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1. In troduct ion 

The problem considered in this paper generalizes in a certain sense the problem 
of finding the absolute centre of a graph, which was studied e.g. in [1], [2], [3], [5], 
[6]. The problem studied in this paper can, similarly to the problem of the absolute 
centre of a graph, arise in e.g. the selection of sites for emergency service centres 
and involves the global minimization of certain piecewise-linear non-convex con
tinuous function. We shall bring a motivating example. Let us suppose that 
m points Yl9..., Ym are given, which have to be served (or supplied) from n points 
Sl9..., Sn. Each service point 57 is to be placed on a given segment AJBJ\ the points 
Aj9 Bj are given (for all j = 1,..., ri). The distances | YtAj\ = aij9 \ YtBj\ = a'ij9 

\AJBJ\ = dj are known non-negative numbers (i = 1,..., m9 j = 1,..., ri). In 
planning emergency transport systems, it is natural to evaluate any given proposal 
by the worst service it provides. The proposal for which the worst service is as good 
as possible is then accepted. We shall use this idea in the process of formulating 
our optimization problem. Let Xj = \AJSJ\ for j = 1,..., n9 (i.e. Xj is the distance 
between Aj and Sj9 which has to be chosen). It is then obviously x} e [0, dj\. 

The function 
rv(Xj) ~ m i n (<*v + Xj> ah + dj - Xj) 

expresses thus the minimal distance we can choose if we serve the point Yt from 
a chosen point Sj e A}Bj with \AjS}\ = Xj (compare Figure 1). 

The value 
di(xl9...9 xn) = dt(x) = max rv(xj) 

1 £ j * n 
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dj-xj 

FIG. 1. 

expresses thus the worst case, which can occur for the given point Yt (if S/s are 
chosen). Therefore we try to find xj9 j = 1,..., n in such a way that it solves the 
optimization problem 

subject to 

/ ( * . , . . . , xn) = /(*) = max d,{x) -+ пàӣҳ 
l S . S m 

di(x) = max min (a l ; + Xj, bi} — Xj) 

i=l,...,m 0 = Xj=dj J=í,...,n,l 

(PO) 

where btj = a- + dj. 
The algorithm we are going to suggest looks for minima of certain piecewise-

linear non-convex functions which requires 0(mn log m) time, m being the 
number of supplied points and n number of located service points. 

2. Theore t i ca l background of the a lgor i thm 

We shall consider the following optimization problem: 

f(xl9...9xn) = max max r^xj) min 

subject to (PІ) 

ft < x < H 
Пj - Лj _ Пj 

j = 1, . . ., П9 

where rtj(xj) = min (atj + xj9 btj — x}) for all i, j (aij9 bij9 hj9 H; are given real 
numbers). 

Note that in the objective the order of the operators is interchanged, what does 
not have effect upon the solution, as in both (PO) and (PI) the maximum distance 
between the service points and the supplied points is minimized. The problem (PI) 
is slightly more general than (PO), since aij9 bij9 hj9 Hj are arbitrary real numbers. 

Denote xf = (btj — ai})/2 for all i, j we have 
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rtJ(xj) = aif + Xj ^ bij - x} for *i ^ xf 

r^Xj) = bij - xj < axi + x} for Xy > xf 

Thus, rl7(jc;) is a piecewise-linear, concave function with slopes ± \ attaining its 
maximum in xfp. For Xj e [/*,, Hj], r/,(jc;) is a function *ti Xj either linear and 
attaining its maximum at one of the points hf or Hj9

 o r piecewise-linear with 
a maximum at the point jr .̂ 

Along each segment [hj9 Hj], / = ! , . . . , « , 

the function s,{xj) = max r^Xj) 

is the piecewise-linear upper envelope of the functions r,7(*/), where rtj(Xj) are the 
one- or two-piece linear concave functions in Xj. A typ*cal plot of Sj(xf) along 
a segment is shown in the Figure 2. 

FIG. 2 

We will solve the problem (PI) by taking the upper envelope sJ(Xj) of the 
functions r,,(*/), i = 1-..., w, and inspecting it to find a minimum point jt,. The 
optimum value then may be found by choosing the largest of the n values r//(Jty). 
The latter formulation suggests that the optimum value to the problem (PI) will 
be found by solving a sequence of the n problems (P2), where (P2) is defined for 
/ — 1,..., n as follows: 
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sy(jty) = max r/y(jty) -• min 
l*.-*m J /p2) 

subject to hj = Jty = Hj. 

It is clear that any point fy where the function Sj(xf) attains its minimum 
Sj = s;(iy) is either hy or H}, or iy is a break point where two functions r/y(jty) and 
rkj(xj) intersect, 1 = i, k = m. Furthermore the slopes of such r/y(jty), rfcy(jty) have 
the opposite signs. There are at most m(m — l ) /2 break points and to determine 
Xj is possible to examine at most m(m — l ) /2 + 2 points on [h}, Hj] and select 
the best among them. 

3 . An algorithm for the problem ( P 2 ) 

In this section, we present an algorithm for solving the problem (P2) for fixed /, 
j e {1,.. . , n}. The approach of Hakimi [2] or Cunninghame-Green [1] of finding 
the absolute centre of a network might be useful to solve the problem (P2). This 
section presents a simple new technique for determining the minimum value of the 
upper envelope of the piecewise-linear functions described in the Section 2. 
A numerical example and the complexity of an algorithm are given — this 
particular problem is solved in the same time, as in [1]. 

Let xf, 1 = i = m, be the point of the maximum of r/y(xy) and let us define cy 

as the minimum of the m values r^xf), i.e., 

Cj = min rij(xf). 

Let ij be the minimum value of the function sy(Jty). For any function r/y(jty), 
1 = / = m, let us denote 

*/ = CJ - a n 
tj^bij- Cj. 

Lemma 1. r/y(jtj) = r/y(JPj) = cy for i = 1,..., m. 
Proof. It is under our assumptions 

Cj = min r^xf) = min (atj + xf) = min (btj — xf) =* min (atJ + b/y)/2 . 

It follows from the definition of the functions r/y(jty): 

'./(•*/) = m i n K + 4 bu " */) = m i n K + CJ - au> ba - Cj + aa) • 

Since cy = (atj + 6/y)/2, 

Z>/y - cy + n /y = 6 / y + fl/y - (fl/y + 6/y)/2 = (tf/y + 6/y)/2 = cy 
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and we have rtj(Xj) = Cj. 
Similarly, 

r/y(*j) = min (atj + x), btj - *j) = min (a/y + bif - cy, b/y - b/y + cy) = c y . 

Q.E.D. 

Remark 1. If r,y(*}°) = cy for some i e {1,..., m} then xj = Jtj. 
Let jt be an ordering of the set {1,..., m] such that for i = 1,..., m — 1 either 

x71^ < x^i+1) 

or Jtf'"> = xf+1) and Jcf° ^ Jcf'+1). 

According to the above ordering we can easily find an index which "takes an 
active part in determining the value 8y(*y)". 

We can suppose, without loss of generality, that no pair of indices (/, k), 1 ^ i, 
k S m exists that JcJ ^ x) and x) î  x). In that case the piecewise-linear function 
rkj(xj) corresponding to the index k does not have effect upon the solution and may 
be omitted, 
a) the case cy ^ fy: 

If we suppose cy ^ 8y then fy may be found as follows: 

Remark 2. (compare Fig. 3) 
The inequality cy ^ 8y holds if 

either Sj(hj) S c} 

or SJ(HJ) S cj 

OГ xf> Ú xfi+l) for some i e {1, ...,m - 1}. 
Along the interval [J^°, xfi+1)] the minimum of the function SJ(XJ) is attained 

at the point (xfi+1) + xf^/2 because the functions r^Xj), r4/+1)y(jcy) are there 
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linear with slopes — 1, + 1. The minimum solution value is then the minimum of 
the values sX(*f+1) + xf*)/2) for which xf* ^ xfi+1), s,(/i,) and s,<H,). 

The calculation of 4 */, for i: *- 1,..., m, requires O(m) time. Then the or
dering of the set {1, •••> m] needs 0(m\o%m) time. Finally, determining 
sf((xfi+1) + xf*)/2) for i = 1,..., m, Sj(hj), SJ(HJ) and minimum of them can be 
done in O(m) time. Hence, we can summarize: 

Theorem 1. / / c, ^ sj9 the minimum solution value to the problem (P2) can be 
found in 0(m log m) time. 
b) the case c, < s,: 

In the case c, < s,, i.e. s,(/i,) > c,, s,(H,) > c} and xf * > Jcf+1) for 
1 .S i ^ m — 1, we will use a different approach to find the minimum of s,{jc,) 
along the interval [h}, / / , ] . A point of the minimum is either at the end points /i, 
or Hj, or at a point i, where two functions rJt(i)j(Xj), r-^+i^C*/) intersect, 
l S / ^ w - 1 . 

Notice, we have supposed that in the case Jtj ^ x) and JFj ̂  x) the index A: has 
been omitted. Then only the following case can occur: 

Lemma 2. xf* < xfi+1) and xf* < xfi+1) j b r l S / S « - l . 
Proof. According to the ordering n, either xf* < xfi+1) or xf * = jf*1""̂  and 

JP*(0 ^ Jp^/+1). 
If Jĉ ° < xfi+1) and xf* ^ xf/+1) then the index n(i + 1) might be omitted. 
Similarly, if xf* = xfi+1) and Jc,̂ 0 ^ xfi+1), then the index jr(i) might be 

omitted. This completes the proof. 
Q.E.D. 

After omitting of the needless indices we shall find the indices jr(s), n(t) such 
that 

si(hi) = r*s)i(h]) and Sj(H;) - r^f(Hj) . 

Thus, the indices JI(S), Ji(t) correspond to the functions active in sfxj) at the end 
points of the interval [hj9 //,-]. Then we inspect only the break points of the pairs 
of the functions 

[rn(s)j(X])> r7t(s+l)j(Xj)]i [rjt(s+l)j(Xj)> rn(s+2)j(Xj)]> •••- [r7t(t-l)j(Xj)> r*(t)j(Xj)] 

and the points hj9 Hj for finding the minimum s, of SJ(XJ) along the interval [/*,, H,]. 
It is obvious that the break point of any pair of the function [r^i)j(x]), r^i+1)J(Xj)] is 

(b^i)i ~ a<i+l)j)/2 for i = 1,..., m . 

Thus, in the case c, < s, the algorithm requires 0(m log m) time for ordering 
of the set {1,..., m], further 0(m) time for calculation of Jtj, x), i= 1,..., m. Also 
0(m) time is required for omitting the needless indices, calculation of the above 
break points and selecting the minimum. Then the next result holds: 

Theorem 2. The minimum solution value to the problem (P2) can be found in 
0(m log m) time. 

110 



We can use now the Theorems 1, 2 to construct an algorithm for solving (P2). 

The algorithm AP2. (optimal solution of (P2)). 
(1) determine order JI of the set {1,..., m}\ 
(2) omit the "needless" indices; 
(3) compute xf9 JtJ, Jj for i = 1,..., m\ 
(4) if Cj < Sj then go to 6; 
(5) determine the minimum value sf as in the Theorem 1, go to 7; 
(6) determine the minimum value Sj as in the Theorem 2; 
(7) end; 
It remains to give an algorithm for solving (PI): 

Theorem 3. The problem (PI) can be solved in 0(nm log rri) time. 

Proof. As we have mentioned in the Section 2, the optimum value s to the 
problem (PI) can be found as follows: 

Algorithm API. (optimal solution of (PI)). 
(1) compute xj9 Sj for j = 1,..., n by the algorithm AP2; 
(2) find the maximum s of s/s, / = 1,..., n\ 
(3) end; 

Trivially, we use the algorithm API n times what requires 0(nm log rri) time. 
Q.E.D. 

Now we consider the following example. Suppose the case of two intervals and 
six points which have to be served. The Table 1 gives the entries hj9 Hj9 aij9 bij9 for 
/ = 1,...,6, / = 1,2. 

i 

TABLE 1 

1 2 3 4 5 6 

Й, = 4 a,i -3 3 6 -7 -8 -7 

Я
t
 = 20 bn 

18 17 16 27 35 22 

h2 3 "a 10 14 11 2 0 6 

H2= 15 ba 
10 11 20 24 28 23 

The Table 2 gives the computed values j ^ 9 j?j9 $j9 ct for all i9 /'. Further according 
to the relation between c; and Sj is the minimum sx computed by the step (5) and 
s2 by the step (6) of the algorithm API. Note that si is realized at the inner point 
xx = 12.5 of the interval [4, 20] and ^ is realized at the inner point J^ = 0 as well 
as at the end point h^ = —3 of the interval [ — 3,15]. The optimum value to the 
problem (PI) is then s = max (7.5,10) = 10. 
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i 

TABLE 1 

1 2 3 4 5 6 

c. = 7.5 xf 10.5 7 5 17 21.5 14.5 

x, = 12.5 *í 10.5 4.5 1.5 14.5 15.5 7.5 

/, = 5.5 *í 10.5 9.5 8.5 19.5 27.5 7.5 

c2 = 10 4° 0 -1 .5 4.5 11 14 8.5 

x2 = - 3 , 0 4 0 - 4 • - 1 8 10 4 

s2 = 11 4 0 1 10 14 18 13 

The optimum value: s = max (si, s2) = 11. 
Location: (xu x2) = (12.5, —3) or (12.5,0). 
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