
Acta Universitatis Carolinae. Mathematica et Physica

Gryegorz Mielczarek
Extreme norms on R2

Acta Universitatis Carolinae. Mathematica et Physica, Vol. 40 (1999), No. 1, 5--20

Persistent URL: http://dml.cz/dmlcz/142694

Terms of use:
© Univerzita Karlova v Praze, 1999

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/142694
http://project.dml.cz


1999 ACTA UNrVERSITATIS CAROLINAE, MATHEMATICA ET PHYSIC A VOL. 40, NO. 

Extreme Norms on IR2 

GRZEGORZ MIELCZAREK 

Wroclaw*) 

Received 4. May 1998 

Let us suppose that Nu N2 are norms on U2 such that IVt > IV2. We denote by 
Jr(Nl, N2) the set of all norms IV satisfying the condition Nx > IV > IV2. The set 
B(N) = {xeU2: N(x) < 1} is called the unit ball of the norm IV. Let S(IV) = 
Fr B(IV) (i.e. S(IV) is the unit sphere according to IV). On the other hand, IV(B) 
denotes the norm on IR2 with unit ball B where B .= U2 is a compact, symmetric, 
convex set with a non-empty interior. The set of all extreme points of the set B is 
denoted by ext B. 

Obviously, (xM + (1 - a) IV e JV(NU IV2) for every M, IV e JV(NU IV2) and 
a E [0,1]. That means that Jf(Nu N2) is convex. The purpose of this paper is to 
characterize the extreme elements of Jr(Ni9 N2) — the set of such norms is 
denoted by ext Jr(Nu N2). 

In the case where Nt = IV1, IV2 = IV00 (Nl((x, y)) = \x\ + \y\ and IV°°((x, y)) = 
max {|x|,|y|}), such a characterization is already known [9]: 

LetNe JT(N\ IV00). Then IV G ext ^(IV1, IV00) if and only if ext B(N) <= S(N°°). 
Moreover, the characterization of ext ^(IV1, IV00) for arbitrary Un is the same 

[10]. This solves the problem posed by professor A. Pietsch at the Winter School 
on Functional Analysis in January 1978 [12]. 

We will examine ^V(IV1? IV2) in the general, two dimensional case i.e. for 
arbitrary norms on U2 such that iV\ > IV2. 

In order to shorten the notation, we write Jr instead of ^(IV^ IV2). If L ^ S(IV), 
then the interior of L in S(IV) is denoted by Int! L. 

Lemma 1. Let IV G Jr. If there exists an arc L ^ S(IV), such that 

Int! L n (S(NX) u S(IV2)) = 0 and card (Int! L n ext B(IV)) > 3 , 

then IV $ ext Jr. 
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Proof. Assume such an arc exists, there exist distinct points a, b, c e Inti L n 
ext B(IV) and s > 0 satisfying the following conditions, 

i) b lies between a and c on the arc L, 
ii) (1 +8)bGB(IV2), 

iii) a, c e ext D, where D = conv(B(IV) u {(1 + e) b, - ( 1 + e) b}), 
iv) S(NX) c V, where V = conv A and A = {xe IR2: 2IV(x) - IV(D) (x) = 1}. 
Obvisously, N{ > N(V) > N and N(V) e J/'. Moreover, since b$V9 

N(V) + N. (1) 
Define 

M = 2IV - N(V). (2) 

M is a norm. This can be shown by using the same arguments as presented in the 
proof of the theorem in [10]. We have M e .yV, because IV > M > N(D) and 
N(D) > IV2. Now (2) (IV = \M + \N(V)) and (1) give IV £ ext JT. D 

Lemma 2. Let I e (0,1) and IV, IV, IV" be norms on R2. Then IV = 
XN' + (1 — X) IV", if and only if for every c e S(N) the ray emanating from (0, 0) 
in the direction of c intersects S(IV), S(IV") at the points a and b respectively and 

A 1 ~ k - A 
i?a i?b Rc 

where R„ R& Rc are the distances from the points a, b, c respectively to the point 
(0, 0) with respect to Euclidean norm. 

Proof. Let IV = AIV + (1 - X) IV". Then 

1 = IV(c) = AN'(c) + (1 - X) IV"(c) = 

. W g a ) + , l - A ) A r . g b ) . ^ + ( 1 - , ) | . 

Conversely, let us suppose that IV, IV, IV" satisfy condition (3). It is enough to 
show that IV(c) = AIV(c) + (1 - X) IV"(c) for every c e S(N). 

We obtain 

W(c) + (1 - X) N"(c) - IN' (£• a) + (1 - A) N" g b) 

If a, b G IR2 then (a, b) denotes the open line segment with endpoints a, b, i.e. 
(a, b) = {aa + (1 — a) b : a e (0, 1)}. Furthermore, [a, b) = {a}u (a, b). The in­
tervals (a, b] and [a, b] are defined in an analogous way. 

Lemma 3. Let N = IV + AT. Then 



ext B(N) = J--J--: u e ext B(N') u ext B(iV")|. 

Proof. Let us suppose that 

y * y®: u e ext B{N>) u ext B ( A r ) } • (4) 

Then 

w - - - У ç - * « t Б ( i V ) , v = ^ e x t ß ( Л t " ) . 

Therefore, there exists a pair of non-trivial line segments [w lf w2] ^ S(IV'), 
[v b v2] c S(AT), such that w- = ^ , w2 = ^ and w = gwi + (1 - Q) W2, 
v = rj\i + (1 — J/) v2 for some Q, Y\ e (0,1). 

L e t yi = Nlyo ^ d y2 = N^)- I t : suffices to show that IV(ay! + (1 - a) y2) = 1 
for every a e (0, 1). Let 

t - „, , *NW and , _ •*"«"> 
aЛГ(Уl) + (1 - a) N'(y2) ' aЛt"(Уl) + (1 - a) Лt"(У2)' 

Then 

Лt(aУl + (1 - a ) У 2 = Лt'(aУl + (1 - a)y2) + Лt"(aУl + (1 - a)y2) 

N,( «N'(Уi) Уi , (--«)* '(У-) У2 
VaЛt'(Уl) + (1 - a) N'(y2) N'(Уl) aЛt'(Уl) + (1 - a) Лt'(У2) N'(y2). 

. (aЛt'(Уl) + (1 - a) ЛГ'(y2)) 

, „ . , c-Vfr.) Уi , (1 - a) Лt"(y2) y2 
' - ' 1 -ш.тll/ \ /+ \ -штll/ \ жтll/ \ l^ 

^aiV"(yi) + (1 - a) iV"(y2) N"(yi) aiV"(yi) + (1 - a) iV"(y2) iV"(y2). 

.(aiV"(yi) + (l-a)iV"(y 2)) 

= JV'(/Jw. + (1 - ^)w2)(aN'(y.) + (1 - a)N'(y2)) 

+ iV(yv» + (1 - T)v2)(aiV"(yi) + (1 - a)At"(y2)) 

= 1 • (aiV'(yi) + (1 - a) N'(y2)) + 1 • (aAt"(yi) + (1 - a) iV"(y2)) 

= a(iV'(yi) + N"(yi)) + (1 - a)(JV'(y2) + N"(y2)) 

= aN(y.) + (1 - a) N(y2) = a • 1 + (1 - a) • 1 = 1. 

Conversely, let us suppose that y £ ext B(N). Then there exists a non-trivial line 
segment [y1; y2] <= S(N), such that y = --±--. 

Let w i ~ M70' W2 = w^g. vi = ATM and v2 = - ^ - j . We have already derived 
the following relation 

iV(ayi + (1 - a) y2) 

= iV'OSw, + (1 - /J) w2) (aiV'(yi) + (1 - a) iV'(y2)) (5) 

+ iV"(yVi + (1 - v) v2) (aiVO.) + (1 - a) N"(y2)). 



Moreover, for every /? e (0, 1) there exists a pair of real numbers a e (0, 1) and 
y e (0, 1), such that (3) holds. Obviously, N'(pyv{ + (1 - jS) w2) < 1 and 
N"(yy{ + (1 — y) v2) < 1. Even if one of these inequalities is strict, then (5) gives 
M a y i -+- (1 — a) y2) < 1, which is a contradiction. Hence, we get [w l 5 w ] £ S(N'), 
[v l 5 v 2 ] c= S(N") and so ̂  ^ ext B(N'), ^ £ ext B(/V"). Q 

L e m m a 4. Let ws suppose that three lines a, b, c lying in a plane are concurrent 
or parallel. Let the lines k, I intersect the lines a, b, c at points afc, b^, ck and az, bz, cz 

respectively. Moreover, suppose k intersects I at o and o ^ [ak, bk] u [ak, ck\ 
If there exists a X e (0, 1) such that 

+ T ^ = u ^ > (6) |OBfc| |0bfc| |oc*| ' 
then 

I 1 - k 1 _ 
|oaz| |obz| |ocz| 

Proof. In the case where a, b, c are parallel the statement follows from Thales 
Theorem (^ = ^ = ^ 
ineorem ^ |ob/( - | o c / | j . 

W e now turn to the case where a, b, c are concurrent. Let d denote their common 
point. 

Without loss of generality, we can assume that o is the point (0, 0) of R2. Let us 
consider the norms N(B), N(BX), IV(B2) where 

B = conv {^ -ck, cz, - c z , d, - d } , 
B{ = conv {***, - a f c , az, - a z , d, - d } , B2 = conv {fy, -bk, bz, - b z , d, - d } 

Let M = XN(B,) + (1 - X) N(B2). From Lemma 2, M(ck) = N(B) (ck). Further­
more, M(d) = N(B) (d), because 1 = N(B{) (d) = N(B2) (d) = N(B) (d). 

From Lemma 3, since conv {fy, az, d} and conv {b^, bz, d} are line segments, then 

afc az d 
W = conv 

M(аky M(a,)'M(d) 

is a line segment. Hence W ^ S(M). 
A s > A ^ ) = ck and ^ = d we have ^ = cz. This shows that ck, d, cz e S(M). 

In particular, cz e S(M) and we obtain (7) from L e m m a 2. • 

Lemma 5. Let N, N', N" eJT andN = K^K. Let L = U?-i [•* v.+i] -̂  S(N), 
n > 1, v b ..., v n + 1 G ext B(jV), v, + v,- for i + j and (v„ v I + 1 ) n S(N 2 ) = {v?i} for 
i = 1,..., n. Then 
a) {^:xeL}= ( J ^ o K v|+ 1], where vj = ^ j f ? r i = 1,..., n + 1 and 
b) if N'(yx) < N(y,) then 

et _ a!... an sin(a2 + y ^ s i n ^ - y2) • ... sin(an + 1 + (-l)n+lyn) 

Ê„+1 òj . . . bn s in^! - Уi)sin(jß2 + y2)- ... • sin(ß„ + (-l)"yn) (8) 



where ei9 ah bb denote the distances between y\ and yu and v, and Wj, w, and 
v l + i respectively. Also, 

a, = ^ ( M v ^ . i ) , ft = Z.((0,0)vlvI>i), 

yt = _L(v,w/V;) ( = L{vi+i*yi+i)). 

Here Z_(xyz) denotes the angle xyz. 

Proof. Point a) is the obvious consequence of Lemma 3. 
To prove b), let us note that 

£1 d\ £2 b\ 

sin y j sin (^ — y{)' sin yx sin (a2 + y{) 
Hence, 

£1 = fli sin (a2 + yx) , . 

s2 6-sin ( f t - y j U 

and we obtain (8) by induction. • 

Remark 1. Let us define N'x = IN' + (1 - X) N and _VJ = /IN" + (1 - X) N 
for k e [0 ,1] . Then N^ x = AT. The angles yt are increasing with respect to X for 
1 = 1, 2, . . . . Moreover, for 1 < fc, m < n, ym is a function of yk defined on the 
interval [0, yfc(l)]. 

Remark 2. Let £, = /.(VjWjV"), where v" = j ^ . Analogically, (m is a functio­
nal of £& for 1 < /c, m < n. 

Lemma 6. For m > 2, ym i_? a differentiate function of yh defined on some 
interval [0, g\ and 

M ~ 1 5 ^T ^ J I H sin(«I + (-iyyi_1(y1)) siiTft J '(10) 

The same is true for £m, m > 2 and some interval [0, h], namely 

m , (ft __ *i_) (ft —^-—-. _______i__Y. (11) 
\i_-2 fl* sina,/VI_-2Sin(aJ-(-l) ,CI-i(Ci)) sinfl / 

Proof. We have 

sin (y_) = sin (a2 + y.) sin (y2) = sin (jg2 + y2) 

£2 bi ' £2 #2 
Hence, 

bi . sin(j82 + y2) sm y2 = — sin yx ^ - } • (. (13) 
a2 sm (a2 + y-) 

By induction we obtain 

s i n Y m = _ i ^ ^ s i n ^ (14) 

a2... am sin (a2 + y.) sin (a3 - y2) sin (am + ( - I f yB_ J 

9 



Formula (13) gives 

sin (a2 + yi) sin y2 = — sin yx sin (/J2 + y2). (15) 

Hence 

(sin a2 cos yx + sin yx cos a2) sin y2 = — sin yi(sin /?2 cos y2 + sin y2 cos jS2) 
a2 

and 
sin a2 ctg yx + cos a2 = — (ctg y2 sin f}2 + cos /?2). 

a2 

Let us differentiate the last equality with respect to yx. We obtain 

SІП 0.2 Ьi sin ß2 , i ч 

ľ2(ľl) • 

Hence, 

Analogically, we obtain 

Formulas (16) and (17) give 

sin2 yx a2 sin2 y2 

a2sina2 sin2y2 

W i ) = T- ~7~^~ ~r^~' 1 6 ) 
Oj sin p2 snr yx

 v ' 
,, , = a3 sin a3 sin2 y3 

b2 sin /?3 sin2 y2 

,, x a2a3 sin a2 sin a3 sin2 y3 

6162 sm p2 sm p3 sin y! 
In general, 

f( . a2...am sina 2... sinamsin2ym 

W i = 7 r r-75 . Q . 2 . (18) 
bi... bm_i sinp 2 . . . sin/J^ury-

Now, (18) and (14) give (10). 
Formula (11) can be proved in an analogous way. • 

Definition. We say that a straight line is the tangent to a curve at the point a, 
if the line is a left or right-side tangent to the curve at a. 

Definition. We say that two curves are tangent at their common point a, if there 
exists a straight line which is a tangent to both curves at a. 

Lemma 7. Let N, AT, N" eJT,N = K~L. If a nontrivial segment [a, b] c: S(/V) 
is a tangent to the curve S(NX) at the point a, then [a, b] _= S(N') n S(N"). 

Proof. Let b' = ^ *>> b" = N>j "*• Si_c e a e S(/V') n S(/V"), Lemma 3 shows 
that [a, b'] c S(/V'), [a, b"] c S(/V"). The lines ab', ab" support the balls B(N% 
B(N") respectively. If b' * b, then /V(b') < /V(b) < N(b") or /V(b") < /V(b) < 1Y(b'). 
At least one of the lines ab', ab" divides B(N{) into two non-empty parts, which 
is impossible because B(N{) _= B(N% B(N"). • 

10 



Let us consider the infinite broken line L = (J^ifvj, v i+1] .= S(IV), where 
v1? v2,... e ext B(N), v, #= \j for i 4= I and (v„ vI+1) n Ŝ -Vi) = {w;} for i = 1, 2,... . 

Let us define ah bh a„ /?,, yh £,- in the same way as in Lemma 5 and Remark 2. 
Now, (10) and (11) are true for arbitrary m e N. The next definition and Lemmas 8 
and 9 concern this case. 

Definition. Let [w„ y j , [w„ z,] denote segments tangent to S(Nl) at the point 
w„ such that yt e [(0, 0), v l+1], zt e [(0, 0), v j . Let 

& = /-(Vi+iwj,), Xt = Z-(v.wft), i f * i s o d d> 

it = Z.(v,w4 & = /-(vi+iwxl), if i is even. 

Lemma 8. Fftere exists a yx > 0 swcA t/iat y^yx) < £n for every n e N if and 
only if 

( JL at sin a, ^ „ ] ^ , . 
m=urfr-,[!^ii^:"-2'3-"}>0- (19) 

Proof. Let <50 be a positive number, which satisfies 250 < ccn < n — 2<50 and 
2<50 < fin < n — 2<50 for neN. Let n0 be such that £n < <50 for n > n0. We define 

y = sup {ft: yx < {lf y^Vi) < £2 and y^yj < <50 for i = 1,..., n0}. 

Let us suppose that condition (19) is satisfies. We define 

g 2 H • cot <50 

M = - — — + 1 , 
sin 2o0 

where H = ££.&. We will show that if 

71 =""" W2' q ^20^ 
then 

y„(yi) < £„ (21) 
for every neN. 

We use induction. 
Formula (21) is trivial for n = 1 and n = 2. Let n > 3 and y,^) < £• for / < n. 

Then 
2/I cot 50 < In (M sin 2<50). 

Hence, 
n - l n-l \ 

1 6 + £ 6 ) cot <50 < In (M sin /?„). 
1=1 1=2 / 

From the induction hypothesis we obtain 

£y,-i(yi)) cot <50 + I £ y.Ij,)) cot <50 < In (M sin /J,). 
./ = 2 / \ i = 2 

11 



For every sequence (X,)"=l, such that — 1 < X,•, < 1, we have 

Zy,-i(yi)|cot(ai + ^...(y,))! + IMyi)|cot(j5( + Xffly^ < ln (M sin ft,). (22) 
i = 2 i = 2 

Since cot x = (in sin x)', Lagrange's Theorem gives 

n 

£|ln sin oct - In sin (a, + (-1) ' y ^ y ^ l 
i=2 

n_1 / sin fi \ 

+ in„si„(ft+<-.«,<*» - i„si„w < ^sin^+{:\ryM))-
Consequently, 

n s i n ". sin(B, + (-lyy.tyt)) 
Msin(a1 + (-l)'y1._1(y1)) sin/?, 

Thus, for some 0, 0 < 0 < 1, we obtain 

y»(y_) = 7n(0yihi <-LM2yx < £n. 

To prove the reverse direction of the equivalence relation, assume that y > yt > 0 
and 7n(7i) -̂  £n for every neN. From Langrange's theorem 

VneN__O<0„< 1 yjy,) = y^.y.) • yx. 

Applying Lemma 6 we can see that 

^ ^ - ^ s i n M / A sinat. sin (ft + (-1) ' g,yfr_))V _ 

M a, sin <xj v M s i n (ai + ( - ! ) ' ei-iy.-i(y_)) sin ft / 

for every neN and some Qh 0 < g,- < 1. Hence, 

" sin a, sin(jSI + (-l)I^yI{y1))\2 " a, sin a, 
1L;-W„ ___/_iv,, ,. f,..tt ^ - 7 i < C n H 7=2sin (a* + (-1) ' -?i-i7i-i(7i)) sin ft / n ^ foi-i sin ft 

It is enough to show 

•nflfl . . ' 7 ______(_>_«__.:- .2.3....} > 0 
itJi sin (a, + (-1) ' Qi-M-i(yi)) sin /S, J 

or, equivalently, 

i n f \ __ t( ln s i n a< _ l n s i n (a' + ( _ !)'' ei-i7»-i(Vi)) 

+ (ln sin (ft + ( - ! ) ' ,,y,{yi) - In sin ft)] : n = 2, 3,... J > - co. 

12 



It suffices to show that 
00 

X (|ln sin a, - In sin (a, + ( - 1 ) ' yf_i(yi))| + |ln sin (# + ( - 1 ) ' yfa)) - In sin /*,|) < + oo. 
i = 2 

From Lagrange's theorem we obtain 

00 

Xflln sin a, - In sin (a, + ( - 1 ) ' y^)] + |ln sin (pt + ( -1 ) 1 yfa)) - In sin pt\) 
i = 2 

oo 

= Zy.-ilcot^- + (pffi-dl + yJcot(ft + tfw)| 
i = 2 

oo 

<- K & + {,+i)cot50< oo, 
1 = 1 

for some q>i9 </̂ : — 1 < <pI? ,̂- < 1. This completes the proof. • 

Lemma 9. TTiere eju'sts a yx > 0 such that yn(y\) < £n for every n e M if and 
only if 

i n f ^ „ n ^ : » = 2,3,. . . \>0. 

Proof. It is enough to show the convergence of the product 

sin a, 
П (23) 
ir= 2 s i n Pi 

and apply Lemma 8. 
The convergence of this product is equivalent to the convergence of the series 

. = 2 

1 - sm a, 
sin ßi 

Let cpi = n — cti — Pi- Obvisously, 

Note that 

Z<Pi < oo-
1 = 2 

3s > 0 Vne N e < ai9 pt < n — e. 

cct = (n — /?,) — cph hence 

sin a, = sin /J, cos (pt — cos (n — /?,) sin cpt = sin pt cos cpt + cos /}, sin (p(. 

Consequently, 

sin a. 

(24) 

(25) 

1 -
sin ßi 

= |1 — cos <p, — COt ßj sin <p,| < |1 — cos <p(| + |cot ßi sin <p,| < 

|1 — cos2 cpi\ + 1% - cot Pil = sin2 <p, + <př|cot P\ < q>2i + pjcot /?,|. 

13 



From (24) and (25) the series Yj=i(v2i + <P.|cot ftl) is convergent, and in 
consequence the series 

sin a, 
i -

SІП ßi _ 
i = 2 

is convergent. • 

Remark 3. In an analogous way for C„ Xt w e c a n obtain 

3C i>0VneN Cn(Q < Xn, 
if and only if 

inf{*„ f l ^ : n = 2, 3,... j>0. 

Theorem. IV ^ ext Jf if and only if there exists L _= S(IV), such that (lnt2 L) n 
S(IV2) = 0 and either 
1° L is a nontrivial arc, L n S(IV1) = 0 and L _= ext B(IV) or 
2° L is not tangent to S(N{) and one of the following cases holds 
i) L = U?=o[v.> v i + J , n > 2, v0,..., vn e ext B(N), v,- * v;- /or i 4= j, ((v0, v j u 
[yn-uyn))nS(Nl) = 0, 
ii) L = U^o 1 ^ . ' v i +J , n > 1, v0 = v4n, v0, ..., v4n_j e ext B(IV), v,- * yjor i =(= j 
(vi? vi+1) n S(N1) = {yvt}for i = 0,..., 4n - 1 and 

a{... a2n sin a! ... sin a2n 

= 1, (26) bt... fo2n sin ^i ... sin /J2n 

a, denotes the distance between v, and w, denotes the distance between w, and vi+1, 
a,- = Z - ^ O j v ^ . ! ) , ^ ^ __((0,0)v,vi+1), 
III) L = U*-o[v& v i +J , v0, v1?... _ ext B(IV), v, =N v, /or i 4= j, (v0, v-) n S ^ ) = 0, 
(v., vi+1) n S(N{) = {\Vi\for i = 1, 2,... and 

i n f { ^ f l ^ : n = 2 , 3 , . . . } > 0 , (27) 

a„ b, we define as in ii), r\n = min {cpn, \jjn}, where cpn, \j/n denote the angles between 
the line vnvn+1 and the left-side or right-side tangents to S(N{) at the point 
wn respectively. 
iv) L = U.ezIS v i + 1] , . . . , v_l5 v0, v1?... G ext B(IV), yt #= yjor i * ;, (v„ vi+1) n 
B(N{) = {w-}/or i e Z, and the sequences (v,)£io, ( v . ^ o satisfy (27). 

Proof. From Lemma 1 it follows that condition 1° is sufficient. 
Suppose that L __. S(N) satisfies the condition 2° i). Moreover, assume that 

L is a minimal arc, which fulfills 2° i) [i.e. L does not contain a proper subset 
which fulfills condition 2°i)]. Since L is minimal, it can be seen that 
card [vi5 v i + J n S(NX) = 1 for 1 < i < n - 2, vl5..., vn_! £ St(IV1). Set B = 
conv([(extB(IV))\{±v1, ..., ±vn_2}] u B ^ ) ) . We define the points w, for 

14 



i = 1,..., n — 2 by {w,} = [v„ v I+1] n S(N{). We can find a sufficiently small, 
positive e such that vi, ..., v'n_u vi',..., <_-. ^B(N{), where vi = ( l + f i ) v 1 

and v,- for i — 2 , . . . , n — 1 is the intersection point of the lines v ^ w , . ! and 
(0, 0) v„ vr/-= r^Vi, v" for i = 1,..., n is the intersection point of the lines 
v"_{w"_x and (0, 0) v,. Note that such an e exists (because L is not tangent to S(N1)). 
If F = conv(5 u {±v1 ? . . . , ±v'n_l}\ B" = conv(5 u {±vf,..., ±v'n'_l}), then 
N = ^1±-E1, yy(fl') + iV(B") and IV £ ext ^ . 

Suppose now that L _= S(N) satisfies condition 2° ii). Define v; and v" (for 
i = 2, . . . , 2n + 1) as in case 2° i). We have 

v[ = (l+e)vu (28) 

*-rrs»- <29> 
for some e > 0. If vi = — vi = — v2n+1> then also vi' = — v£,+1 and we obtain 
balls B' = convl + V!',..., ±v'2n},B" = conv{±vf,.. . , ±v2'„}.From (28), (29) and 
Lemmas 2, 3 and 4 we conclude N = M_+_?3 M o r e 0 ver , N(B') =|= N(B") and so 
N $ ext ^T. 

Thus, it suffices to show that vi = — v2„+1 or equivalently e = 8 for S defined 
by (1 + S) v2n+1 = v2„+1. For X e [0 ,1] define ex > 0, such that 

1 ~ A *• 1 

where R is the distance from (0,0) to vt and also from (0,0) to v2n+i (see Lemma 2). 
Repeating the construction of v'h v" for eh we obtain the points vi(A),..., 
v.2„+i(/l), vi'(A),... vf2n+l(X) and (5A in place of 8. According to Lemmas 2 and 4, we 
have 

1 - X X _ 1 

K + K + 5 - i? + <5A'
 l j 

Elementary transfoimations of (30) and (31) give 

ex _ e R + d 

Jx--5R + e + 5x{l-l)' 

Since 5k -> 0 when A -* 0, 

e, = eR+J 
Â O ^ e5 K + e v ' 

On the other hand, Lemma 5 gives 

ex = a t . . . a2n sin (a2 + yt(X)) sin (a3 - y2(A)) • ... • sin (a2„+i - y2n+1(X)) 

8X b,... b2n sin (ft - 7l(X)) sin (& + y2(/l)) • ... • sin (&„ + y2n(X)) ' 

where y,{A) = Z.(v,wfv,^)) ( = _(vj+1w,v;+1(A))). 
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Since yt(X) -» 0 when X -> 0 and a2n+1 = at we have 

£я fli... a2n s ina 1 . . .s ina 2 n . 
hm — = — ^— — - = 1. (33) 
л̂ o ôл Ьj... Ь2п sin ßi ... sin jS2п 

(32) and (33) together imply 

E R + ö = i 
5 R + £ 

which gives e = <5. 
The next step of the proof is to assume that condition 2° iii) is satisfied. For 

s > 0 we define vi, v" as in the cases 2° i) and 2° ii). The angles y- = /.(v'-w^i.), 
£i = /.(vi'WiVi) are arbitrarily small for sufficiently small s. From Lemma 9 and 
Remark 3 it can be seen that there exists yx > 0 and d > 0, such that yn{y\\ („((i) 
< f/„ for every neN. Then the construction used in case 2° i) can be repeated in 
this case. 

This construction gives balls B and B". B' * B" and M__+M__ = Nm 

In the case 2°iv), an analogous construction is possible for sequences (v,), (v_,). 
For s < 0 define v0 = (1 + s) v0, v0

r = T^VQ. We can find a sufficiently small s for 
the construction of sequences (v;)^b (v,-)^1 and (v'_^h (v,Ll)

(^=1 simultaneously. 
Now assume that IV $ ext JT. Then N = ^ y ^ , for some N\ N" eJf,N' * IV". 
We can assume that case 1° of the Theorem does not hold. Thus, the set 

cl(S(IV)\(5(IV1) u S(IV2))) is a countable union of line segments. If the set 
E = S(N) n (S(NX) u S(N2)) is empty, then condition 2° i) is satisfied. 

Suppose E is non-empty. Moreover, assume that no broken line L _= S(N) 
fulfills condition 2° i). We first deal with the case where E is finite. 

Obviously, card E = 2k, k e N. Since 1° and 2° i) do not hold, it follows that 
J3(IV) is a polygon with vertexes vb ..., v2k and (v;, v;+1) n S(NX) = {w,}. For some 
le {0,..., 2k — 1}, IV'(v/) =# -V(v/). We can assume without loss of generality that 
IV(vj) > IV^Vj). Then IV(v2) < IV'(v2), IV(v3) > JV'(v3) and so on. 

Since vk+l = — vl5 N(vk+X) > N'(vk+l). So k is even and 2k = An for some 
n > 1. From lemma 3 

S(N')= UK^+iL 
І = 0 

where v[ = f^v, for / = 1,..., 4w and v0 = vi„. 
Similarly, 

4 n - l 

s(лr")= U [v;>;'+1], 
i = 0 

where v" = jr$)Vt for i = 1,..., 4n and v0' = vj,,. 
Obviously, vi = — v'2n+x is a necessary condition. Applying the notation used in 

first part of the proof, we can show that s = 5, or, equivalently, sx = 5X for every 
Ae[0, l ] . 
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Thus, we obtain 

= ^ = a{... a2„ sin (a2 + y^A)) sin (g3 - y2(X)) • ... • sin (g2„+1 - y2n+1(X)) . 

6, b,...b2n sin(A-7iW)sin(iS2 + y2(A))-.. .-sin(^ + y 2 ^ " [ ] 

Since (34) is true for every X _ (0, 1] and yt(X) -> 0, where 2 -• 0 and g2w+1 = OLU 

we have 

1 = lim — = ai'" ain s i n a i • • s i na2„ 
A-.00 ^ bi... b2„ sin /?! ... sin p2n' 

It remains to consider the case where E is infinite. 
Set F = S(N) n (S(N') u S(JV")) (= S(N) n S(JV') = S(N) n S(TV")). Let £', Fd 

denote the sets of acummulation points of E and F respectively. Since E is infinite 
and E _: F then 0 =t= £ ' _: F*. 

S(N)\Fd is a non-empty, open set in S(N). Let G be a connected component of 
S(N)\Fd. G is open in S(N), L = cl G is a countable sum of intervals. 

Note that L is not a finite broken line. Suppose, on the contrary, that 
L = I J ^ o K v,:+1], n > 0, vl5..., v„_! Gext B(N), v0, v„eFd. Then v0, v„Gext B(N) 
as well. If, for example, v0£extB(iV) then from lemma 3, v0 £ ext B(iV') and 
v0 £ ext B(N"). It follows that v0 lies inside some non-trivial line segment I ^F 
and consequently v0 G Int! F. This is a contradiction, because (v0, \x) _= S(N)\Fd. 

Hence, v0,..., v„ G ext B(N). 
Moreover, ((v0, v t] u [v„_1? vM)) n S(-V-) = 0. If, for example, there exists 

a c such that c G (V0, \^\ n S(N1), then c G F. As v0 G F, we have (v0, c) _= F. This 
contradicts (v0, vx) _= S(N)\Fd. 

Thus, L satisfies condition 2° i), which was excluded. 
Therefore L is an infinite sum of segments. 
L = cl((J,eN/,), where It denotes a non-trivial line segment. We can assume that 

the segments It are maximal: if J is a segment and 7, _= J _= L, then J = /,. Since 
L does not satisfy 2° i), any two segments /,-, Ij9 i 4= j , such that (/, u /,) n S(TVt) = 0 
are not connected by any finite broken line K _= L. Since (Intj L) n Fd = 0, we 
have L = cl((j£0[v,, vI+1]) or L = cl((Ji6Z[v„ vI+1]), where v, G ext B(N). 

Let us first consider the case L = cl((j£0[v,-, vj+1]). In this case v0 G F. 
We must have (v0, v t] n S ^ ) = 0, otherwise (v0, c] _; F for c G (V0, VX) n S(TVX). 

Since at most one segment (v„ v/+1) is disjoint from S(N{), we have (v„ v/+1) n 
S(NX) = {w,} for i > 1. 

Clearly, N'(vf) * TV"(vt) and TV'(w.) = TV"(w,) for i > 1. 
Without loss of generality we can assume that TV'(vx) < N(\x) < N"(\i). Thus, 

N'(\2) < N(\2) < N"(\2) and so on. 
Set K' = {j^-j: x G L}, X" = {^^ : x e L). From lemma 3, 

K' = Q[v-v; + 1 ] , K" = Q[v;;v,"+1], 
i = 0 i = 0 
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where vj = ^ , v," = ~^}. Of course [vj,v.+1] n [ < <+.] = {w}for i 2: 1. It 
follows that for yt and £., 

y n (Ti)<^ and £„(£,)_;&., (35) 

for every n e N . From Lemma 9 and Remark 3, condition (35) implies (27). This 
means condition 2° iii) is satisfied. 

Similar arguments applied to the case L = cl((JieZ[vf, vI+1]) show that condi­
tion 2° iv) is satisfied. 

We have shown that if jV^ext^V and fails to satisfy condition 1° of the 
theorem, then there exists a broken line satisfying at least one of conditions 2° i), 
2° ii), 2° iii), 2° iv). We next prove that this implies L is not tangent to S(jV1). Note 
that in each of four mentioned cases 

Int(LnS(/V')) = 0 . (36) 

Suppose, on the contrary, that L is tangent to S(IVi) at the point a. Then there exists 
a line k tangent to both L and S(IVi) at a. A straight line and a broken line, which 
are tangent, have a common segment I. Leb be I, and b =1= a. From Lemma 7, 
[a, b] c: S(N') n S(N"). This is a contradiction to (36). 

We have proved that if IV <£ ext JV, then there exists a set L _= S(IV), such that 
cl(L\(S(IV') u S(7V"))) = L, satisfies condition 1° or 2° of the theorem. Suppose 
that L does not satisfy the following condition: (In^ L) n S(IV2) = 0. Now we 
prove that in this case there exists E = L which fulfills 1° or 2° and moreover, 
(Int! L') n S(N2) = 0. 

Let G be an arbitrary connected component of Int! (L\S(N2)). Set K = clG. 
Obvisously, (Int! K) n S(N2) = 0. It remains to prove that K satisfies 1° or 2°. 

We define the functions IV', IV": S(IV) -> R+ by 

Ñ'(x) 
_ JN'(x) for xeK 

N(x) for xeS(N)\K, 

»< \ - $N"(X) for xeK 
*"(-) = N(x) for xeS(JV)\K. 

These functions have unique extensions to norms on IR2. We will denote these 
norms by the same symbols ft', ft". Obviously, IV = —j—, ft' =|= ft". 

According, to the previous part of the proof, there exists a set L satisfying 1° or 
2°. Obviously, L = K thus, (Inti L) n S(IV2) = 0, which completes the proof. • 

Example 1. 
Let w0 = (0,1) and w, = !¥.•_- 4- ( ^ sin f, — ^ s i n ^ ) for i > 1. 

A = conv{±w,}£0, Ni = M^4)- W e d e f i n e v* f o r '̂ > 2 by 

L(vi*i-i*i) = -7T2> /-(v^-w^i) = - - - , v ^ A. 
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Set \x = 3w- - 2v2 and v0 = 2w0 - v-. B = čonv { + w ^ o , IV = N(B). For i > 2 

71 

= 2 cos 
a, 2'+z ҡ 

lj,-i . n 2 Í + 3 ' 

„̂ = min {2^2,2^3} = 2^3' then 

т-r ai n ~„_i т-т 7 L 7 L т-т те 

'•Пí: sғ ľ" Дcos2^ = ïбД c o s2^-
We only need to check the convergence of the product 

T ŕт n 

П c o s^7T -
1 = 2 

which is equivalent to the convergence of the series 

i ( i — p i 

1 — cos 2^3 = 1 — cos 2^T4 = 1 — (l — sin2 2^4) = sin2 2 ^ < (^TA)2, thus the 
series converges. Finally IV satisfies condition (27). 

Now we show an example of norm IV, which does not satisfy (27). 

Example 2. 
Set w0, w b w2, ... as in the previous example. For i > 1, v, is defined by 

L (ViW,_ -w,) = - - , L (v,w,w,_ -) - - ^ n , v,- <M • 

Set v0 = 2w0 — yv 

. 1 7T 
a, S m 5 ? 1 1 1 

bi_l . 1 JC 2 1 71 2' 
S m 5 2 ^ C ° S 5 ? 

Moreover, r\n -> 0. Thus, condition (27) is not satisfied. 
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