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By analyzing central ultrafiltres on an orthomodu lar lattice L we construct a closure space & 
such that L is orthoisomorphic to the orthomodular lattice CO(Jžf) of all clopen sets in S£. 
This orthoisomorphism becomes the Stone representation on the centre of L. Although the lattice-
theoretic operations are generally not set-theoretic in CO(&) — this cannot be done at all (see 
e.g. [2], [5]) — we show that it is so for couples containing at least one central element. This 
generalizes and complements the representation by L, Iturrioz [4] and R. Mayet [6]. 

V článku je ukázáno, že ke každému ortomodulárnímu svazu L existuje uzávěrový prostor 
Jš? tak, že L je izomorfní s ortomodulárním svazem CO(Sf) všech uzavřeně-otevřených množin 
v -S?. Tento izomorfismus přejde na centru svazu L ve Stoneovu reprezentaci a navíc vytváření 
svazových operací na CO(Sť) je množinové pro každou dvojici, která obsahuje alespoň jeden 
centrální prvek. 

B craTbe ,ziOKa3biBaeTCH, HTO K jno6oň opTOMOflyjrapHOň pemeTKe L cymecTByeT npocTpaHCTBO 
C 3aMbIKaHHeM & TaK, HTO L H30MOp(j>Ha OpTOMOflVJMpHOH peuiěTKe CO(&) BCeX OTKpbITO-3aMKHy-
TWX MHoncecTB B &. 3 T O T H30MOp$H3M nepexoflHT Ha neHTpe peuiěTKw B npeflcraBJieHHe CToyna 
H peuiěTOHHbie onepauHH Ha CO(Jžf) coBna,aaioT c TeopeTHKOMHOíKecTBeHbíMH AJW xaxcziOH napbi, 
KOTOpaH COAep5KHT HeHTpaJIbHblH 3JieMCHT. 

1. P r e l i m i n a r i e s on orthomodular l a t t i c e s 

Definition 1.1. A triple (P =,') is called an orthomodular lattice (abbr. OML) 
if (P, ^ ) is a partially ordered set with an orthocomplementation ' such that 

1) P is a lattice with respect to the ordering ^ , 
2) there is a least and a greatest element in P, 0, 1, 
3) if a, b e P and a — b then a' — b', 
4) if a e P then (a')' = a, 
5) if a = b then b = a v (a' A b). 

In what follows, let L always mean an OML. 
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Let us call the set C(L) = {aeL\a = (a A b) v (a A b') for each b e L} 
the centre of L . Let us recall (see [4]) that the set C(L) as the set of absolutely commu
tative elements of L is a Boolean subalgebra of L and C(L) = L exactly in case L 
is Boolean. 

In what follows we shall deal with so called central ultrafilters (see also [8]) which 
will play an essential role in the representation theorem. (It should be observed that 
there is no straightforward generalization of Boolean technique because OML's 
do not generally possesses enough ultrafilteres. For instance the lattice L(H) of pro
jections in a Hilbert space H possesses none ultrafilter at all (see [1]). 

Definition 1.2. Let F be a subset of L. Then F is called a central filter (abbr. c-
filter) on Lif the following conditions are satisfied: 

1) if a e F, be Land b _ a then b e F, 
2) if a e F n C(L) and b e F then a A b e F. 

If F is a filter and the condition a e F implies a' <£ F, then F is called proper. Finally, 
if F is a proper filter and if for any a e Leither a e F or a' e F, then F is called a cen
tral ultrafilter (c-ultrafilter). 

Proposition 1.3. Let {Fa | a e I } be a collection of c-filters on L. Then the set 
G = {a e L\ a = aai A aa2 A ... A aak A a, aa. e Fa. n C(L) (i = k) and a e u Fa} 
is the least c-filter on Lcontaining all Fa(ael). a6/ 

Proof. By the definition of G, if a e G and a = b then b e G. Suppose now that 
ae G n C(L), b e G. WQ have to show a A b e G. Since a e G, we have a _ aai 

A aai A ... A aak A a, where aaieFa. n C(L) (i = k) and deFy. Obviously, 
there is a Boolean subalgebra of Lcontaining the set (aai, aa2,..., aak, a}. Therefore 
we may write a = a v (aai A aa2 A ... A aak A a) = (a v aai) A (a v aa2) A ... 
... A (a v a). Thus, changing a v aa. for aa. and a v a for a, we may assume 
that a = aai A aa2 A ... A aak A a, where aa.eFa. n C(L) (i _ k) and deFy. 

Put c = aai A aa2 A ... A aak A a'. Then c e C(L) and therefore c' e C(L). 
Moreover, c' = a and therefore c' e Fy. Thus, c' e Fy n C(L) and moreover, aai A 
A aa2 A ... A aak A c' = (aai A aai A ... A aak) A ((aai A aai A ... A aak)' v 
v a) = 0 v (aai A aa2 A ... A aak A a) = a. Summarizing what we have showed 
so far, we have obtained the expression a = aai A aa2 A ... A aak A aak + 1, where 
aa.eFa.nC(L)(i = k+l). 

The rest is easy. If b = bPl A bPz A ... A bPp A 5, where b0. e Fp. n C(L) (i ^ p) 
and beF5, we have a A b = aai A aa2 A ... A aak + l A bPl A bPl A ... A bPp A b 
and therefore a A b e G. The proof of Proposition 1.3. is complete. 

Proposition 1.4. Suppose that a, b e L. Then either a ^ b or there exists a central 
ultrafilter F on Lsuch that a e F and b $F. 

Proof. Suppose that a = b. Denote by 3Fah the collection of all proper c-filters 
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which contain a and do not contain b. Since the c-filter Fa = {x e L\ x = a} belongs 
to &ab, we see that 3Fab #- 0. Let us order the set <Fatb by inclusion and take a maximal 
element in &ab, F. A maximal element obviously exists by Zorn's lemma. We are 
going to show that F is a c-ultrafilter. 

Suppose that it is not the case. Then there is an element ceL such that {c, c'} n F = 
= 0. Put Fc = {x e L\ x = c} and denote by G the c-filter generated by Fc and F. 
We shall show first that G is proper. Suppose on the contrary that there is an element 
deLsuch that {d, d'} c G. Applying Proposition 1.3. we may assume that d = 

= m A k and d' = n A S, where me F n C(L), ne Fc n C(L), ke Fc and se F 
(The other cases argue similarly) Moreover, we may assume that in the latter expres
sion we have m = k' and n = s' (Indeed, we can write mAk=mA(kv m') 
and take k v m' for k if necessary.). Since m, n are central, we can write d = 
= (m v d) A (m' v d) and d' = (nv d) A (n' v d'). Therefore 0 = d A d' = 
= (m v d) A (m' v d) A (n v d') A (n' v d'). As d = m A k, we obtain d v 
v m' = (m A k) v m! = k v m' _ k. Thus, d v m' e Fc. Analogously, n' v 
v d' e F. Since (d v m') A (n v d') = c, the equality (m v d) A (m' v d) A 
A (n v d') A (n' v d') = 0 consisting of mutually compatible elements implies 
c' = (m v d) A (n' v d') = m A (n' v d') e F. It follows that c' e F and this is 
a contradiction. We have checked that F is proper. We may suppose that b $ G. 
(Indeed, this follows automatically if b' e F. If V £ F, then {b, b'} n F = 0 and we 
could take b' for c in the former construction.) We therefore have G e 3Fah and G 
extends F. This is absurd since F was maximal. Thus F is a c-ultrafilter. The proof 
of Proposition 1.4. is complete. 

Corollary 1.5. Let Lbe an orthomodular lattice and let F be a Boolen ultrafilter 
on C(L). Then F can be extended to a c-ultrafilter on L. 

Proof. Put F! = {x e L\ X = a for any aeF}. Then F1 is obviously a proper 
c-filter on Land the extension can be obtained from Proposition 1.4. 

Proposition 1.6. Let &* be the set of all central ultrafilters on L. Let P(&) denote 
the set of all subsets of <£ and let (p: L-> P(S£) be the mapping defined by the equality 
(p(a) = {F e ££\a e F}. Then q> has the following properties: 

1) <Ko) = 0, 
2) (p(a') = Se - (p(a), 
3) if a e C(L), then (p(a v b) = (p(a) u (p(b)for any b e L, 
4) if a,b e L then a = b o <p(a) <= <p(b). 

Proof. The conditions 1), 2), 4) follows from the definition of <p and Proposition 1.4. 
As for the condition 3), suppose that a v b e F for a c-ultrafilter F and a e C(L). 
Then a v b = a v (b A a') e F. If both a, b A a' do not belong to F, then both 
a', V v a belong to F and so does a' A (b' v a). But a' A (bf v a) = a' A V = 
= (a v b)' e F, which is absurd. This completes the proof of Proposition 1.6. 
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2. Preliminaries on closure spaces 

Following [3], a nonvoid set X together with a closure operation " is called 
a closure space if the following four conditions are satisfied: 

1) 0 = 0_, 
2) A a A for any A a X, 
3) A c B => A c B for any A, B c X , 
4) A = A for any A a X. 

A set A c X is called closed (resp. open) if A = A (resp. X — A = X — A). 
Obviously, the intersection of closed sets in X is a closed set. Further, X is called 
Hausdorff if any pair of distinct points in X separates by.open sets, and X is called 
compact if any collection {Ca | a eI} of closed sets in X fulfils the following property: 
If o c a = 0, then there is a finite collection Cai, Ca2, ..., Can such that f] Cn = 0. 

aeJ k£n 

(A closure space is a topological space if a union of any pair of closed sets is a closed 
set.) 

3. A representation theorem 

Let L be an orthomodular lattice and let <p: L-» P(S£) be the mapping defined 
in Proposition 1.6. For any A e P(S£), put A = r\{ap(a) \ aeL,<p(a) :=> A}. This 
operation converts if to a closure space which we denote again by J2\ Let CO(S£) 
denote the set of all sets which are simultaneously closed and open in S£. 

Proposition 3.1. Let <p:L-*P(<£) be the mapping defined in Proposition 1.6. 
Then <p has the following properties: 

1) the set <p(L) = {A c <£ \ A = <p(a) for any a e L} is a subset of CO(S£), 
2) every set closed in ££ is an intersection of elements of <p(L) (and dually for 

open sets), 
3) cp is an order isomorphism of Land (<p(L), c ) , 
4) the set <p(L) endowed with the inclusion relation and the set-theoretic ortho-

complementation is an orthomodular lattice and moreover, if A, Be<p(L) then 

A v B = A u B and A A B = (A n B)° (here ° stands for the operation of taking 
the interior), 

5) if in the above condition 4) we have B central in CO(S£), the A v B = A u B 
and A A B = A n B. 

Proof. 
1) Suppose that a e L. Then <p(a) is closed by the definition of the closure in X. 

Further, $£ — <p(a) = <p(a') = <p(a') = S£ — cp(a) and therefore <p(a) is open. Thus, 
<p(a)sCO(Se). 

2) It follows from the property 1) and from the definition of the closure in X. 
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3) Obvious. 
4) The first part follows from the property 3) and from the fact that ((p(a))f = 

= <p(a'). Take elements A, Be<p(L). Since <p(L) is a lattice, there exists Ce<p(L) 
such that C = A v B. By the definition of the closure in X, we have A v B = 
= n { C e (p(L) | A u B c £}. Since for any <? from the latter formula we have 
C c C, we infer that n{C e (p(L) \ A u B cz €} = n{C e (p(L) \ C c C} = C. The 
rest derives dually. 

5) We apply Proposition 1.6. 3). 

Proposition 3.2. Let !£ be the closure space associated with L. Then S£ is compact 
Hausdorff and (p(L) = CO(&). 

Proof. Let us check first that S£ is Hausdorff. Take Fl9 F2 e 3? such that Fx #= F2. 
Suppose that a e F1 — F2. Then a' eF2 — Fx and the sets (p(a), (p(af) separate 

Let us show now that <D(L) is compact. Let {Ca | a e I} be such a system of closed 
subsets of J£ that f) Ca = 0. Since any closed set is an intersection of elements of 

ael 

<p(L), it suffices to establish the following implication: Iff) (p(aj) = 0 then there 
JeJ 

exists a finite subset {j1,j2, .-.Jn} of J such that f) (p(aJk) = 0. 

If f) <p(aj) = 0 then there is no such c-ultrafilter F that F e <p(fl/) (j e J). Since 
JeJ 

F e (p(aj) if and only if ay- e F, we see that there is no c-ultrafilter containing each 
c-filter Fj = {a e L\ a = aj} (j e J). Therefore the c-filter generated by all Fj (j e J) 
cannot be proper. By Proposition 1.3, there exists x e L such that x = by. A ... 
... A bJr A bp, where bJk e FJk n C(L) and bp e Fp, and xr

 = bmi A ... A bms A Bq, 
where bmt e Fmt n C(L) (t = 5) and bq e Fq. Then <p(x) => (p(bjx A ... A bjr A bp) = 
= <p(bj) n ... n <p(bjr) n <p(bp) z> <p(aj{) n ... n (p(ajr) n (p(ap) and similarly, 
<p(x') -3 <̂ >(bmi A ... A bms A bq) => <^(ami) n ... n <p(ams) n <p(aj. It follows that 
0 = <p(x) n <p(x') 3 <p(aj) n .... n cp(ajr) n <p(ap) n (p(ami) n ... n <p(amj n <p(a9) 
So if is compact. 

Finally, let A belong to CO(<£). According to Proposition 3.L 2) we have A = 
= {) At and A = \J Bj, where A{ = <p(aj) ( ie I ) and B} = <D(b7) ( j e J). Thus, 

iel jeJ 

0 = A n A' = fi At n f) B'}. Since ££ is compact, there are indices il9 i2, ..., 
iel jeJ 

••'JmJi>J2,~->Jn s u c h t h a t 0 = Aivn Ai2n ... nAimn(Bjlu Bj2u ...u BJn)\ 
It follows that A = Ah n Ai2 n ... n Aim. Since A is open, we have 
A = A° = (Alt n i4,-2 n .. . n Aim)° = Ah A Ai2 A ... A Aim = <p(ah) A ... 
... A <p(aim) = (p(atl A ... A aim)eq>(L). The proof is complete. 

The foregoing proposition plus Proposition 1.6. gives us the following theorem. 
(Recall that a mapping <p: Lx -> L2 between two orthomodular lattices is called 
an orthoisomorphism if (p is an orderisomorphism and if (p(a') = (p(a)f for any 
a e Li. Obviously, any orthoisomorphism is necessary a lattice isomorphism.) 
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Theorem 3.3. Let L be an orthomodular lattice. Then there exists a compact 
Hausdorff closure space <£ such that the orthomodular lattice CO(S£) of all clopen 
sets in S£ is orderisomosphic to L. Moreover, the lattice operations in CO(^£) are 
set-theoretic on the couples which contain a central element. 
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