2.1 that x e M if and only if Xj e Lj for all 
jeN and there exist subsets N(1) c N, N(2) c N such that N(1) u N(2) 4= 0, Xj = Xj 
for j e N(1), xj = yj forj e N(2) and U SJ(XJ) = S. Really if Xj e Lj and Xj 4= Xj 

jeJV<->VJJV< 2 > 

and Xj 4= y} for all j9 then SJ(XJ) = 0 for all j and the element ( x l 5 . . . , xn) cannot 
solve the system (1.1), because U SJ(XJ) 4= S (compare Theorem 2A). Therefore 

jeN 

to construct an element x = (xl9..., xn) e M means to choose from each of the pairs 
{SJ(XJ)9 Sj(yj)} jeiVcJV exactly one set in such a way that the resulting system 
of sets covers the set S and then put 

XJ = Ӯ, if jєÑ and SJ(ӮJ) was chosen 

XJ = ӮJ> if jєÑ and SJІӮJ) was chosen 

XJ eLj arbitrary, if jє 7V\i? 

The resulting point (xl9..., xn) will belong to M according to Theorem 2.1. 
In the other words, if we want to find out whether the set M is empty or not, we 

have to find out whether such choice is possible at least from all pairs {SJ(XJ)9 Sj(yj)}9 

jeN (i.e. for the case 1V = N). Remark that if Xj = yj then SJ(XJ) = Sj(yj) and it 
remains again to choose only one of the two identical sets. Therefore we have to 
answer the following question for a given system of the form (l.l): Is it possible to 
choose exactly one set of each pair 

{Sj(xj),Sj(yj)}, jeN 

in such a way that the resulting system of sets covers the set 5? If the answer to this 
question is "no", then M = 0; if the answer is "yes", then M 4= 0 and if we put 
Xj = xj if SJ(XJ) was chosen, and Xj = yj otherwise, then (xl9..., xn) e M. We shall 
show in the sequel that this problem leads in general to solving an appropriately 
chosen set covering problem in the sense of [1]. 

Let us define the numbers aij9 bu Vi e S, j e N as follows: 

/ l , if ieSj(xj) b / l , if ieSj(yj) 
,J \0 otherwise lJ \ 0 otherwise 
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Let us consider the following set covering problem 

<?(u> v) = E (UJ + VJ) - > m i n 

Is* 
subject to 

I ««;«j + I V ; ^ - v i e s " ; + ^ = 1 Vj e N 
(3.1) - ^ jeiV 

Uj = 0 or 1 , v,. = 0 or 1 VjeJV 

It is easily seen that if the set of feasible solutions of the problem (3.1) is empty 
then it must be (J (Sjfaj) ^i(yy)) + S an(* t n u s according to Lemma 2.4 the set M 

JeN 

is empty. If the assumption (A3) is fulfilled, then the set of feasible solutions of (3.l) 
is nonempty (e.g. Uj = 1, Vj = 1 Vj gives a feasible solution), the problem has always 
an optimal solution (wopt, vopt) and it holds: 

<popt = <p(uopt, vopt) = n 

Theorem 3.1. 

Let (wopt, vopt) be the optimal solution of the problem (3.1). Then it holds M -# 0 o 
o<popt = <p(uopt,vopt) = n. 

Proof. 

Suppose M =j= 0 and x = (xu ..., xn) e M. Therefore there exist sets N(1) c: N, 
N(2) c N such that N(1) u N(2) 4= 0 and Xj = Xj if j eN ( 1 ) , Xj = yj if j 6N ( 2 ) and 

U Sj(xj) = S (compare the considerations above). Let us defined (w, v) as 
jeiV<->uN<-> 

follows: 

uj= 1, Vj = 0 if jeN(1), 

uj = 0 , Vj = 0 if j e N(2) 

and choose Uj = 0 or 1, v,. = 0 or 1 arbitrarily in such a way that Uj + Vj = 1 for all 
j e N \ (N(1) u N(2)). It is then 

I auuj + I MI = I auuj + I M ; = * 
JeN ./eJV jeJV<-> JeJV<2> 

since 
U SJ(XJ) u U S/yy) = U Sj(*y) = 5 

JeN<-> yeN<2> JeiV<1>uN(2> 

"I + **/ = * f ° r a ^ I G ^ anc* <?("> v) = n> anc* ("> v) ls a n optimal solution of the 
problem (3.1) (since <p(u, v) *t n for all feasible u, v). 

Suppose now that <popt = <p(uopt, vopt) = n. We have to show that M * 0. Let 
us set for all j eN: 

xj - x; if uopt = 1 , vop' = 0 

jc, - yj if uopt = 0 , vop' = 1 
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Then it is obviously Xj e Lj Vj e N and U SJ(XJ) = S so that according to Theorem 

2.1, x = (x l5..., xn) e M and thus M + 0. Q.E.D. 

Remark 3.1. 
It follows immediately from Theorem 3.1 that 

M = 0 o <popt > n . 

The procedure, which enables us to find out whether the set M is empty or not 
can be summarrized as follows: 

(1) Verify the assumptions (Al) — (A3); if any one of them is not fulfilled then M = 0, 
otherwise go to (2); 

(2) Find the optimal solution of (3.1) using one of the methods for solving the set 
covering problems (see e.g. [1]) 

(3) If<popt= n , thenM* 0 
If <popt > n , then M = 0 . 

Remark 3.2. 
The verification of (A1)-(A3) can be carried out algorithmically without sub­

stantial difficulties by comparing the sign of the values of r^hj), r^Hj) and using 
one of the well known procedures for determining the root x<° in case that 
sgn r^hj) * sgn rtj(Hj). 

4. A numerical example 

Let us consider the system 

max { ix1 — 4, 3x2 — 6, —2x3 + 4, — x4 + 6} = 0 

max { xx - 6, 2x2 - 8, x3 - 8, - 2x 4 - 20} = 0 

max {-xx + 1, -2x 2 + 4, - x3 + 1, -4x 4 + 4} = 0 

max {-x l5 - x2 + 1, -2x 3 - 4, x4 - 8} = 0 

i = xt <: 9 , 1 ^ x2 ^ 5 , 0 ^ x3 ^ 10, 0 ^ *4 ^ 10 

It is in this case n = m = 4, N = {1, 2, 3, 4}, S = {1, 2, 3,4} 

Tf -=-{1,2}, T r = { 3 } , T? = {4}, x ^ - ^ 8 , x<2> = 6, *<3> - 1 

n = {1, 2}, T2" = {3, 4}, T2° = 0, x<*> = 2, x<2> = 4, x<3> = 2, x<4> = 1 

T3
+={2}, T3-={1,3}, T3° = {4}, x ^ . ^ 2 , x<2> = 8, *(,3) - 1 

T4
+={4}, T4"={1,3}, T° = {2}, XP = 6, XP = 1, 4 4 ) - 8 

x, = 1, y, = 6, Sfa) = {3}, SM = {2}, 
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*2 = 2, y2 = 2, S2(x2) = S2(y2) = {1, 3} 

x3 = 2, j 3 = 8, S3(*3) = {1}, S3(j3) = {2}, 

x4 = 6, j / 4 = 8, S4(x4) = {l}, S4(j;4) = {4}. 

The assumptions (Al) —(A2) are fulfilled. The matrices flayfl, ||6y|| have the form: 

(0 1 1 1\ /0 1 0 0\ 

0 0 0 0 D / 1 0 1 0 
i i o o H o i o o 
0 0 0 0/ \0 0 0 l / 

The set covering problem has the form 
4 

<p(w>v) = Z (wI + ty) - * m i n 

7 = 1 

w2 + u3 + «4 + v2. ^ 1 

v! + V3 = 1 

Ut + U2 + V2 ^ 1 

v4 = 1 
«, + *, = 1 Y/ = 1,2,3,4 

"; = (<r ^ = (o j VI = 1 > 2 > 3 > 4 -

The optimal solution of this problem is 

( ^ , ^ 0 = (0,1 , 1,0, 1,0, 0,1) 

<p(uop\ vopt) = 4 => M * 0 

Let us set 

*i = yi = 6 , .x2 = x2 = 2 , x3 = x3 = 2 , x4 = j>4 = 8 

Then it is 

S1(x1) = {2}, S2(x2) = {1, 3} , S3(x3) = { l } , S4(x4) = {4} 

so that *» 
4 

jc,. e Lj V; e N and U -S/xy) = {1, 2, 3, 4} = S 
1=i 

and therefore according to Theorem 3.1 x e M. 
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