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A m a p / : X -> Yis said to be a map of order < k if for every y e Ythe set / " '(>') 
consits of at most k points. The continuous maps of order < 2 will be called simple 
following Borsuk and Molski [1]. 

Hurewicz established the formula 

d'\mf(X) < dim X + k - 1 

for continuous maps of order < k between compact metric spaces; see, for instance 
[5], p. 97. Another theorem of Hurewicz implies that continuous maps of finite 
order defined on compact metric spaces cannot lower dimension (loc. cit., p. 114). 

We say that a continuous m a p / : X -> Y between metric spaces is a superposi­
tion ofm maps (or/decomposes into m maps), if there exist metric spaces X0 = AT, 
Xu ..., Xm__,, Xm = Yand continuous maps / : Xt_ { -> Xh i = 1, 2, ..., m, such 
t h a t / = / m o / m _ 1 o. . . o / . 

Sieklucki [6] proved the following theorem: 

Let X be a finite dimensional compact metric space and Y be a metric 
space. If f: X-+ Y is a continuous map of finite order, then it is 
a superposition of finite number of simple maps. 

The present paper contains a as main theorem the following result: 

Let K be a compact subset of the product T x Rn, where T is a metric 
space. If the projection P : K —• T is a map of order <k(k > 3), then 
it is a superposition of 3n continuous maps of order <k — 1. 

This theorem implies Sieklucki's theorem. The paper also contains an example 
which indicates that in the case n = 1 the number 3n is the minimal one. Namely, 
there is constructed a compact subset K of R2 x R such that the projection of K into 
R2 is a map of order < 3 which does not decompose into two simple maps. 

*) Politechnika Slaska, Instytut Matematyki, Ul. Kaszubska 23, 44-100 Gliwice, Poland 



It is worthwhile to add that the Sieklucki Theorem and the previously mentioned 
theorems of Hurewicz imply the following corollary in type of JI. B. Keji^Liui's 
theorems on decompositions (comp.: [2], CrceziCTBHe 1, 3; [3], CjieziCTBHe 1 — 3; 
[4], TeopeMa): 

Let X, Y be compact metric spaces, dim X = n, dim Y= n -f m. If 
f: X —• Yis a continuous map of order <k , then it can be given in the 
form: 

where all (/t, are continuous maps of order <k which do not raise 
dimension and (D, are simple maps which raise dimension by one. 

The core of this paper lies in the following special case of the main theorem: 

Theorem 1. Let K be a compact subset of the Cartesian product T x R of 
a metric space T and the real line R. If the projection p : K —• T is a map of order 
<k(k > 3), then it is a superposition of three continuous maps of order <k — 1. 

Proof. (I) Let K, Tand p satisfy the assumptions of the theorem. There is no 
loss in generality to assume, that p is onto T Then Tis a compact space. Let 

Kt = {x eR:(u x) e K] for f e T. 

Let us agree that __, = {x,(f), x2(f), ..., xk(t)}, where x,(f) < x2(t) <. . .<X!(f) = 
= x/+1(f) = ... = xk(t). Let 

r(t) = min (ҳ(f) - x,._ !(ř): 2 < / < k 

Obviously, r(f) > 0 if and only if the number of elements of Kt is exactly k. 
Identify pc"nts in K if they are of the form (f, x,•._ j(f)) and (f, x,(f)) with 

Xj(t) — x,_ j(f) — r(f). This identification induces an equivalence relation R on 
K such that (t, x)R(t, x) if and only if f = f, (x, R} = {̂ (̂f), xj2(t)} for some j ! ,^, 
./i < )2 and xf{t) — x}_ x(t) = r(t) for every j e (j, -f- 1, ..., j2}. Consider also a finer 
equivalence S on K induced by identification of points (f, xt(f)), (f, x2(f)) with 
x2(f) - x,(f) = r(f). 

(II). The equivalences R and S are upper semicontinuous. We will prove this 
only for the equivelence R; the proof for S is analogous. 

Since K is compact it suffices to show that the set R cz K x K is closed. In this 
purpose take any sequences (t'\ x"), (t'\ x") in K converging respectively to (f°, x°), 
(f°, x°) and such that (_", x")R(t'\ x") for every neN. Obviously f° = f°. Passing to 
subsequences we can assume that all the sequences x,(f"), / = 1, 2, ..., k are con­
vergent. We can also assume that for fixed j u j 2 , j{ < j 2 and every n e IV we have 
{x", x") = (xjf"), xi2(t")} and x,(t") - x,^(t") = r(t") for each j e {j{ + 1, ..., j 2 ) . 
Consider two cases: 



1. r(tn) > £ > 0 from an index large enough. Then sequences xt(f") converge 
to different elements of Kr<>. The inequalities between x,{tn) are preserved in the 
limit, so 

lim x,{tn) = x,(r°) for i = 1, 2,..., k , 
M->X 

in particular {xn(t°), xh(t
0)} = {x°, x°}. 

Given j e {j} + 1,..., j2} notice that for every i e {2,..., k} 

xKf) ~ *.-i(f°) = l i m (xif) - JC,_,(.-)) > Hm (Xj(t
n) - xj.tf)) = xjf) - x;._,(f0) 

n-*x n-*x 

and hence r(t°) = Xj(t°) - x,_,(f°). Therefore (t°, x°) R(P, x°). 
2. lim inf r(t") = 0. Then x = x and obviously (f°, x°) _{(? x°). 

n-*x 

Therefore R is closed i n K x K and this implies upper semicontinuity of R. 
(III). Since the equivalence R is upper semicontinuous, the quotient space 

K/R is metric and compact. Let q: K -* K/i? be the quotient map. The 
formula 

ttlfa X)]R) = l for (r> x ) e K 

defines a continuous map f : K/R - ^ T. Notice that f is a map of order < k — 1. 
Indeed, even if p~ \t) consists of k elements, then r(t) > 0 and so there exists a pair 
of different _R-equivalent elements of p~x(t). Therefore fj~\p) contains at most 
k — 1 equivalence classes of the relation R. 

Similarly K/S is a compact metric space for S is an upper semicontinuous 
equivalence. Denote by f : K -> K/S the quotient map. The formula 

MMls) = [Ml* for {t,x)eK 

defines a continuous map f2: K/S —> K/R. This map is of order < k — 1. Indeed, 
even if the number of elements in [(_, x)]R is k, then r(t) > 0, x^t) 4= x2(t) and 
(t, x^t)) S(_, x2(t)). Thus any [(;, x)]^ contains at most k — 1 equivalence classes of 
the relation S. 

The map f'.K'^K/S is simple and f = fof2of. Thus, our proof is fi­
nished. 



Example. Let 

Fi := {(sin <D, —cos cp + 1) e R2: cp e [0; 2TC]}, 

K1 : = TX x {0} cz /?3, K2 := T{ x {2TT}, 

K3 := {(sin<p, —cos cp + 1, <p) e.R3: <p e [0; 27i]}, 

F:= r 1 u(-r 1 ) , 

K:= K! u K 2 u K 3 u ( - K ! ) u ( - K 2 ) u ( - K 3 ) . 

We have K cz Tx /?, the projection p : K -̂ > T is a three-to-one map, i.e. p~\t) 
consists of exactly 3 points for every t e T 

Suppose, that p = f2 of, where f2 is a simple map, f is continuous. We shall 
prove that f cannot be simple. Accept notations like in Theorem 1 i.e.: 
Kt = {x{(t) < x2(t) < x3(t)} for t e T Since f2 is a map of order < 2 we obtain 
the following property: 

(*) Л V f[(t,x,(())]=f,[(t,x,(ř))] 
r є T i,jє [1,2,3} 

Suppose that f is simple and denote 0 = (0,0) e T. We shall show that 
f,[(0,x2(0))] = f,[(0,x3(0))]. Indeed, let 

/:=r,\{o}, 

f[(^.(0)] = J.[(-. *2(0)] 
f[(^2(t))] = f,[(t,*3(t))] 

f[(l^3(t))] = f.[(t^,(t))] 

Since functions x/|I : I -> /?, / = V 2, 3 are continuous, the sets î  are closed in I. 
They are pairwise disjoint because of f's simplicity. On the other hand the 
property (*) implies that they cover I. Since I is a connected space, Ft = I for 
some / e {1,2, 3}. By continuity of f we obtain f[(0, .x2(0))] = f[(0, x3(0)]. 

F, = ( t є / : 

ғ2 
= { tє/ : 

Қ = {tєl: 



The point (0, 0) e R3 is the symmetry center of K. Then we can repeat the above 
argumentation to obtain that f[(0, xi(0))] = f [ ( 0 , ^2(0))], which implies that f is 
not a simple map. 

Therefore p does not decompose into two simple maps. 

Theorem 2. Let K be a compact subset of the Cartesian product T x Rn of 
a metric space Tby Rn. If the projection P : K -* T is a map of order < k(k > 3), 
then P is a superposition of3n continuous maps of order < k — 1. 

Proof. In the case n = 1 this was proved in Theorem 1. Assume that the 
theorem is proved for n, n > 1. Consider a compact subset K a Tx Rn+l such 
that the projection P : K -> T is a map of order < k. We have K c ( T x Rn) x R 
so denote by p : K -» T x Rn the projection p(t, x, y) = (t, x), by P0 : p(K) -> T 
— the projection P0(t, x) = t. 

TxRn cz p(K) 

(T x R") x R cz K 

We have P = P0 o p, p and P0 are maps of order < k (If not, P would not be 
a map of order < k), p(K) cz TxRn is compact. We may apply Theorem 1 to K, p 
and the inductive assumption to p(K), P0. Thus we obtain P as a superposition of 
3 + 3n maps of order < k. The proof is finished. 

Corollary 1. Let x cz Rn be a compact subset and Y be a metric space. If 
f: X —• Y is a continuous map of order < k (k > 3), then it is a superposition of 
3n maps of order < k — 1. 

Proof. Let f: X -> Y be a map of order < k, let cp : X -• Y x Rn be defined as 
follows: 

(p(x) := (f(x), x) for xe K . 

cp is an embeding X into Y x Rn. We have f = P o cp, where P : cp(X) -> Y is such 
a projection as in Theorem 2. This theorem implies that P =fno... of2of, 
where f: K,_ { -> X, (i = 1, 2, . . . , 3n) are continuous maps of order < k — 1, while 
Ko = <p(X), X{,..., Xhl_,, Xhl = Yare metric spaces. Then f = f3no... of2 o (f o cp). 
The proof is complete. 

Using Corollary 1 and the Menger-Nobeling Theorem on embeding an /t-dimen-
sional compact metric space in Euclidean space R2,l+l (see for example [5], p. 116) 
we obtain. 

Corollary 2. Let X be.an n-dimensional compact metric space and Ybe a metric 
space. If f: X -» Y is a map of order < k (k > 3), then it is a superposition of 
3(2n -h 1) maps of order < k — 1. 



Theorem 3 (Sieklucki). Let X be a finite dimensional compact metric space and 

Y be a metric space. If f: X —• Y is a continuous map of order < k, then it is 

a superposition of finite number of simple maps. 

Proof. We apply induction with respect to k. The theorem is obvious for maps 
of order < 2. Assume that the theorem is established' for maps of order < k, 
k > 2. Let f: X -> Y be a continuous map of order < k + 1. It follows from 
Corollary 2 that f = fm o ... o f of, where m eTV, f : X,_x —• X, are continuous 
maps of order < k and X0 = X, Xu ..., X,„_u X,„ = Y are metric spaces. We can 
assume that all f, i = 1, 2,..., m — 1 are onto Xr Then for each i = 1, 2,..., m 
the superposition [f_x o f _ 2 o . . . of): X^X{_X is a map of order < k. Thus 
every Xj_x is a finite dimensional compact metric space. Therefore by the 
inductive assumption each f is a superposition of finite number of simple maps. 
Hence the inductive conclusion is obvious and the theorem is proved. 
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