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Let us suppose that N;, N, are norms on R” such that N; > N,. We denote by
N (N}, N,) the set of all norms N satisfying the condition N; > N > N,. The set
B(N) = {xe R?: N(x) < 1} is called the unit ball of the norm N. Let S(N) =
Fr B(N) (i.e. S(N) is the unit sphere according to N). On the other hand, N(B)
denotes the norm on R? with unit ball B where B = R? is a compact, symmetric,
convex set with a non-empty interior. The set of all extreme points of the set B is
denoted by ext B.

Obviously, M + (1 — o) N € #/(N,, N,) for every M, N e #(N,, N,) and
a € [0, 1]. That means that 4"(N,, N,) is convex. The purpose of this paper is to
characterize the extreme elements of #'(N;, N;) — the set of such norms is
denoted by ext #(N,, N,).

In the case where N; = N', N, = N* (N'((x, ) = Ix| + |yl and N*((x, y)) =
max {|x],|y|}), such a characterization is already known [9]:

Let N € #(N', N®). Then N € ext #(N', N®) if and only if ext B(N) = S(N*).

Moreover, the characterization of ext A (N', N®) for arbitrary R" is the same
[10]. This solves the problem posed by professor A. Pietsch at the Winter School
on Functional Analysis in January 1978 [12].

We will examine A (N N 2) in the general, two dimensional case i.e. for
arbitrary norms on R? such that N, > N,.

In order to shorten the notation, we write 4" instead of A#'(Ny, N,). If L < S(N),
then the interior of L in S(N) is denoted by Int, L.

Lemma 1. Let N € A" If there exists an arc L < S(N), such that
Int, LN (S(N;) US(Ny)) =90 and card (Int; L next B(N)) > 3,
then N ¢ ext 4.
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Proof. Assume such an arc exists, there exist distinct points a, b, ¢ € Int; L N
ext B(N) and ¢ > O satisfying the following conditions.

i) b lies between a and ¢ on the arc L,
ii) (1 + &) b e B(N,),
iii) a, ¢ e ext D, where D = conv(B(N) U {(1 + ¢) b, —(1 + &) b}),

iv) S(N,) € V, where V = conv 4 and 4 = {xe R*:2N(x) — N(D) (x) = 1}.
Obvisously, N; > N(V) > N and N(V) e 4. Moreover, since b ¢ V,
N(V) + N. (1)
Define
M = 2N — N(V). 2)

M is a norm. This can be shown by using the same arguments as presented in the
proof of the theorem in [10]. We have M € 4", because N > M > N(D) and
N(D) > N,. Now (2) (N = ;M + 3N(V)) and (1) give N ¢ext A". [J

Lemma 2. Let A€(0,1) and N,N’,N" be norms on R®. Then N =
AN' + (1 — A) N", if and only if for every ¢ € S(N) the ray emanating from (0, 0)
in the direction of ¢ intersects S(N'), S(N") at the points a and b respectively and

y) 1-1 1
RYR R 3

where R,, R,, R, are the distances from the points a, b, ¢ respectively to the point
(0, 0) with respect to Euclidean norm.

Proof. Let N = AN’ + (1 — A) N”. Then
1 =N()=AN(c) + (1 — ) N"(c) =

(R (Rep) 2 iRy q - pk
—AN(Ea>+(1—l)N <Rbb>_lRa+(1 A)Rb.

Conversely, let us suppose that N, N’, N” satisfy condition (3). It is enough to
show that N(c) = AN’(c) + (1 — A) N”(c) for every c € S(N).
We obtain

IN(S) + (1 — 2) N'(e) = AN’ <§: a> + (L= AN R%b)

A 1—-2 1
=RC<E+ Rb )—RcE=I—N(C) O

If a,b € R* then (a, b) denotes the open line segment with endpoints a, b, i.e.
(a,b) = {ea + (1 — 2)b: 2 €(0, 1)}. Furthermore, [a, b) = {a}u (a, b). The in-
tervals (a, b] and [a, b] are defined in an analogous way.

Lemma 3. Let N = N’ + N". Then



ext B(N) = :ueext B(N') U ext B(N ”)} .

i)

Proof. Let us suppose that

yé {ﬁ ‘u e ext B(N') U ext B(N”)} . (4)
Then
Y LB v e Y et BN
oK LBIN), N”( NEOM t B(N").

Therefore, there exists a pair of non-trivial line segments [w;, w,] = S(N),
[vi, V2]  S(N”), such that w; = 3, W, = 3 and W = ow; + (1 — @) Wy,
v = nv, + (1 — n) v, for some g, 7n € (0, 1

Let y; = xp and y, = 5% It suffices to show that N(ay, + (1 — «)y,) = 1
for every a € (0, 1). Let
— aN ’(yl) _ aN ”(Y1)
b= N +0-9NG) ™ "N+ (- )N
Then

N(ay, + (1 — @)y, = N'(ay, + (1 — @) ys) + N”(ay; + (1 — &) y))
< aN ’(y 1) y: + (1 - 0‘) N ’(YZ) Y2 )
aN'(y:) + (1 — ) N'(yz) N'(y1) ~ aN'(y:) + (1 — o) N'(y2) N'(y2)
AaN'(yy) + (1 — oz)(N’)(yz)) ( N
” aN"(y, Y 1 —a) Ny, Y2
N T G Vo) ) T NI )
(@N"(y) + (1 — a) N(y))
= N'(Bwy + (1 — B) ws) (xN'(y1) + (1 — o) N'(y))
+ N'(vi + (1 = ) v2) (aN"(y1) + (1 — ) N"(y2))
L @Ny) + (1 — ) N + 1 (@N"(y) + (1 — o) N'(y)
A(N5) + N(y) + (1 — o) (VE) + N'(:)
aN(y,) + (1 —a)N(y)) =a-1+ (1 —o)-1=1.
Conversely, let us suppose that y ¢ ext B(N). Then there exists a non-trivial line
segment [y, yz] < S(N), such that y = itz
Let w, = N(m, W, = (n) vV, =& (Yl) and vV, = N(zyz). We have already derived
the following relation
N(ay, + (1 — o))
= N'(Bw + (1 — B) wa) (xN'(y1) + (1 — 2) N'(y>)) (5)
+ N"(yvi + (1 — ) vo) (@N"(y1) + (1 — &) N"(y)) -

!
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Moreover, for every f € (0, 1) there exists a pair of real numbers o € (0, 1) and
7€(0,1), such that (3) holds. Obviously, N'(fw, + (1 — f)w,) <1 and
N"(yv; + (1 — y)v,) < 1. Even if one of these inequalities is strict, then (5) gives
N(ay; + (1 — ) y,) < 1, which is a contradiction. Hence, we get [w,, w] = S(N'),
[v1, V2] < S(N") and so 5; ¢ ext B(N'), 57G; ¢ ext B(N"). [0

Lemma 4. Let us suppose that three lines a, b, ¢ lying in a plane are concurrent
or parallel. Let the lines k, | intersect the lines a, b, c at points a,, by, ¢, and a, b, ¢
respectively. Moreover, suppose k intersects | at 0 and 0 ¢ [a, b,] U [a, ;).

If there exists a 4 € (0, 1) such that

A 1-4 1

— + =—) 6
|oa,| lob,| loc,| ( )
then
A 1 -4 1
— + =—), 7
|oa| lob| loc| ( )

Proof. In the case where a, b, ¢ are parallel the statement follows from Thales
loag] _ lobyl __ Jocy
Theorem (! = o = o). )
We now turn to the case where a, b, ¢ are concurrent. Let d denote their common
point.
Without loss of generality, we can assume that o is the point (0, 0) of R?. Let us

consider the norms N(B), N(B,), N(B,) where
B = conv {ck, —Cr €, —Cy, d9 _d},
B, = conv {ak’ —a,a, —a,d, —d}, B, = conv {bo —by, b, —b, d, —d}-
Let M = AN(B;) + (1 — ) N(B,). From Lemma 2, M(c,) = N(B)(c,). Further-

more, M(d) = N(B)(d), because 1 = N(B,)(d) = N(B,)(d) = N(B)(d).
From Lemma 3, since conv {a, a,, d} and conv {by, b;, d} are line segments, then

W = conv { M?;k) ) MZ") ’ M(:d)}

is a line segment. Hence W < S(M).
ay

As, 555 = ¢ and ﬁ = d we have ﬁ = ¢;. This shows that ¢, d, ¢, € S(M).
In particular, ¢; € S(M) and we obtain (7) from Lemma 2. [J

Lemma 5. Let N,N', N"e # and N = “3™" Let L = | J;_,[V;, vis.1] < S(N),
n>1v,.., v, €ext B(N), v, v, for i % j and (v, v;y,) 0 S(N;) = {w;} for
i=1,..., n Then
a) {Nfzx):xeL} = UiV Vis1), where vi = g5 fori=1,..,n + 1l and
b) if N'(vy) < N(v,) then

€ a; ... a, sin (o + yy)sin(oz — ;) - ... - sin (4 + (—1)

n+1 ,y") (8)

€ny1 by b, sin(B, — y)sin(By + y5)c ... sin(B, + (= 1))




where ¢, a, b, denote the distances between v; and v, and v; and w, w; and
V.1 respectively. Also,

o = £(0,0) vivi_y), Bi = L((0,0) vivi,y),
Yi = L(viwivl") (= L(vi+lwiv1{+l)) .
Here £ (xyz) denotes the angle xyz.

Proof. Point a) is the obvious consequence of Lemma 3.
To prove b), let us note that

& ay & b,

siny, sin B =) sin 7, = sin (o2 + 71)

Hence,
& _ & sin (o + 7)) o)
&  b;sin (ﬂl - 71)

and we obtain (8) by induction. []

Remark 1. Let us define N) = AN’ + (1 — A)Nand N; = AN" 4+ (1 — AN
for A€ [0, 1]. Then N‘+N‘ = N. The angles y; are increasing with respect to A for
i=1,2,.... Moreover, for 1 < k,m < n, y,, is a function of y, defined on the
interval [0, y(1)]-

Remark 2. Let {; = £ (vwv/), where v/ = Nf(‘vl_). Analogically, {,, is a functio-
nal of {, for 1 < k, m < n.

Lemma 6. For m > 2, y,, is a differentiable function of y,, defined on some
interval [0, g] and

L\ (% by sin ﬁ,.> ( " sin a; sin (B + (=1) M%)))z
o= (115 o) (e gy ) - 09
The same is true for {,, m > 2 and some interval [0, h], namely

) = <:2 bi_, sin ﬂ,-) <l’2[ sin o; sin (B; — (=1) C,{Cl)))z. (11)

a; sino;/ \;_jsin (& — (—1) {i4(81)) sin B;

Proof. We have

sin (y;) _sin (02 + 1) sin (7,) _ sin B2+ 72) (12)
& b, ’ & a, ’
Hence, ( )
b sin(B+ 7
sin y, = o sin y; = ot 7)) (13)
By induction we obtain
siny, = by... by_, Gin . S0 (B2 +72) sin (B —y3)_ _sin (Bu+(—1) 'y,,,)). (14)

ay... Gy "sin (o, + ;) sin (@3 — ;) " sin (Om+ (=1 ym_y

9



Formula (13) gives

b
sin (o + 7;) siny, = alsin yisin (B2 + 7). (15)

2

Hence

. . . b, . . .
(sin o, cos p; + sin y; cos a,) sin y, = — sin y,(sin B, cos y, + sin y, cos f,)

a

and

b
sin o, ctg y; + cos a, = a—l (ctg yosin B, + cos B,).
2

Let us differentiate the last equality with respect to y,. We obtain

sina, by sinf, |

sin?y;  a, sin® y, vln)-
Hence,
a, sin a, sin® 9,
! = = . 16
vin) b, sin B, sin® y, (16)
Analogically, we obtain
a, sin a; sin®
'y’3()’2) — 3 3 V3 (17)

b, sin B, sin? y,
Formulas (16) and (17) give

a,a, sin o, sin oy sin® p,
b,b, sin B, sin B; sin®y,

Pir) =
In general,
a,... a, sina,...sin a, sin®7y,,
{ e bp_y sin B, ... sin B, sin? y;
Now, (18) and (14) give (10).
Formula (11) can be proved in an analogous way. []

(18)

V:n(')’l) = b

Definition. We say that a straight line is the tangent to a curve at the point a,
if the line is a left or right-side tangent to the curve at a.

Definition. We say that two curves are tangent at their common point a, if there
exists a straight line which is a tangent to both curves at a.

Lemma 7. Let N, N', N € #; N = =5—. If a nontrivial segment [a,b] = S(N)
is a tangent to the curve S(N,) at the point a, then [a,b] = S(N) n S(N").

Proof. Let b’ = ﬁ b, b” = ;,ﬁ b. Since a € S(N') n S(N”), Lemma 3 shows
that [a,b'] = S(N'), ta, b"] = S(N”). The lines ab’, ab” support the balls B(N’),
B(N") respectively. If b’ % b, then N(b’) < N(b) < N(b") or N(b") < N(b) < N(b’).
At least one of the lines ab’, ab” divides B(N,) into two non-empty parts, which
is impossible because B(N;) = B(N’), B(N"). O

N'+N"

10



Let us consider the infinite broken line L = (J2,[v, Viz1] = S(N), where
Vi, Vs, ... €ext B(N), v; & v;fori # jand (v, viy,) N S(N,) = {w}fori=1,2,....

Let us define a;, b;, a;, B;, 75, {; in the same way as in Lemma 5 and Remark 2.
Now, (10) and (11) are true for arbitrary m € N. The next definition and Lemmas 8
and 9 concern this case.

Definition. Let [w;,y;], [W; z;] denote segments tangent to S(N,) at the point
w,, such that y, € [(0, 0), vi, ], z. € [(0, 0), v]. Let

&= L(vi+lini), Xi = L(Viwizi)s if iis odd,
&= L(viwz), xi = L(vipwiy), if iis even.

Lemma 8. There exists a y; > 0 such that y,(y,) < &, for every ne N if and
only if

n

m= inf{é,, I1

i=2bi_y sin B;

a; sin o

n=2,3,...}>0. (19)

Proof. Let §, be a positive number, which satisfies 26, < a, < ® — 26, and
26y < B, < m — 20, for n € N. Let n, be such that £, < d, for n > ny,. We define

F=sup {n:7 <&, yn) < & and y{y) < & for i = 1,..., no}.
Let us suppose that condition (19) is satisfies. We define

eZH - cot dg
M= sin 24, +1
where H = )2,&. We will show that if
yi = min {% v"} (20)
then
1) < & (21)

for every ne N.
We use induction.
Formula (21) is trivial forn = 1andn = 2. Let n > 3 and y,-(y,) < & fori < n.
Then
2H cot 6, < In (M sin 24,).
Hence,

(nili,- + 'filé,-> cot 6, < In (M sin B,).

i=1 i=2

From the induction hypothesis we obtain
n n—1
(Zy,-_l(y,)> cot &y + (Z y,(y,)) cot 8y < In (M sin B,).
i=2 i=2

11



For every sequence (4)/_;, such that —1 < 4; < 1, we have

é?:-l()’x) lcot (& + Ayi_ (o))l + 'E‘yi(yl) lcot (B; + Ay{y))l < In(Msin B,). (22)

i=2
Since cot x = (In sin x), Lagrange’s Theorem gives

n

élln sin o; — Insin (o + (— 1) 7i_1(»))l
s }f tnsin (5, + (=1 260) ~ nsin 1 < 1n (1 i _""1)" %.(w)))'

Consequently,
I1- sin oz,-i sin (B; +.(—1) o) <M.
iasin (o + (= 1) yi1(n1)) sin B;

Thus, for some 6, 0 < 6 < 1, we obtain

1
Vlr1) = O 11 < — &MY < &

To prove the reverse direction of the equivalence relation, assume that § >y, >0

and 7,(y,) < ¢, for every ne N. From Langrange’s theorem
VneN30 <0, <1 ) = 701) -

Applying Lemma 6 we can see that

n1p,_,sinB\ [ sin o; sin (B; + (—1) 0w 2
(TR E— LEIES 1) S

iss @ sinay) \j_jsin (o + (— 1) @i 1yi—i(v1)) sin B;

for every n e N and some g;, 0 < ¢; < 1. Hence,

" sin a; sin (B; + (— 1) gy 2 " a sina;
<l_[ : i (ﬁ ( ) Q)’(}’l))) NGl —5-
i=2 SIN (ai + (— 1) Qi—ﬁi—l()’l)) sin fB; =3 bi_y sin B;
It is enough to show
. - sin o sin (B; + (—1) o)) }
f - : - mn=23,..>0
" {L—[z sin (“i + (—' 1)’ Qi—l)’i—l(’)’l» sin B; "

or, equivalently,
inf {Z [(nsin o; — Insin (o + (— 1) @i—17i—1(71))
i=2

+ (Insin (B; + (—1) @y{y1) — Insin B)]:n = 2, 3,...} > —00.

12



It suffices to show that

i

(ln'sin o, —In'sin (o +(— 1) yi—y(y1))l + Mn sin (B; +(— 1) (1)) — In sin B) < + 0.

From Lagrange’s theorem we obtain

i(lln sino; — Insin (o + (— 1) 7,_y)| + [Insin (B + (—1) (1)) — Insin By

8

= Z Yi—ilcot (o + @yi_1)l + yilcot (B; + Yyl

2

8

Z(él + él+l) cot 50 < o0,

for some ¢, Y;: —1 < @, Y; < 1. This completes the proof. []

Lemma 9. There exists a y, > 0 such that y,(y,) < &, for every ne N if and
only if

mﬂgﬂfim=zam}>&
i=2"Yi—1

Proof. It is enough to show the convergence of the product

1‘2[ s.in cx,-. (2 3)

and apply Lemma 8.
The convergence of this product is equivalent to the convergence of the series

& sin a;
1 - 1.
i§2 sin B;
Let ¢; = 1 — a; — ;. Obvisously,
Y ¢ < 0. (24)
i=2
Note that
Je>0VheN e<a, fi<m—¢. (25)

= (m — B) — ¢, hence
sin o; = sin f; cos @; — cos (T — B) sin ¢; = sin B, cos @; + cos f; sin @;.
Consequently,
sin o
sin B;
[1 — cos® @ + |g; - cot B| = sin® ¢; + @jcot f| < @f + jlcot B.

= |1 — cos ¢; — cot f;sin @] < |1 — cos ;| + |cot B;sin @] <

13



From (24) and (25) the series ) ;2,(¢? + @ilcot fj) is convergent, and in
consequence the series
_sing

2|1 " sin B

i=2

is convergent. []
Remark 3. In an analogous way for {;, x; we can obtain

ECI > Ovne N Cn(Cl) < Xn>
if and only if

inf{x,, [[-2:n=2 3} >0.
i=2 by
Theorem. N ¢ ext A" if and only if there exists L = S(N), such that (Int, L) N

S(N,) = 0 and either

1° L is a nontrivial arc, L~ S(N,) = ¢ and L < ext B(N) or

2° L is not tangent to S(N,) and one of the following cases holds

i) L=J)iZ[VsViz1)s n=2,%,...,v,€ext B(N), v % v, for i * j, ((vo, vi] U

[veer v 2 S(V) = 0,

i) L= 5"V Visr]s n = 1, Vo = Vi, Vo, ..., Van_1 E€xt B(N), v; + v, fori + j

(Vo Vig)) " S(Ny) = {w} fori =0,...,4n — 1 and

a... Ay, Sina; ... sin «
1 2n ; 1 . 2n — 1, (26)
b, ... by, sin B, ... sin B,,

a; denotes the distance between v; and w; denotes the distance between w; and v, , ,,
= /_((0, 0) ViVi—1), B: = L((os 0) vivi+1)’

iii) L = {J2o[Vs Vis1]> Yo Vis .. € ext B(N), v; % v, for i # j, (v, v;) " S(N,) = 0,

(Vi Vig1) " S(Ny) = {w} fori=1,2,... and

inf{q,,]‘[i:n=2,3,...}>0, (27)
i=2 bi_y
a;, b; we define as in ii), n, = min {(p,,, Yn}, where @, Y, denote the angles between
the line V,v,., and the left-side or right-side tangents to S(N,) at the point
w, respectively.

i) L= Uiez[Vis Vis1)> -» V_1, Vo, Viy ... €€Xt B(N), V; F v, for i & j, (Vi, Viyy) O
B(N,) = {w} for i € Z, and the sequences (vV)o, (V_1)2 satisfy (27).

Proof. From Lemma 1 it follows that condition 1° is sufficient.

Suppose that L = S(N) satisfies the condition 2°i). Moreover, assume that
L is a minimal arc, which fulfills 2°i) [i.e. L does not contain a proper subset
which fulfills condition 2°i)]. Since L is minimal, it can be seen that
card [V, Vi ] S(N)) =1 for 1 <i<n—2,v,..,v,_1¢SN,). Set B=
conv ([ (ext BIN)\N{ £, ..., +v,_;}]u B(N})). We define the points w; for

14



i=1,..,n—2by {w} =[] 0 S(N;). We can find a sufficiently small,
positive ¢ such that Vi, ...,V,_y, V..., Vi_; ¢ B(N;), where v{ = (1 + ¢)v,
and v, for i — 2,..., n — 1 is the intersection point of the lines v;_,w,_, and
(0,0) v, vi = 11—35"1, v/ for i = 1,..., n is the intersection point of the lines
v/_,w;_, and (0, 0) v;. Note that such an ¢ exists (because L is not tangent to S(N 1)
If B =conv(Bu{+V,..., +v,_.}), B"=conv(Bu {+V],..., £v,_,}), then
N = YEUNME) N(B) 4 N(B") and N ¢ ext A

Suppose now that L = S(N) satisfies condition 2°ii). Define v} and v/ (for
i=2,..2n+ 1) asin case 2°i). We have

vi=(1+¢v, (28)
. 1+¢
=" (%)
for some ¢ > 0. If vi{ = —v; = —Vj,,,, then also v{ = —vj,,; and we obtain

balls B' = TOAV{ +Vi, ..., +V3,}, B = Conv L+ Vi, ..., +v3,}. From (28), (29) and

Lemmas 2, 3 and 4 we conclude N = Y& ;N . Moreover, N(B') + N(B”) and so

N ¢ext A,
Thus, it suffices to show that vi = —v;,,, or equivalently ¢ = J for J defined
by (1 + 8) Vans1 = V3,41 For 1€ [0, 1] define ¢, > 0, such that

1—A+ A1
R R+¢ R+g’

where R is the distance from (0, 0) to v, and also from (0, 0) to V., (see Lemma 2).
Repeating the construction of v;, v/ for g, we obtain the points vj(4), ...,

Van11(4), V1(4), ... V5,41(4) and 8, in place of 8. According to Lemmas 2 and 4, we
have

(30)

1—-24 A 1
= 31
R +R+5 R+ 6, ()

Elementary transformations of (30) and (31) give

& _ & R+

Since d; — 0 when A — 0,

(32)

On the other hand, Lemma 5 gives
€ _ Gy... Gy sin (0 + yy(4)) sin (a3 — 9(A) - ... - sin (Fanss = Vane1(4))

8, by.. by sin(f — 71(4)) sin (B2 + y2(2)) - ... - sin (B2 + 724(4))
where y{4) = L(vwivi(d) (= L(VisWiviei(4)):

15



Since y{4) — 0 when 4 — 0 and a,,,; = a; we have

€ Gy... Gy, SN0 ... SIN Oy,

lim — - -
1-0 5,1 by ... by, sin By ... sin B,

(32) and (33) together imply

=1. (33)

=~
S

+
R +

=1,

| ™

[}

which gives ¢ = §.

The next step of the proof is to assume that condition 2°iii) is satisfied. For
¢ > 0 we define v}, v{ as in the cases 2°1i) and 2°ii). The angles y; = £ (Viw,v)),
(= L_(v;’wlvl) are arbitrarily small for sufficiently small ¢&. From Lemma 9 and
Remark 3 it can be seen that there exists y, > 0 and {;, > 0, such that y,(y,), {,((,)
< n, for every ne N. Then the construction used in case 2° i) can be repeated in
this case.

This construction gives balls B and B”. B’ &+ B” and M = N.

In the case 2°iv), an analogous constructlon is possible for sequences (V,), (V_;).

For & < 0 define vy = (1 + &) Vo, Vj = 7.2 Vo. We can find a sufficiently small ¢ for
the construction of sequences (V;)2; ( N and (V)72 1, (V2 1)72, simultaneously.
NI/ € ‘/V‘ N/ 4: NII

We can assume that case 1° of the Theorem does not hold Thus, the set
cl(S(N)\(S(N,) U S(N,))) is a countable union of line segments. If the set
E = S(N) n (S(N,) u S(N,)) is empty, then condition 2° i) is satisfied.

Suppose E is non-empty. Moreover, assume that no broken line L = S(N)
fulfills condition 2°1). We first deal with the case where E is finite.

Obviously, card E = 2k, ke N. Since 1° and 2°1i) do not hold, it follows that
B(N) is a polygon with vertexes v, ..., V5 and (v, v;;,) N S(N;) = {w;}. For some
1€{0,..., 2k — 1}, N'(v)) % N(v;). We can assume without loss of generality that
N(v;) > N'(vy). Then N(v,) < N'(v,), N(v5) > N'(v;) and so on.

Since Vi1 = —V;, N(viy1) > N'(V441). So k is even and 2k = 4n for some

n > 1. From lemma 3
4n—1

S(NI) = U [v;’ v£+1] ’
i=0

N(v; .
where v, = NJ,(V;'})vi fori=1,..., 4n and vy = vy,

Similarly,
4n—1

S) = U [ v,

where v; = NJ(;l)v fori =1,..., 4n and v§ = vj,.
Obviously, vi = —v,,,; is a necessary condition. Applying the notation used in

first part of the proof, we can show that ¢ = J, or, equivalently, ¢; = J, for every
Ae[0,1].
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Thus, we obtain

& _ G sin (0 + 74(4)) sin (a5 — y2(4)) - .. - sin (02011 — Y2041(4))
0, by... by sin(B; — yi(A) sin (B, + yo4)) ... - sin (B2 + Y2(4))

Since (34) is true for every A€ (0, 1] and y(4) — 0, where 4 — 0 and o, = o,
we have

1 (34)

. &  Qy... Ay, SN0y ... SiN &y,
1 =1lim-—=-= - - .
A—o0 6,1 bl bz,, sin ﬁl ... S1In ﬂ2n

It remains to consider the case where E is infinite.

Set F = S(N)  (S(N') U S(N")) (= S(N) ~ S(N') = S(N) ~ S(N")). Let EZ, F¢
denote the sets of acummulation points of E and F respectively. Since E is infinite
and E < F then ¢ + E¢ = F*.

S(N)\F*is a non-empty, open set in S(N). Let G be a connected component of
S(N)\F“. G is open in S(N), L = ¢l G is a countable sum of intervals.

Note that L is not a finite broken line. Suppose, on the contrary, that
L= {Ji=[vsViz1],n > 0,vy,..., v,_; eext B(N), ¥, v, € F%. Then v,, v, € ext B(N)
as well. If, for example, v, ¢ ext B(N) then from lemma 3, v, ¢ ext B(N) and
vo ¢ ext B(N"). It follows that v, lies inside some non-trivial line segment I < F
and consequently v, € Int, F. This is a contradiction, because (vo, v;) = S(N)\F%

Hence, vy, ..., v, € ext B(N).

Moreover, ((Vo, Vi] U [Va_1, Vi) N S(N;) = 0. If, for example, there exists
a ¢ such that ¢ € (vo, v;] N S(N,), then c € F. As v, € F, we have (vo, ¢) = F. This
contradicts (vo, v;) S S(N)\F*.

Thus, L satisfies condition 2° i), which was excluded.

Therefore L is an infinite sum of segments.

L= cl(U iend ,-), where I; denotes a non-trivial line segment. We can assume that
the segments I; are maximal: if J is a segment and I, = J < L, then J = I,. Since
L does not satisfy 2° i), any two segments I,, I, i & j, such that (I, UI) " S(N,) = 0
are not connected by any finite broken line K < L. Since (Int, L) N F* = @, we
have L = cl(| o[V Vix1]) or L = cl({)iez[ Vi, Vi 1]), where v; € ext B(N).

Let us first consider the case L = cl({ Ji2o[ Vs Vi+1]). In this case vy € F.

We must have (v, v;] n S(N;) = 0, otherwise (vo, ¢] < F for ¢ € (v, v;) N S(Ny).
~ Since at most one segment (v;, v;, ;) is disjoint from S(N,), we have (v, vi,;) N
S(N) = {w) for i > 1.

Clearly, N'(v)) + N"(v;)) and N'(w;) = N"(w,) for i > 1.

Without loss of generality we can assume that N'(v,) < N(v;) < N”(v). Thus,
N'(v,) < N(v;) < N"(v,) and so on.

Set K' = {N_TJ) :xeL},K" = {ﬁ : x € L}. From lemma 3,

B e o}
K’ = U[V;, v;-{-l]’ K” = U[v;: vl{l+] ,
i=0 o

17
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where v, = ﬁv), Vi = mij- Of course [V, viy,] 0 [viviy] = {w}fori> 1. It
follows that for y; and (;,

Yy1) <& and  G(0) < 2o (35)

for every n € N. From Lemma 9 and Remark 3, condition (35) implies (27). This
means condition 2° iii) is satisfied.

Similar arguments applied to the case L = cl(| Jicz[Vs Vi11]) show that condi-
tion 2°iv) is satisfied.

We have shown that if N ¢ext 4" and fails to satisfy condition 1° of the
theorem, then there exists a broken line satisfying at least one of conditions 2° i),
2%ii), 2°iii), 2° iv). We next prove that this implies L is not tangent to S(N,). Note
that in each of four mentioned cases

Int(L N S(N')) = 0. (36)

Suppose, on the contrary, that L is tangent to S(N,) at the point a. Then there exists
a line k tangent to both L and S(N,) at a. A straight line and a broken line, which
are tangent, have a common segment I. Leb be I, and b + a. From Lemma 7,
[a,b] = S(N') N S(N”). This is a contradiction to (36).

We have proved that if N ¢ ext A", then there exists a set L = S(N), such that
cl(L\(S(N') u S(N"))) = L, satisfies condition 1° or 2° of the theorem. Suppose
that L does not satisfy the following condition: (Int; L) N S(N,) = 0. Now we
prove that in this case there exists L' < L which fulfills 1° or 2° and moreover,
(Int, L) N S(N,) = 0. '

Let G be an arbitrary connected component of Int, (L\S(N,)). Set K = clG.
Obvisously, (Int, K) n S(N,) = @. It remains to prove that K satisfies 1° or 2°.

We define the functions N, N : S(N) > R, by

. N'(x) for xe K
N'(x) = {N((x)) for x e S(N)\K,

) = ) B Sk

These functions have unique extensions to norms on R2. We will denote these

norms by the same symbols N’, N”. Obviously, N = 2% K" + K",
According. to the previous part of the proof, there exists a set L satisfying 1° or

2°. Obviously, L < K thus, (Int, L) n S(N,) = 9, which completes the proof. [J

Example 1.
Let wo=(0,1) and w,=w_,+ (zi%sin%, —;-l_—lsinﬁ) for i>1.
A = conv { + w2y, N, = N(A4). We define v, for i > 2 by

n

L(Viwi—lwi) = 52> L(Viwiwi—l)

T
= e

vi¢ A.
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Set v, = 3w, — 2v, and v, = 2w, — v,. B = conv { + w}2o, N = N(B). Fori > 2

a sSin F
1
— = = 2c0s —

bi—l . n 21+3
sin —2—+5

. T L L
N, = min ez, 553} = 393, then

l_—I b_ 2n+3 2! l—[ €0s 53 21+3 = H COS 73 21+3

We only need to check the convergence of the product

10—0[ .

COS —.
i+3

i=2 2

which is equivalent to the convergence of the series

i T
22 <1 — cos 5”_3>

1 —coszs = 1 — cos 2553 = 1 — (1 — sin® 3+3) = sin® 3753 < (353)’, thus the
series converges. Finally N satisfies condition (27).
Now we show an example of norm N, which does not satisfy (27).

Example 2.
Set w,y, W, W,, ... as in the previous example. For i > 1, v; is defined by
Iz 1 =
L(VW, 1W) 5 2:’ L(V,-W,-W, 1) - gﬁ’ vi¢ 4
Set Vo = 2W() - Vl.
in In
aq U527 1 1 1
4o = o=
i1 1 2 1 2

inz-—  “co
52i-1 52
Moreover, 1, — 0. Thus, condition (27) is not satisfied.
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