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Free Left Distributive Semigroups

A. ZEJNULLAHU

Department of Technics, University of Pri§tina*)

Received 21 June 1988

The number of elements of finitely generated free left distributive semigroups is found.

V &lanku se nachazi po&et prvku kone&né& generovanych volnych levodistributivnich pologrup.

B craThe HAXOAMTCS YHCIIO 3JIEMEHTOB KOHEYHO MOPOXAECHHOR CBO60OIHOM 1eBOANCTPHOYTHBHOR
TOJTYTpYIIILL.

1. Introduction

Let L denote the variety of left distributive semigroups, i.e. of semigroups satisfying
xyz = xyxz. By [1], every finitely generated left distributive semigroup is finite.
Hence, for every positive integer n and any subvariety K of L, we can denote by
a(K, n) the number of elements of the free K-semigroup of rank n. The aim of this
short note is to find the numbers a(K, n) for some significant subvarieties K of L
(‘by [1], Lcontains just 88 subvarieties).

In this paper, let F be a free semigroup over an infinite set X of variables. For

r, se F, let Mod (r = s) denote the variety of semigroups satisfying r = s and let
M(r = s) = Lo Mod (r = s).

2. The variety L

Consider the following subsets of F: 4 = {x, x?, x%; x e X},
B = {x;x;...%,5 2 £ n,xy,..., x,€ X pair-wise different} ,
C ={x}{x;...x,; 2 < n,x,,...,x,€X pair-wise different} ,
D = {x;X;... X,—1x%; 2 £ n, x4, ..., x, € X pair-wise different} ,
E
G

{xix;...x,_4x%; 2 < n,xq, ..., x, € X pair-wise different} ,
{x1%3 ... %3 2 S M, 1 £ k < myxy,..., x,€X pair-wise different} ,
H = {xix,...x,%; 2<n1=< k<n,xg,..,x,€X pair-wise different} .
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2.1. Lemma. (i) Let r, s F. Then thereare e AVBUCUDUVEUGUH =
= M such that M(r = s) = M(p = q).
(ii) Let p, g € M be such that p % g. Then Lis not contained in Mod (r= q).

Proof. See [1].

For all integers 0<mgnletaln,m)=n(n~1)...(n - m),an) = Zna(n m)
and z(n) = Z m a(n, m). Clearly, a(n + 1,m + 1) = (n + 1) a(n, m), a(n 1) =
=(n+1) (1 + a(n)) and z(n + 1) = (n + 1) (a(n) + z(n)).

2.2. Proposition. a(L, n) = 4a(n) + 2z(n) — n for every n 2 1.

Proof. Let X, be an n-clement subset of X and let F, be the subsemigroup of F
generated by X,. Put 4, = A N F, and define similarly B,, etc. With regard to 2.1,
we have a(L,n) = card(4,) + card (B,) + card (C,) + card (D,) + card (E,) +
+ card (G,) + card (H,). However, card (4,) =3n, card(B,) = card (c,) =

card(D)—card(E)—ZZC:l m! = Zn(n—l) (n-m+1)= Z

- a(n, m) = a(n) — n, card (G,) = card (FL) = iz( )m'(m — 1) m"zzm’_ 1).

.n(n—1)...(n — m + 1) = z(n). Thus a(L,n) =3n+ 4a(n) — 4n + 2z(n) =
= 4a(n) + 2z(n) — n.

2.3. Remark.
n 1 2 3 4 5 6 7 8 9 10

a(L,n) 3 18 93 516 3255 23478 191793 1753608 17755371 197282010

For every n =0, let b(n) = Z"“l/m!. Hence 1 =b(0) <2=5(1) <52 =
= b(2) < b(3) < ... and lim (b(n))m:)e. Put also b(—1) = 0.

2.4. Lemma. a(n) = b(n — 1) n! for every n > 0.

Proof. By induction.

For every n = 0, let y(n) = Z b(m) Put also y(—1) = y(-2) = 0.

2.5. Lemma. z(n) = y(n — 2) n!foreveryn > 0.

Proof. By induction (use 2.4).

For every n = —1, let v(n) = Zl m! = e — b(n). Further, for n > 1, let u(n) =

Z v(n), u(0) = 0. Then u(l)m<";(2) . <1 and lim (u(n)) = 1.

2.6. Proposition. a(L,n) = 2y(n)n! — 2 — p for every n = 1.

Proof. By 2.2, 2.4 and 2.5, a(L,n) =4b(n — 1)n! + 2y(n = 2)n! — n =
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=2n1(2b(n - 1)+ y(n —2))—n=2n!(b(n - 1)+ y(n — 1)) — n = 2n!.
.(b(n —(1g+ Int+yn—-1))—-2—-n=2n(bn)+y(n-1)—-2-n=
=2nly(n) -2 - n.

2.7. Proposition. a(L,n) = 2nen! — 2 — n + 2(1 — u(n)) n! for every n = 1.
Proof. This follows from 2.6 (y(n) = ne + 1 — u(n)).

2.8. Corollary. a(L,n) =2nen! —2 — n for every n 2 1. Moreover, lim
(a(L,n)/(2nen! — 2 — n)) = 1.

2.9. Remark.

n 1 2 3 4 5 6

2nen!-2-n 1,436... 17,746... 92,858... 515910... 3254,938... 23477,856...

3. The varieties R and R;, R,

Put R = M(x?y = x2y?), R; = M(xy = xyx) and R, = M(xy = xy?).
3.1. Lemma. (i) R, = R, < R.
(i) R, = Mod (xy = xyx).

Proof. Clearly, R, = R. Further, for Se R, and x, y € S, we have xy = xyx =
= (xy) x = (xyx) (xy) = x(yxy) = (xp) (xy) = xy?, so that SeR,. The equality
R, = Mod (xy = xyx) is evident.

3.2. Lemma. R, #+ R, + R.

Proof. Consider the following groupoid 4 = {a, b, ¢,d}:ab = ba = candxy = d
in the remaining cases. Then A4 is a semigroup which is nilpotent of class 3, and hence
A€R. Clearly, A ¢ R,. Now, consider the following groupoid B = {a, b}: aa = ba =
= a, ab = bb = b. Then B is a semigroup of right zeros, B€ R, and B ¢ R;.

Denote by V the set of the following terms from F: x, x2, x3, x € X; xy, x%y, xy?,
x,yeX, x*y; yiys...m 1<i<2,3Zn, y,,..., y, € X pair-wise different;
Viva Vb 25,1 Sk<n, 1 <i<2,y,..., yo€ X pair-wise different.

3.3. Lemma. (i) Let r, s € F. Then there are p, g € V such that R n Mod (r = s5) =
= Rn Mod (p = g).
(ii) If p, q € V are such that p # g, then R is not contained in Mod (p = gq).

Proof. Use 2.1 and 3.2.

3.4. Proposition. a(R, n) = n* + 2 a(n) + 2 z(n), a(R;, n) = 2n — 2n* + 2 a(n)+
+ 2 z(n) and a(R;, n) = 2 a(n) for every n = 1.

Proof. Similar to that of 2.2.
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4. The varieties 7,T; and TN R

Put T = M(xy* = x?y*) and T; = M(xy — x?y). Clearly, T, = T.
4.1. Lemma. T; + T.
Proof. Consider the semigroup A from 3.2. Then A € Tand 4 ¢ T;.

4.2. Proposition. a(T, n) = n* + 2 a(n) + 2z(n), a(Ty, n) = 2a(n) + 2 z(n),
a(TA R,n) = n* + n + a(n) + z(n), a(Ty "Ry, n) =n + a(n) + z(n) and
a(Ty "Ry, n) = n + a(n)forevery n = 1.

Proof. Similar to that of 2.2.
5. Varieties of idempotent left distributive semigroups

Put I=Mkx=x*)=1I, I,=Mod(x=y), I;=Mod(x=xy), I,=

: Mod (x = x%, xy = yx), I; = Mod (x = yx), I, = Mod (x = x?, xyz = xzy),
= Mod (x = xyx), Is = Mod (x = x?, xyz = yxz), I; = Mod (x = x?, xy =

: xyx) and Iy = Mod (x = x?, xyzx = xzyx). As it is proved in [1], these varieties

are pair-wise different and they are the only subvarieties of the variety I of idempo-

tent left distributive semigroups.

ool

5.1. Proposition. For every n 2 1, a(lo, n) = 1, a(Iy, n) = a(I3, n) = n, a(I, n) =
=2"— 1, a(l4.n) = a(ls,n) = n2""', a(Is,n) = n?, a(l,,n) = a(n), a(Ig, n) =
= (n + n?)2""2, a(I,, n) = n + z(n).

Proof. Easy.
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