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Introduction

In response to the growing interest on the work hardening and softening processes
of the metallic material under the heat loading in the zone of plastic deformation,
a theoretical and laboratory study has been conducted to examine and to define in
mathematical form the shape of stress-strain curve.

The stress-strain curve of a polycrystalline metal [1, 2] under any simple loading
has the shape shown diagrammatically in current pictures. The three most usual
types of test are the tension of a rod, the compression of a short cylindrical block,
and the twisting of a thin-walled tube or a prismatic bar. The result of such a test
is represented by plotting the mean stress o (tensile, compressive or shear) acting
over the current (initial) cross-sectional area, against some measure of the total
strain. The amout of deformation is usually measured as equivalent (logharitmic =
= true) strain.

Over the years, a number of investigations defined the overal response of a material
in terms fo some generalized equation of state

o = 1(T.0. 9 (1)
e.g. on the basis of relaxation’s study proposed [3]
o = 06,.B,exp(n,T). B,e" . exp (n;e). (2)

B3§™ . Byt™ . exp (net)

where B, to B, nad n, to ng are constants, T, ¢, £, T are temperature (°C or K),
strain, strain rate (s~') and dwell period between deformations in (s), respectively.
Other possibility is [4]

oc=0,.8".6".exp(C + AIT). (3)

At present the description resulted in [5]
c=A.& . exp(—ced). &T.exp(g/T). 4)
—*)—Faculty of Metallurgy and Material Eng., Ostrava, Czechoslovakia.
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Stress-strain curves

PEAK STRESS

Characteristic stresses (original a,, — stress at sready-state condition) may be
correlated with temperature and strain rate. At low stresses (2o, < 0.8) and high
stresses (ag,, < 1.2) lead these equations in common form [6]

és = Aexp(—Q/(RT)) [sin h (ao,,)]" (5)
where A, o, n are constants and Q is activation energy in (J/mol), and all data may be
correlated using the Zener-Hollomon parameter Z = ¢ exp (Q/(RT)). Relationship

(5) has been applied successfully with ¢, — stress at peak (STRESSP) and trans-
formed into [7, 8]

sin h (ao,) = (Z[4)'" (6)
o 1/n
0, = i arg sin h (LE‘B(AQM)_) (7

PEAK STRAIN

Temperature compensated strain rate Z is related to time compensated strain
rate Was [9]

W=A,.27%. (8)
Hence, using ¢, = W, . Z [10] and eq. (8)
. Q
Ing, =InA4; + (1 - Inég +(1 —a3) = 9
P 3+ ( a3)1In ¢ + ( 3) RT ©)

is obtained where A,, A, a, are constants, W, = t, exp (—Q/(RT)) and ¢, is time
to peak in (s). By gradual linear regression analysis we become the slope (1 = as).
For expressing the thermally and strain rate activated process on peak strain ¢,
a newly suggested and verified form have been obtained as follows [10, 11]

&, = &P + /(P* + 1)) (10)
where P is temperature dependent, P = Y + X / T, Y, X are constants, a has the same
meaning as (1 — a;) eq. (9) and with rearrangement is obtained

e, = & . expargsinh (Y + X/T). (11)
STRESS

For a fixed T, the stress-strain curves are progressively higher at medium éfe,, for
a higher strain rate. Although these curves are lower for decreasing Z value. The
function which describes best the reduced flow stress is [12]

(-] e

where c is a positive constant between zero and unity, which decreases as the curves
are higher. The value of ¢ is determined through plots of [—In(o/s,)] vs.
[—In(efe,) — (1 — ¢[e,)]. These should be linear but are never perfectly so.
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The evaluation procedure

The result of continuous torsion tests are taken into the calculation — as torque
moment and strain at various temperatures (Te(800; 1000)°C and strain rates

o €(6; 1000) min~') from hot deformed HSLA steel. The specimens were 50 mm
long having a diameter of 6 mm.

1. STRESSPC (STRESS at Peak Calculated)
The data can be fitted by

365 400\ °-*
RT
13 c=90argsinh |\ ———
(13) g 8.10"?
using personal computer AT.
2. STRAINPC (STRAIN at Peak Calculated)
(14) epc = 82142 _exp argsinh (—6,9 + Z%)

3. STRESS (STRESS Experimental compared with STRESS Calculated)

(15) 0. = Opc l:i exp <1 - i)] :
€pc €pc

Discussion

The value of exponent ¢, wich is variable, slightly complicate common use of
equation (15). Taking into account that the resulting ¢ is adequate for temperature,

(STRESSC [MPa] TEMP:1273K STRESSE [MPa] ~Fup=1273%

12() 101 N < <:':' jl
12l 100 120 . ' -
; 100 100)
1 80 , 80
363 a0 P
e CO 80
A .
Lis LA 5
i({_ -~ 4
= : .\/63‘? ) -
s P RN

Fig. 1. Effect of strain rate from 6-1000 min ™ !
and true strain from 0.1 to 0.5 on STRESS
Calculated (eq. 17).

Fig. 2. Effect of strain rate from 6-1000 min ™~ 1
and true strain from 0.1 to 0.5 on STRESS
Experimental.
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STRES: at TEMPERATURE = 1873 [K]
COMPRRISON of STRESSE and STRESEC
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Fig. 3. Comparison of STRESSE and STRESSC for a ... T = 1073 K, various strain and strain
ratesb ... T= 1273 K.
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TABLE

COMPARSION OL EXPERIMENTAL
AND CALCULATED RESULTS

t[C] o [min~1] STRESSPE STRESSPC

1000 6 59.7273 59.8895
1000 50 85.456 84.985
1000 500 117.617 118.151
1000 1000 129.256 129.024
900 6 92.507 96.2548
900 50 120.986 128.329
900 500 147.327 166.37
900 1000 164.48 178.114
850 6 107.203 121.149
850 50 139.976 155.578
850 500 169.993 194.926
850 1000 188.983 206.872
800 6 142.12 150.634
800 50 164.48 186.434
800 500 192.046 226.309
800 1000 213.487 238.773
PEAK STRAINS
temperature rate of strainp
[K] twisting STRAINPE STRAINPC
[min~1]
1273 6 197537 .1903
50 251786 257165
500 .366307 .35636
1000 413775 .393024
1173 6 261415 266365
50 .315296 .359915
500 461657 .498369
1000 .549565 .549144
1123 6 .329538 .334584
50 466217 451474
500 .621253 .624558
1000 70535 .687928
1073 6 .443752 .441804
50 .666054 .594724
500 .875773 .820567
1000 .840429 906523
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thus a mathematically correct relationship should be of the form
(16) c=A-B|T c¢=15157 —998T
and eq. (15) transformed to

A—-B/T
(17) c=o0, [i exp (1 - —6-)] .
BP ep

Conclusion

Comparison of experimental — STRESSPE — and calculated — STRESSPC —
values are given in tables together with STRAINPE and STRAINPC results. The
delivered figures 1 to 3 ilustrate differences between STRESSPE and STRESSPC
according equations (15), (17), respectivelly.
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