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Free Left Distributive Semigroups 

A. ZEJNULLAHU 

Department of Technics, University of PriStina*) 

Received 21 June 1988 

The number of elements of finitely generated free left distributive semigroups is found. 

V cJanku se nachazi pocet prvku konecne' generovanych volnych levodistributivnich pologrup. 

B craTbe HaxoflHTca MHCJIO aneMeHTOB KOHCHHO nopoacaeHHOft CBO6O/THOH neBOflHCTpH6yTHBHOH 
nojiyrpynnbi. 

1. In troduct ion 

Let L denote the variety of left distributive semigroups, i.e. of semigroups satisfying 
xyz = xyxz. By [1], every .finitely generated left distributive semigroup is finite. 
Hence, for every positive integer n and any subvariety K of L, we can denote by 
a(K9 n) the number of elements of the free K-semigroup of rank n. The aim of this 
short note is to find the numbers a(K9 n) for some significant sub varieties K of L 
(by [1], L contains just 88 sub varieties). 

In this paper, let F be a free semigroup over an infinite set X of variables. For 
r, seF9 let Mod (r = s) denote the variety of semigroups satisfying r = s and let 
M(r = s) = Ln Mod (r = s). 

2. The var iety L 

Consider the following subsets of F: A = {x9 x
2

9 x3; xeX}9 

B = {xxx2 ...xn; 2 ^ n9xl9 ...9 xneX pair-wise different} , 
C = {x\x2 ...xn; 2 ^ n9xl9 ...9xneX pair-wise different} , 
D = {xtx2 ... xn^txn; 2 ^ n9xl9 ...9xneX pair-wise different} , 
E = {x\x2 ... xn_±xn; 2 g n9 xl9 ...9xneX pair-wise different} , 
G = {xxx2 ... xnxk; 2 ^ n, 1 ^ k < n9 xl9..., xn eX pair-wise different} , 
H = {x\x2 ... xnxk; 2 ^ n, 1 ^ k < n9 xl9..., xn eX pair-wise different} . 

*) 38000 PriStina, Sunčany Breg b. b., Yugoslavia 
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2.1. Lemma, (i) Let r,seF. Then there a r e p , ( j e i u 5 u C u D u £ o G u f l = 
= M such that M(r = s) = M(P = q). 
(ii) Let p, q e M be such that p 4= q. Then Lis not contained in Mod (p = g). 

Proof. See [1]. 
n 

For all integers 0 ^ m ^ n, let a(n, m) = n(n - 1) .. . (n - m), a(n) = £ a(n, m) 
n m = 0 

and z(n) = £ m a(n, m). Clearly, a(n + 1, m + 1) = (n + 1) a(n, m), a(n + 1) = 
m = 0 

= (n + 1) (1 + a(n)) and z(n + l) = (n + l) (a(n) + z(n)). 

2.2. Proposition. a(L, n) = 4a(n) + 2z(n) - n for every n _• 1. 

Proof. Let Xn be an n-element subset of X and let Fn be the subsemigroup of F 
generated by Xn. Put An = A n Fn and define similarly Bn, etc. With regard to 2.1,. 
we have a(L, n) = card (Aw) + card (Bn) + card (C„) + card (Dn) + card (En) + 
-I- card (G„) + card (Hn). However, card (An) = 3n, card (Bn) = card (Cn) = 

= card(D.) = card(F„) = t ( t ) m l = £ n(n - 1 ) . . . (n - m + l) = £ . 
m = 2\mJ m = 2 n / \ n m = l 

.a(#i, m) = a(n) - n,card(Gw) = card (Hn) = I f m! (m - 1) = ^ ( m - 1) . 
m = 2 \ m / m = 2 

. n(n - 1) .. . (n - m + l) = z(n). Thus a(L, n) = 3n + 4 a(n) - 4n + 2 z(n) = 
= 4 a(n) + 2 z(n) - n. 

2.3. Remark. 

n 1 2 3 4 5 6 7 8 9 10 

a(L, n) 3 18 93 516 3255 23478 191793 1753608 17755371 197282010 

n 

For every n = 0, let b(n) = £ 1/m!. Hence 1 = fe(0) < 2 = fc(l) < 5/2 = 
m = 0 

= b(2) < b(3) < ... andlim(b(n)) = e. Put also b(-l) = 0. 

2.4. Lemma. a(n) = b(n - l) n\ for every n = 0. 

Proof. By induction. n 

For every n = 0, let y(n) = ^ b(m). Put also y(~ l) = y(-2) = 0. 
m = 0 

2.5. Lemma. z(n) = j;(n — 2) n\ for every n = 0. 

Proof. By induction (use 2.4). 
00 

For every n = - 1 , let v(n) = £ l/m! = e - b(n). Further, for n = 1, let u(n) = 
n m-=n+l 

= XK M ) ' w(°) = °- T h e n M ( x ) < w(2) < ••. < 1 and lim(u(n)) = 1. 
m = l 

2.6. Proposition. a(L, n) = 2 y(n) n! — 2 -- n for every n ^ 1. 

Proof. By 2.2, 2.4 and 2.5, a(L, n) = 4 b(n - 1) n! + 2 y(n - 2) n! - n = 
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= 2n! (2 b(n - 1) + y(n - 2)) - n = 2n! (b(n - 1) + y(n - l)) - n = 2n!. 
. (b(n - 1) + 1/n! + y(n- l))-2-n = 2n\ (b(n) + y(n - 1)) - 2 - n = 
= 2n! y(n) - 2 - n. 

2.7. Proposition. a(L9 n) = 2n en! — 2 — n + 2(1 — u(n)) n! for every n = I. 

Proof. This follows from 2.6 (y(n) = n e + 1 — u(n)). 

2.8. Corollary. a(L, n) = 2n en! — 2 — n for every n ^ 1. Moreover, lim 
(a(L,n)/(2nen! - 2 - n)) = 1. 

2.9. Remark. 

n 1 2 3 4 5 6 

2wen!-2-n 1,436... 17,746... 92,858... 515,910... 3254,938... 23477,856... 

3. The varieties R and Rl9 R2 

Put R = M(x2y = x2y2)9 R± = M(xy = xyx) and R2 = M(xy = xy2). 

3.1. Lemma, (i) Rx c jR2 = R. 
(ii) Rt = Mod (xy = xyx). 

Proof. Clearly, R2 = R. Further, for S e Rt and x9 y e S9 we have xy = xyx = 
= (xy) x = (xyx) (xy) = x(yxy) = (xy) (xy) = xy2

9 so that S e R2. The equality 
Rl = Mod (xy = xyx) is evident. 

3.2. Lemma. R1 4= R2 4= R. 

Proof. Consider the following groupoid A = {a9 b9 c9 d}: ab = ba = c and xy = d 
in the remaining cases. Then A is a semigroup which is nilpotent of class 3, and hence 
A eR. Clearly, A $R2. Now, consider the following groupoid B = {a9 b}: aa = ba = 
= a9 ab = bb = b. Then B is a semigroup of right zeros, B e R2 and B $ Rt. 

Denote by V the set of the following terms from F: x9 x
2
9 x3

9 xeX; xy9 x2y9 xy2
9 

x9 y eX, x + y; y\y2 ... yn9 1 g i ;= 2, 3 ^ n, yl9..., yn eX pair-wise different; 
yliy2 ••• ynyk> 2 = n9l = k < n9 1 ^ i ^ 2, yl9..., yn eX pair-wise different. 

3.3. Lemma, (i) Let r9seF. Then there are p9qe Vsuch that R n Mod (r = s) = 
= R n Mod (p = q). 
(ii) If p9 q e Vare such that p #= q9 then R is not contained in Mod (p = q). 

Proof. Use 2.1 and 3.2. 

3.4. Proposition. a(R9 n) = n2 + 2 a(n) + 2 z(n)9 a(R29 n) = 2n - 2n2 + 2 a(n) + 
+ 2 z(n) and a(Rl9 n) = 2 a(n) for every n = 1. 

Proof. Similar to that of 2.2. 
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4. The varieties TyT± and T n R 

Put T = M(xy2 = x2y2) and Tt = M(xj; - x2y). Clearly, Tx = T. 

4.1. Lemma. Tx + T. 

Proof. Consider the semigroup A from 3.2. Then A e Tand A $ 7\. 

4.2. Proposition. a(T, n) = n2 + 2 a(n) + 2 z(n), a(Tl9 n) = 2 a(n) + 2 z(n), 
a(Tn R,n) = n2 + n + a(n) + z(n), a(Tx n R2,n) = n + a(n) + z(n) and 
a(7\ n Rl9 n) = n + a(n) for every n ^ 1. 

Proof. Similar to that of 2.2. 

5. Varieties of idempotent left distributive semigroups 

Put I = M(x = x2) = I9, I0 = Mod (x = y), It = Mod (x = x>>), I2 = 
= Mod (x = x2, x>> = >>x), I3 = Mod (x = yx), I4 = Mod (x = x2, xyz = xzy), 
I5 = Mod (x = xyx), I6 = Mod (x = x2, xj>z = yxz), I7 = Mod (x = x2, xy = 
= xyx) and J8 = Mod (x = x2, xyzx = xzyx). As it is proved in [1], these varieties 
are pair-wise different and they are the only subvarieties of the variety I of idempo­
tent left distributive semigroups. 

5.1. Proposition. For every n = 1, a(l0, n) = 1, a(lu n) = a(I3, n) = n, a(l2, n) = 
= 2n - 1, a(I4, n) = a(I6, n) = n 2""1, a(Is, n) = n2, a(ln, n) = a(n), a(l8, n) = 
= (n + n2) 2"-2 , a(I9, n) = n + z(n). 

Proof. Easy. 
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