Acta Universitatis Carolinae. Mathematica et Physica

Abdullah Zejnullahu
Free left distributive semigroups

Acta Universitatis Carolinae. Mathematica et Physica, Vol. 30 (1989), No. 1, 29--32
Persistent URL: http://dml.cz/dmlcz/142602

Terms of use:

© Univerzita Karlova v Praze, 1989

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

Free Left Distributive Semigroups

A. ZEJNULLAHU

Department of Technics, University of Priština*)

Received 21 June 1988

The number of elements of finitely generated free left distributive semigroups is found.

V ̛̉lánku se nachází pǒ̌et prvkủ konečnê generovaných volných levodistributivních pologrup.

В статье находится число элементов конечно порожденной свободной леводистрибутивной полугрупшы.

1. Introduction

Let L denote the variety of left distributive semigroups, i.e. of semigroups satisfying $x y z=x y x z$. By [1], every finitely generated left distributive semigroup is finite. Hence, for every positive integer n and any subvariety K of L, we can denote by $a(K, n)$ the number of elements of the free K-semigroup of rank n. The aim of this short note is to find the numbers $a(K, n)$ for some significant subvarieties K of L (by [1], L contains just 88 subvarieties).

In this paper, let F be a free semigroup over an infinite set X of variables. For $r, s \in F$, let $\operatorname{Mod}(r=s)$ denote the variety of semigroups satisfying $r=s$ and let $\mathrm{M}(r=s)=L \cap \operatorname{Mod}(r=s)$.

2. The variety L

Consider the following subsets of $F: A=\left\{x, x^{2}, x^{3} ; x \in X\right\}$,
$B=\left\{x_{1} x_{2} \ldots x_{n} ; 2 \leqq n, x_{1}, \ldots, x_{n} \in X\right.$ pair-wise different $\}$,
$C=\left\{x_{1}^{2} x_{2} \ldots x_{n} ; 2 \leqq n, x_{1}, \ldots, x_{n} \in X\right.$ pair-wise different $\}$,
$D=\left\{x_{1} x_{2} \ldots x_{n-1} x_{n}^{2} ; 2 \leqq n, x_{1}, \ldots, x_{n} \in X\right.$ pair-wise different $\}$,
$E=\left\{x_{1}^{2} x_{2} \ldots x_{n-1} x_{n}^{2} ; 2 \leqq n, x_{1}, \ldots, x_{n} \in X\right.$ pair-wise different $\}$,
$G=\left\{x_{1} x_{2} \ldots x_{n} x_{k} ; 2 \leqq n, 1 \leqq k<n, x_{1}, \ldots, x_{n} \in X\right.$ pair-wise different $\}$,
$H=\left\{x_{1}^{2} x_{2} \ldots x_{n} x_{k} ; 2 \leqq n, 1 \leqq k<n, x_{1}, \ldots, x_{n} \in X\right.$ pair-wise different $\}$.

[^0]2.1. Lemma. (i) Let $r, s \in F$. Then there are $p, q \in A \cup B \cup C \cup D \cup E \cup G \cup H=$ $=M$ such that $\mathrm{M}(r=s)=\mathrm{M}(p=q)$.
(ii) Let $p, q \in M$ be such that $p \neq q$. Then L is not contained in $\operatorname{Mod}(p=q)$.

Proof. See [1].
For all integers $0 \leqq m \leqq n$, let $a(n, m)=n(n-1) \ldots(n-m), a(n)=\sum_{m=0}^{n} a(n, m)$ and $z(n)=\sum_{m=0}^{n} m a(n, m)$. Clearly, $a(n+1, m+1)=(n+1) a(n, m), a(n+1)=$ $=(n+1)(1+a(n))$ and $z(n+1)=(n+1)(a(n)+z(n))$.
2.2. Proposition. $a(L, n)=4 a(n)+2 z(n)-n$ for every $n \geqq 1$.

Proof. Let X_{n} be an n-element subset of X and let F_{n} be the subsemigroup of F generated by X_{n}. Put $A_{n}=A \cap F_{n}$ and define similarly B_{n}, etc. With regard to 2.1, we have $a(L, n)=\operatorname{card}\left(A_{n}\right)+\operatorname{card}\left(B_{n}\right)+\operatorname{card}\left(C_{n}\right)+\operatorname{card}\left(D_{n}\right)+\operatorname{card}\left(E_{n}\right)+$ $+\operatorname{card}\left(G_{n}\right)+\operatorname{card}\left(H_{n}\right)$. However, card $\quad\left(A_{n}\right)=3 n, \quad \operatorname{card}\left(B_{n}\right)=\operatorname{card}\left(C_{n}\right)=$ $=\operatorname{card}\left(D_{n}\right)=\operatorname{card}\left(E_{n}\right)=\sum_{m=2}^{n}\binom{n}{m} m!=\sum_{m=2}^{n} n(n-1) \ldots(n-m+1)=\sum_{n=1}^{n}$. $. a(n, m)=a(n)-n, \operatorname{card}\left(G_{n}\right)=\operatorname{card}\left(H_{n}\right)^{m=2}=\sum_{m=2}^{n}\binom{n}{m} m!(m-1)=\sum_{m=2}^{n}(m-1)$. . $n(n-1) \ldots(n-m+1)=z(n)$. Thus $a(L, n)=3 n+4 a(n)-4 n+2 z(n)=$ $=4 a(n)+2 z(n)-n$.

2.3. Remark.

n	1	2	3	4	5	6	7	8	9	10
$a(L, n)$	3	18	93	516	3255	23478	191793	1753608	17755371	197282010

For every $n \geqq 0$, let $b(n)=\sum_{m=0}^{n} 1 / m!$. Hence $1=b(0)<2=b(1)<5 / 2=$ $==b(2)<b(3)<\ldots$ and $\lim (b(n))=$ e. Put also $b(-1)=0$.
2.4. Lemma. $a(n)=b(n-1) n$! for every $n \geqq 0$.

Proof. By induction.
For every $n \geqq 0$, let $y(n)=\sum_{m=0}^{n} b(m)$. Put also $y(-1)=y(-2)=0$.
2.5. Lemma. $z(n)=y(n-2) n!$ for every $n \geqq 0$.

Proof. By induction (use 2.4).
For every $n \geqq-1$, let $v(n)=\sum_{m=n+1}^{\infty} 1 / m!=e-b(n)$. Further, for $n \geqq 1$, let $u(n)=$ $=\sum_{m=1}^{n} v(n), u(0)=0$. Then $u(1)^{m=n+1}<u(2)<\ldots<1$ and $\lim (u(n))=1$.
2.6. Proposition. $a(L, n)=2 y(n) n!-2-n$ for every $n \geqq 1$.

Proof. By 2.2, 2.4 and 2.5, $a(L, n)=4 b(n-1) n!+2 y(n-2) n!-n=$
$=2 n!(2 b(n-1)+y(n-2))-n=2 n!(b(n-1)+y(n-1))-n=2 n!$.
$.(b(n-1)+1 / n!+y(n-1))-2-n=2 n!(b(n)+y(n-1))-2-n=$ $=2 n!y(n)-2-n$.
2.7. Proposition. $a(L, n)=2 n$ en! $-2-n+2(1-u(n)) n$! for every $n \geqq 1$.

Proof. This follows from $2.6(y(n)=n \mathrm{e}+1-u(n))$.
2.8. Corollary. $a(L, n)=2 n$ en! $-2-n$ for every $n \geqq 1$. Moreover, lim $(a(L, n) /(2 n \mathrm{e} n!-2-n))=1$.

2.9. Remark.

n	1	2	3	4	5	6
$2 n$ en!-2-n	$1,436 \ldots$	$17,746 \ldots$	$92,858 \ldots$	$515,910 \ldots$	$3254,938 \ldots$	$23477,856 \ldots$

3. The varieties R and R_{1}, R_{2}

Put $R=\mathrm{M}\left(x^{2} y=x^{2} y^{2}\right), R_{1}=\mathrm{M}(x y=x y x)$ and $R_{2}=\mathrm{M}\left(x y=x y^{2}\right)$.
3.1. Lemma. (i) $R_{1} \subseteq R_{2} \subseteq R$.
(ii) $R_{1}=\operatorname{Mod}(x y=x y x)$.

Proof. Clearly, $R_{2} \subseteq R$. Further, for $S \in R_{1}$ and $x, y \in S$, we have $x y=x y x=$ $=(x y) x=(x y x)(x y)=x(y x y)=(x y)(x y)=x y^{2}$, so that $S \in R_{2}$. The equality $R_{1}=\operatorname{Mod}(x y=x y x)$ is evident.
3.2. Lemma. $R_{1} \neq R_{2} \neq R$.

Proof. Consider the following groupoid $A=\{a, b, c, d\}: a b=b a=c$ and $x y=d$ in the remaining cases. Then A is a semigroup which is nilpotent of class 3 , and hence $A \in R$. Clearly, $A \notin R_{2}$. Now, consider the following groupoid $B=\{a, b\}: a a=b a=$ $=a, a b=b b=b$. Then B is a semigroup of right zeros, $B \in R_{2}$ and $B \notin R_{1}$.
Denote by V the set of the following terms from $F: x, x^{2}, x^{3}, x \in X ; x y, x^{2} y, x y^{2}$, $x, y \in X, x \neq y ; y_{1}^{i} y_{2} \ldots y_{n}, 1 \leqq i \leqq 2,3 \leqq n, y_{1}, \ldots, y_{n} \in X$ pair-wise different; $y_{1}^{i} y_{2} \ldots y_{n} y_{k}, 2 \leqq n, 1 \leqq k<n, 1 \leqq i \leqq 2, y_{1}, \ldots, y_{n} \in X$ pair-wise different.
3.3. Lemma. (i) Let $r, s \in F$. Then there are $p, q \in V$ such that $R \cap \operatorname{Mod}(r=s)=$ $=R \cap \operatorname{Mod}(p=q)$.
(ii) If $p, q \in V$ are such that $p \neq q$, then R is not contained in $\operatorname{Mod}(p=q)$.

Proof. Use 2.1 and 3.2.
3.4. Proposition. $a(R, n)=n^{2}+2 a(n)+2 z(n), a\left(R_{2}, n\right)=2 n-2 n^{2}+2 a(n)+$ $+2 z(n)$ and $a\left(R_{1}, n\right)=2 a(n)$ for every $n \geqq 1$.

Proof. Similar to that of 2.2 .

4. The varieties T, T_{1} and $T \cap R$

Put $T=M\left(x y^{2}=x^{2} y^{2}\right)$ and $T_{1}=M\left(x y-x^{2} y\right)$. Clearly, $T_{1} \subseteq T$.
4.1. Lemma. $T_{1} \neq T$.

Proof. Consider the semigroup A from 3.2. Then $A \in T$ and $A \notin T_{1}$.
4.2. Proposition. $a(T, n)=n^{2}+2 a(n)+2 z(n), a\left(T_{1}, n\right)=2 a(n)+2 z(n)$, $a(T \cap R, n)=n^{2}+n+a(n)+z(n), a\left(T_{1} \cap R_{2}, n\right)=n+a(n)+z(n)$ and $a\left(T_{1} \cap R_{1}, n\right)=n+a(n)$ for every $n \geqq 1$.

Proof. Similar to that of 2.2.

5. Varieties of idempotent left distributive semigroups

Put $\quad I=\mathrm{M}\left(x=x^{2}\right)=I_{9}, \quad I_{0}=\operatorname{Mod}(x=y), \quad I_{1}=\operatorname{Mod}(x=x y), \quad I_{2}=$ $=\operatorname{Mod}\left(x=x^{2}, x y=y x\right), I_{3}=\operatorname{Mod}(x=y x), I_{4}=\operatorname{Mod}\left(x=x^{2}, x y z=x z y\right)$, $I_{s}=\operatorname{Mod}(x=x y x), \quad I_{6}=\operatorname{Mod}\left(x=x^{2}, x y z=y x z\right), \quad I_{7}=\operatorname{Mod}\left(x=x^{2}, x y=\right.$ $=x y x)$ and $I_{8}=\operatorname{Mod}\left(x=x^{2}, x y z x=x z y x\right)$. As it is proved in [1], these varieties are pair-wise different and they are the only subvarieties of the variety I of idempotent left distributive semigroups.
5.1. Proposition. For every $n \geqq 1, a\left(I_{0}, n\right)=1, a\left(I_{1}, n\right)=a\left(I_{3}, n\right)=n, a\left(I_{2}, n\right)=$ $=2^{n}-1, a\left(I_{4}, n\right)=a\left(I_{6}, n\right)=n 2^{n-1}, a\left(I_{5}, n\right)=n^{2}, a\left(I_{7}, n\right)=a(n), a\left(I_{8}, n\right)=$ $=\left(n+n^{2}\right) 2^{n-2}, a\left(I_{9}, n\right)=n+z(n)$.
Proof. Easy.

Reference

[1] Kepka T., Varieties of left distributive semigroup, Acta Univ. Carolinae Math. Phys. 25/1 (1984), 3-18

[^0]: *) 38000 Priština, Sunčany Breg b. b., Yugoslavia

