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Binary trees in commutative semigroups satisfying 2x = 3y are studied.
Studuji se bindrni stromy v komutativnich pologrupéch spliujicich 2x = 3y.

1. Introduction

Throughout this short note, all semigroups are assumed to be commutative and
their operations will usually be denoted additively.

1.1. A semigroup S will be called a zp-semigroup in the sequel if S is
a nil-semigroup of index (at most) two. It means that S contains an absorbing
element o (= os) and 2a = o for every a€S. In other words, S satisfies the
equation 2a = 3b for all a,b e S.

1.2 Lemma. Let a zp-semigroup S be generated by a finite set with m >0
elements. Then |S| < 2™.

Proof. Easy to see. A

1.3 Lemma. Let S be a zp-semigroup. Define a relation <son S by a <sb if
and only if a = b + u for some ue S U {0}.Then:
(i) The relation < is an ordering of S and it is compatible with respect to the
addition.
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(ii) o is a smallest element.

(iii) If S is non-trivial, then S\(S + S) is the set of maximal elemens of
S(<).

(iv) The set Ann(S)\{o}= {a|S + a = o # a} is the set of minimal elements
of (S\ {o})(=<)-

Proof. Easy to check. A

1.4. A zp-semigroup S will be called a zs-semigroup if S = S + S (equivalent,
either S = {o}or §(<) has no maximal elements — see 1.3(iii)).

1.5. Let S be a non-trivial zs-semigroup. Then S is infinite and not finitely
generated.

Proof. The ordered set S(=<{) has no maximal elements, and hence it is infinite.
Consequently, it follows from 1.2 that S is not finitely generated. A

1.6. Let A be a subset of a zp-semigroup such that A < T + T, T being the
subsemigroup generated by A (eg, A< A+ A). Then T=T+ Tand T is
a zs-semigroup.

Proof. Use the fact that T + T is a subsemigroup. A

2. Auxiliary concepts (A)

2.1. Define two relations « and § on the set N of positive integers as a = {(i,2i),
(2i + 1)|ieN}and B = {(i,2% + I)|i,keN,0 < I < 2}

2.2 Lemma. (i) « is irreflexive, antisymmetric and a < p.
(ii) (i,j) € B implies i < j.

(iii) (1,i)€ B for every ie N, i # 1.

(iv) B is irreflexive, antisymmetric and transitive.

Proof. (i), (i) and (iii) are easy. As concernes (iv), the properties of irreflexivity
and antisymmetry are clear. Finally, if i,r,se N, 0 < p <2, 0 < g < 2°, then
2Q2i+p+q=2%"+2p+qand 2p+q<2p+2p+1)<2-2 =
= 2°*", The transitivity of f is now clear. A

2.3 Lemma. The relation P is just the transitive closure of «. That is, (i,j) € B
iff there are m > 1 and positive integers iy, ..., i such that iy = i, i, = j and
(ik, ik+[)e o (or iyt € {21}<,2ik + 1})for every k =0,1,..., m — 1.

Proof. Denote, for a short moment by 7 the transitive closure of a (defined on
N). Since f is transitive and contains a by 2.2(i), (iv), we get T = f. To prove the
converse inclusion, we will proceed by induction on k, where (i,j) € ,j = 2" + |,
1<k 0<l<?2k
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If k=1,then j=2i+1 0<1I<1, and hence (i,j)ea = 7. If k >2 and
I < 2! thenj = 2*~'p + I, p = 2i, (i, p) € « and (p,j) € B. By induction, (p,j) € 1,
and hence (i,j) € t. On the other hand, if k > 2 and 2! < I, thenj = 2*7'q + I,
g=2i+1,1=2"4+1,0<1 <2 (ig)ea and (g,j) € B. By induction,
(,j) € T and hence (i,j) e t. A

2.4 Remark. According to 2.2 (iv), the relation § is a sharp ordering defined
on N, and hence y = f U idy is a (reflexive) ordering on N.

2.5 Lemma. Let i,je N. Then (i,j)€ p, provided that at least one of the
following is true:

(1) (2i,2)) € B;

(2) (21,2 + 1) €

(3) (21 + 1,2) e B:

4) (2i+ 1,21 +1)ep;

(5) i # jand (i,2)) € B;

(6) i #jand (i,2j + 1)€B.

Proof. (i) If (2i,2j) € B, then 2j = 2**'i + I, 1 <k, 0 < | < 2% Clearly, [ is
even, j = 2% + 1/2, 0 < 1/2 < 2, and so (i,j) € B.

(i) If (21,2 + 1)e B, then 2j + 1 =2*"'i + I, 1 <k, 0 <[ < 2~ Clearly,
lisodd, j = 2 + (I — 1)/2,0 < (I — 1)/2 < 2*, and so (i,j) € B.

(i) If (2i + 1, 2j)e B, then 2j = 2**'i + 2 + |, 1 < k, 0 < | < 2% Clearly,
liseven, j =25 + 21 +1/2, 0 < /2 < 2¥°1, 21 + /2 < 2% and so
(i) < b

(v) If(2i + 1,2 + 1)eB, then 2j + 1 =2"1i + 2* + 1 <k, 0 <1< 2~
Clearly, I is odd, j = 2% + 27" + (1 — 1)/2, (I — 1)/2 < 2¢°}, 21 +
+ (I — 1)/2 < 2* and so (i,j) € B.

(v) If i # j and (i,2j)€ B, then 2j = 24 + I, 1 < k, 0 < I < 2% Clearly, [ is
even,j = 2¥"' 4+ /2,0 < 1/2 < 2*~'. Since i # j, we have k > 2, and so
(i.j) € B.

(vi) If i #j and (i,2j + 1)€ B, then 2j +
Clearly, ! is odd, j = 2*~! + (I — 1)/2,
have k > 2, and so (i,j)€ . A

2.6 Lemma. Leti,j € N be such that (i,j) € p and 2i # j # 2i + 1. Then either
(2i,j)e Bor (2i + 1,j)ep.

Proof. We have j =24 + I, 1 <k, 0 <[ < 2* The inequalities 2i # j #
# 2i + 1imply k > 2. Now, if | < 2*7! then j = 2*'- 2i + | implies (2i,j) € B.
On the other hand, if 2*~' < I, then j = 2*"'(2i + 1) + (1 — 2*7!), I - 2*"' <
< 2k — 21 = 2k and we have (2i + 1,j)ep. A

2.7 Lemma. Let i,j € N be such that (i,j)€ f and 2i # j # 2i + 1. If j is even,
then j > 4 and (i,j/2) € B. If j is odd, then j > 5 and (i,(j — 1)/2) € B.

1=25+1, 1<k 0<l<2
0 < (I — 1)/2*"". Since i # j, we
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Proof. We have j =2 + 1,1 <k 0<1<2* Since 2i #j # 2i + 1, we
have in fact k > 2. Now, if j is even, then j > 4, | is even, j/2 = 271 + 1/2,
0 < 1/2 <2*', and hence (i,j/2)e . On the other hand, if j is odd, then
j=51lisodd, (j —1)2 =21+ (1 —1)/2,0 < (I — 1)/2 < 2*!, and hence
(i,(j — 1)/2)6 p. A

2.8 Lemma. Let i,j,k € N be such that (i,k) € o and (j, k) € . Then i = j.
Proof. Obvious from the definition of a. A

2.9 Lemma. Let i,j,k € N be such that (i,k) € p and (j, k) € B. Then just one of

the following three cases takes place:
(i) i = j:

(i) (i.j)€ B;

(iii) (j,i) €

Proof. We will proceed by induction on 2k — i — j:

Firstly, if (j,k) € o, then k € {2},2j + 1} and, due to 2.5(5),(6), either i = j or
(i.j) € B. Similarly, if (i, k) € a. Consequently, we can assume that (i,k)¢ o and
(,k) ¢ a. Then it follows from 2.3 that there are p,qe N such that (i,p) e B,
(p.k)ea, (j,g) € B, (¢.k)ea. By 2.8, p = g and, of course, 2p — i — j < 2k —
— i — j. The rest follows by induction. A

2.10 Remark. If (i,j) € B, then there exists just one a-chain between i and j (see
2.3, 2.8 and 2.9).

2.11 Remark. Let A be a non-empty subset of N, 1¢A4 and put
B = {i|(i,j) € B for every j e A}. Then 1 € B by 2.2(iii) and i < j for all i € B and
j€ A. Consequently k = max (B) exists and, if | € B, then either [ = k or (l,k) e B
(use 2.9).

2.12 Lemma. Let (i,j) € p.
(i) If j is even, then (i,j + 1) € p.
(i) If j is odd, then j > 3 and (i,j — 1) € p.

Proof. There is ke N such that (i,k)ey and (k,j) € o. Consequently, either
j=2k(kj+ 1)eaand(ij+ 1)eporj=2k+ 1,(kj— 1)eaand(ij— 1)e
€f. A

2.13 Lemma. The following conditions are equivalent for a permutation p
of N:
) ()€ B i (P () < P
i) () i (i pU) <
(iii) (i,j) € « implies (p( ), p(])) €
(v) (p(i), p(j)) € « implies (i, j) € .
(v) {p(2i), p(2i + 1)} = {2p(i),2p (i) + 1} for every i > 1.
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Proof. (i) implies (ii). Let (i,j)ea. Then i <j, p(i) # p(j) and, by (),
(p(i), p(j)) € B. Further, by 2.3, there are positive integers m, ko, ..., km such that
ko = p(i), km = p(j) and (ko,k1)€a, ..., (km—1,km) € a. Using (i) again, we get
(L,p (k) eB, ..., (P (km-1),j)€B, and so i < p~' (ki) < ... < p~'(km-1) <j
(use the fact that the numbers i, ky, ..., km_1,j are pair-wise different). Now, (i,j) € «
implies m = 1 and (p (i), p(j)) € o Quite similarly, (p~* (i), p~"(j)) € o

(iii) implies (ii). Let (p(i),p(j)) e «. By (iii), we have (p(i),p(2i))ea and
(p(i),p(2i + 1)) € a. Thus either j = 2i or j = 2i + 1. In both cases, (i, )) € .

The remaining implicatins are easy. &

2.14 Lemma. If p is a permutation of N satisfying the equivalent conditions of
2.12, then p(1) = 1 and {p(2),p(3)} = {2,3}.

Proof. Easy to check. A

2.14 Remark. Denote by o/ the set of permutations satisfying the equivalent
conditions of 2.12. The . is a subgroup of the group N! of all permutations of N.
It is clear that permutations from ./ are just automorphism of the ordered set N (y).

3. Auxiliary concepts (B)

3.1. In the sequel, & stands for the set of non-empty finite subsets of N and
= F U 0.

Forevery ie N, let T, = {2i,2i + 1}e #.

For Ae Z,, let u(A) = {i| T; = A}, c(A) = UiewnTi = {20,2i + 1]iep(4

)
< Ani(A) = p(A) N (A (A)), 72(4) = u(A) ng(A) (so that n,(A) U n,(4
= pu(A) N A) and £(A4) = u(4) U (4\c(4))
A set A e Z, will be called reduced if u(4) = 0.

3.2 Lemma. Let A € %, Then:
(i) A \C(A) is reduced.
(ii) 1E(A) = I (A)] + 1ANG(A) — Iny(A) = I6(A) /2 + 1ANG(A)] — Imy(4)] =
= 1Al — I (A))/2 — In, (4) < |l
(iii) |&(A)| = |A| iff A is reduced (and then f(A) = A).

Proof. Easy to check. A

3.3 Lemma. For every A€ %, thhere exists m > 0 with {"*1(A4) = £m(A).
Proof. By 3.2(ii), |¢(A4) < |A| and the rest follows from 3.2(iii). A

3.4. Let A € &, Then we put £(A4) = ™ (A) where E™(A4) = Em*1(A) (see 3.3).
3.5 Lemma. For every A€ %, the set £(A) is reduced and |E(A)| < |A|.
Proof. See 3.2 and 3.4. A

} e
) =
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3.6 Lemma. Let A, Be %, Then:
(i) ¢(A) U ¢(B) = c(4uB)and (Au B)\¢(A L B) < (A\¢(A)) U (B\¢(B)).
(ii) p(A) v p(B) = u(4 v B).

Proof. Easy to see. &

3.7 Lemma. Let A,Be %, and i€ N. Then i€ {(A) n &(B) iff at least one of
the following seven cases takes places:

(1) iisodd icAnBandi— 1¢ AU B;

(2) iiseven,icAnNnBandi+ 1¢ A v B;

(3) iisodd, T, < A,ie Bandi — 1¢ B;

(4) iisodd, T, = B,ic Aandi — 1¢ A;

(5) iiseven, , < A,ieBandi + 1¢ B;

(6) T < AnB.

Proof. Easy to see. A

3.8. Define a relation 1 on &# by (B, A) € A iff B = (A\ T) u {i}for some i € N
such that T, = A. Moreover, put k = A4 U idg, denote by g the transitive closure
of A defined on & and finally, put ¢ = ¢ U idg.

3.9 Lemma. (i) A is irreflexive and antisymmetric.

(ii) If (B, A) € A, then |B| < |A| (more precisely, |A| — 2 < |B| < |4] — 1).
(iii) x is reflexive and antisymmetric.

(iv) If (B, A) € k, then |B| < |A|.

Proof. Obvious from the definition of 1. A

3.10 Lemma. (i) g is irreflexive, antisymmetric and transitive (i.e., g is a sharp
ordering of ¥ ).
(ii) (B, A) € g iff there are m > 1 and Ay, A,,..., A, € F such that A, = B,
A, = Aand (A, A )edfori=0,1,...,m— 1.
(iii) If (B, A) € o, then |B| < |A|.

Proof. Easy to see (use 3.9). A

3.11 Lemma. (i) o is reflexive, antisymmetric and transitive (i.e., ¢ is a (re-
flexive) ordering of &) and a is the transitive closure of k.
(ii) (B,A)e o iff there are m > 1 and Ay, A,,..., A,€ F such that A, = B,
A, =Aand (A, Ay )€K fori=0,1,..., m — 1.
(iii) If (B, A) € o, then |B| < |A|.
Proof. Easy to see (use 3.9 and 3.10). A

3.12 Lemma. Let (B, A) € k. Then:
(i) For every i€ B there is at least one j € A, wih (i,j) € & U idy.
(i) For every k € A there is at least one l € B, wih (l,k) € a L id.

Proof. Obvious from the definition of a, 4 and k. &
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3.13 Lemma. Let (B, A) € 6. Then:
(i) For every i€ B there is at least one j € A with (i,j) € y.
(i) For every k € A there is at least one | € B with (I, k) € y.

Proof. Combine 2.3, 3.11(ii) and 3.12. A
3.14 Lemma. (¢(A), A) € o for every Ae .

Proof. If A is reduced, then E(A) = A and there is nothing to show. Henceforth,
let u(A) = {iiy...,imm > 1,i; < iy < .. < ip}. Now, put 4,, = A and 4, _, =
= (4\T)u {i} for j =m, m — 1,..., 1. One checks easily by induction that
A = (A\Ur i1 T) U {is1ijs2 ..., imj forevery j =m — 1, m — 2,..., 0. Clear-
ly, Ao =¢(A), (An_1,Am) €A (Am_2Apn_1) € 4,..., (Ao, A;) € A. Consequently,
(E(A).A4) = (Ap Ar)€0. A

3.15 Corollary. Let A€ #. Then:
(i) (£"(A), A) € o for every m > 0.
(i) (¢(4)A4)eo.

3.16 Remark. One sees easily that minimal elements of the ordered set % (o)
are just reduced sets. Now, if 4 € %, then £(A) is reduced and (£(A), 4) € o.
(3.15)

3.17 Example. (cf. 3.16) Put A = {2,3,4,5} Then &(4) = {1,2}, {1,2} is
reduced, and so &(4) = {1,2}. On the other hand, ({2,3},4) € 4 and ({1},{2,3})€ A.
Thus ({1},4) € o, {1} is reduced and {1} # {1,2}

318 Let S be a zp-semigroup and f:N — S a mapping such that
f(2i)) + f(2i + 1) = f(i) for every ieN. Define a mapping g: # — S by
g(0) = osand g(A4) = Y ca f (i) for every A € Z.

3.18.1 Lemma. If (i,j)€ B, then f(i)e S + f(j).

Proof. The assertion is clear for (i,j)e o and the general case follows by
induction on the length of the corresponding a-chain. A

3.18.2 Lemma. If A€ & such that (i,j) € B for some (i,j) € A, then g(A) = o.

Proof. By 3.18.1, f(i)= f(j) + a for some aeS. Then f(i)+ f(j)=
=2f(j))+a=o0 A

3.18.3 Lemma. Let A€ % be such that n,(A) =0 (see 3.1). Then
g(4) = g(&(4)).

Proof. Easy to check directly. A
3.18.4 Lemma. g(A U B) = g(A) + g(B) for all AABe #, An B = 0.
Proof. Obvious. A
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4. Auxiliary concepts (C)

4.1. A finite subset A of N will be called pre-pure if (i, j) ¢ Bforall i,je A. The
set A will be called pure if it is both pre-pure and reduced (see 3.1). We denote
by 2 (2, resp.) the set of non-empty finite pre-pure (pure, resp.) subsets of N and
we put 2, = 2 U {0}(2, = 2 U {§},resp.).

Notice that if A is pre-pure, then 711(/1) =0=n, (A) (see 3.1).

4.2 Lemma. Let (B, A) € A be such that A€ 2. Then Be 9.

Proof. We have B = (A\T) u {i},ie N, T, = A. Take j,k € B. If j, k € A, then
(-k)¢ B, since Ac 2. If j¢ A, k¢ A, then j = i = k and (j, k) ¢ B again.

If jeA and k¢ A, then k =i, 2ie A, (i,2i)ep, (j,2i)¢p, and therefore
(. k) = (j,1) ¢ B. Assume, finally, that j¢ 4 and k€ A. Then j = i and 2i # k #
# 2i + 1. Further, since A€ 2, we have (2i,k)¢ f and (2i + 1,k)¢ B. Now,
it follows from 2.6 that (j,k) = (i,k)¢ . We have proved that (j, k)¢ B, so
Bel. A

4.3 Lemma. Let (B, A) € o be such that A€ 2. Then Be 9.
Proof. Combine 4.2 and 3.11(ii). A

4.4 Lemma. Let A,B,Ce 2 be such that (B,A)e A, (C,A)e A and B # C.
Then there is D € 2 such that (D, B) € 1 and (D,C) € A.

Proof. We have B = (A\T) u {iland C = (C\T) v {j},i,jeN, Tu T < 4.
Since B # C, we have also i # j and it follows that T, < Band T, = C. If i = 2j
or i = 2j + 1, then i € 4, a contradiction with (i,2i) € f. Thus 2j # i # 2j + 1,
(B\T)u {j}= D and (D,B) € A, where D = (A\(T, u T))) U {i,j} € 2 use (4.3).
Quite similarly, D = (C\ T)) u {i}and (D,C)e i. A

4.5 Lemma. Let A,B,C € 2 be such that (B, A) € o and (C, A) € 0. Then there
is D € 2 such that (D,B) € 6 and (D,C) € o.

Proof. There are B,, ..., B,,, Cy, ..., C,€ 2,m,ne N, such that By = B,C, = C,
B, = A = C, and all the pairs (B, B.,,),(C;,C;,,), i=0,1,.., m—1,j=0,
1,...,n — 1 are in k (use 4.3).

Firstly, assume that m = 1 and define sets E,_j,..., E, € 2 by induction in the
following way: It follows from 4.4 that (E,_,, B) € k and (E,_,, C,_,) € k for some
E, €2 Now, if 1 <j<n and the sets E,_j,..., E;e 2 are found such that

(Evot,Cooy) €K, (E,_5,Cr2)EK,..., (E, C) €K, (E,_1,B) €K, (E,_2, E,_)) €K, ...,
(E,E;;1) €k, then (by 4.4 again) there is E;_;€ 2 with (E;_;,C;_;)ek and
(E;_, E;) € k. Consequently, (Eo, B) € o and (Eo, C) = (Ey, Co) € k = 0. We can put
D = E, in this case.

In the general case, we proceed by induction on m + n. According to the

preceding step of the proof, we can assume tat m > 2. Then, by induction, there
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is F € 2 with (F, B) € o, and (F, C) € 0. Further, (B, B) € k and, due to the first part
of the proof, we find D € 2 such that (D, B) € ¢ and (D, F) € 6. Then, of course,
(D,C)ec. A

4.6 Remark. Let 4,B,C e 2 be such that (B,4)€¢ and (C,A)eg. By 4.5,
(D,B)e g and (D,C)e o for some De 2. If D = B, then (B,C)€e o, and hence
either B = C or (B, C) € ¢. Similarly, if D = C, then either B = C or (C, B) € .
Thus, if B # C, (B,C) ¢ ¢ and (C, B) ¢ g, then (D, B) € ¢ and (D, C) € g.

4.7 Lemma. Let A € 2. Then:

(i) &"(A) is pre-pure and (¢™(A), A) € o for every m > 0
(ii) &(A) is pure and (&(A), A) € 0.

Proof. We have (£"(A), A)e ¢ and (£(A4), 4) € o by 3.15. Consequently, both
&™(A) and &(A) are pre-pure by 4.3. Finally &(A) is reduced, and hence pure. A

4.8 Remark. The ordering ¢ of & (see 3.11) induces an ordering of 2 and we
will denote it again by o (but see also 4.3). By 4.5 the ordered set 2(o) is
downwards confluent and (see 3.16) minimal elements of 2(o) are just pure sets.
Of course, 2(o) satisfies the minimum condition, and therefore for every 4 € 2
there exists a minimal element M, € 2 with (M4, A) € 0. Because of the confluen-
cy, M, is determined uniquely and it follows from 4.7(ii) that M, = £(A)
(cf. 3.17).

4.9. Lemma. Let A,B,Ce 2 be such that AnB =0, AuBe2 and
(C,A)ek. Then CA B =@ and C U Be 2.

Proof. We can assume that C # A. Then (C,A)e A and C = (A\T) u {i},
ieN, T, = A. Moreover, if je C n B, then A N B = () implies j = i. But then
i,2ie AUB and (i,2i)ef yields a contradiction with 4 U Be 2. Thus
CnB=0 and it remains to show that C U Be 2. Let, on the contrary,
k,l € C U Bbe such that (k,I) € B. Since (A\ T) U B e 2 and C € 2, we have either
k=i leBorkeB, | =i.

If k = iand l€ B, then (i,/) € f and A N B = () implies 2i # [ # 2i + 1. Now,
by 2.6, either (2i,])€ p or (2i + 1,I) € B, a contradiction with 4 U B € 2.

If ke B and | = i, then (k,i)€ B, and hence (i,2i) €  implies (k,2i) € f. But
k,2i e A U B, a contradiction with A U Be 2. A

4.10 Lemma. Let A,B,C,De 2 be such that AnB=0, AUB =29,
(C,A)ex and (D,B)e k. Then CND =@ and C U D€ 2.

Proof. By 49, C n B = () and C U B € 2. Consequently, using 4.9 once more,
weget CnD=0and CuDe2. A

411 Lemma. Let A,B,C,De€2 be such that AnB=0, AuBe2,
(C,A)e o and (D,B)eo. Then CA D = Qand C U D€ 2.
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Proof. There are m > 1 and C,,..., C,,, D,..., D,,€ 2 such that C, = C, D, = D,
C,=A,D, = Band (C,C.,,), (D;,D;,,) €k for every i = 0,1,...,m — 1. Now,
our result follows easily from 4.10 by induction on m. A

412 Lemma. Let A,B€ 2 be such that An B = (@ and A L Be 9. Then:
(i) £"(4) N &"(B) = @ and £"(B) € 2 for every m > 1.

(ii) E(4) n E(B) = @ and E(A) L E(B) € 2.

Proof. Combine 4.11 and 4.7. A

413 Lemma. Let A,B,Ce€2 be such that AnB =0, AUuBe2 and
(C,A)e k. Then (C U B, A U B)e k.

Proof. We can assume that C # A. Then C = (A\T)) u {i},ie N, T, < 4, and
weget CUB = (A\T)uBuU {i}=((4 v B)\T)u {i}.Thus (C U B, 4 U B)e
€l A

4.14 Lemma. Let A,B,C,De 2 be suchthat AnB =0, AuBe2,(C,A)ex
and (D,B) € k. Then (C U D, AU B)ea.

Proof. By 4.13, we have (C U B, A U B) € k. Further, by 49, C " B = § and
C U B € 2. Consequently, using 4.13 again, we get (C U D, C U B) € k. From this,
(CuD,AUB)eo. A

4.15 Lemma. Let A,B,C,De2 be such that AnB=0, AuBe2,
(C,A)e o and (D,B)e o. Then (C U D, AL B)eo.

Proof. Using 4.14, we can proceed similarly as in the proof of 4.11. A

4.16 Lemma. Let A,Be 2 be such that An B =0 and A L Be 2. Then:
(i) (£"(A) v &"(B), A U B)€ o for every m > 0.

(ii) ((4) v E(B), AU B)eo.

Proof. Combine 4.15 and 4.7. A

~4.17 Lemma. Let A,Be 2 be such that An B = O and A U Be 2. Then
(4 v B) = £(E(4) v (B))
Proof. It follows from 4.7 and 4.16(ii) that (((4 U B), A UB)eo and

(¢(E(A) v &(B)), 4 U B) € 0. However, both the sets (4 U B) and &(&(A) u &(B))
are pure (see 4.7(ii)), and hence they coincide by 4.5 (see also 4.8). A

4.18 Lemma. Let A,B,Ce€ 2 be such that AnC =0, AuCe2 and
(C,B)eo. Then A~ B = .

Proof. Let, on the contrary, i€ A n B. By 3.13(iii), (j, i)ey for some je C.
But i,je AU C and A U C e 2. Henceforth, i = j and ie A n C, a contradic-
tion. A
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4.19 Lemma. Let A,Be 2 be suchthat A n &(B) = Qand A L &(B) € 2. Then
AnB=0.
Proof. We have (&(B), B) € o by 3.15(ii) and we use 4.18. A

4.20 Lemma. Let A,B,C e 2 be suchthat AnC =0, Au Ce 2and (C,B)e
€0. Then A LU Be 2.

Proof. Let on the contrary, (i,j)e f for some i,je A U B. Since 4,B€ 2, we
have either ie A,je Borie B, je A.

Firstly, assume i€ A, je B. By 3.13(iii), (k,j)e B for some ke C. Since
ANnC =0, we have k # i, and hence either (i,k)ep or (k,i)ep by 2.9,
a contradiction with A U C € 2.

Next, let i€ B, je A. Again (k,i)e B for some k € C, and therefore (k,j)€ B,
a contradiction with A U Ce 2. A

4.21 Lemma. Let A,B€ 2 be suchthat A n &(B) = Qand A U &(B) € 2. Then
Au Bed.

Proof. Combine 3.15(ii) and 4.20. A

4.22 Lemma. Let A,B,C,D € 2 be such that (C,A)e o, (D,B)ec,CnD =0
and CuDe2 Then AnB=0and Au Be 9.

Proof. By 4.18 and 420, A n D = @ and A U D € 2. Using 4.18 and 4.20 once
more, we get our result. A

4.23 Lemma. The following conditions are equivalent for A, B € 2:
(i) AnB=0and AU Be 9.
(ii) There exists m > 0 such that £"(A) N &™(B) = @ and &™(A) L E"(B) € 2.
(iii) For every m > 0, &"(A) n &™(B) = 0 and £™(A4) L ¢™(B) € 2.
(iv) E(A) " E(B) =0 and E(4) L E(B)e 2.

Proof. Combine 4.7, 4.12 and 4.22. A

4.24 Lemma. Let A € 2 be such that k = max (A) is even. Then k + 1¢ A and
Avu{k+ 1}e 2.

Proof. Clearly, k + 1¢ A and k = 2j, je N. Now, assume that 4 U {k + 1}¢ Q.
Since A < k + 1, there is ie A with (i,k + 1)e B. Ifk + 1 =2i + 1, theni = j
and (i,k) = (i,2i)e B, a contradiction with 4€ 2. Thus k + 1 # 2i + 1 and
(i.j)€ B by 2.7. On the other hand, (j,2j) € B, and hence (i, k) = (i,2j) € B, again
a contradiction. A

4.25 Lemma. Let A € P be such that A # {1} and k = max (A) is odd. Then
k—1¢Aand A {k— 1}e 2.

Proof. We have k = 2j + 1 > 3 and, since A is reduced, we conclude that
k —1¢ A. Now, assume that 4 U {k — 1}¢ 2. Since max (A\{k})< k — 1,
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there is ieA with (ik—1)ep. If k—1=2, then i=j and
(i,k) = (i,2i + 1) € B a contradiction with A € 2. Thus k — 1 5 2i and (i,j) € B by
2.7. On the other hand, (j,2j + 1)€ B, and hence (i,k) = (i,2j + 1) e B, again
a contradiction. A

4.26 Corollary. Let A € 2 be such that A # {1}.The there exists at least one
le N such that [¢ A and A U {l}e 2.

4.27 Lemma. Let Ac2 and i€N be such that M = {je A|(i,j)e B} is
non-empty. Put k = max(M).

(i) If k is even, then A L {k + 1}e 2.

(ii) If k is odd, then k > 3 and A L {k — 1}e 2.

Proof. (i) If l € A is such that (I,k + 1) € B, then (I, k) € B by 2.12(ii), a contra-
diction with 4 € 2. Onn the other hand, if /€ A is such that (k + 1,[) € B, then
(i,k + 1) € B (2.12(i)) implies (i, /) € f and | € M, a contradiction with k < . Thus
Au{k+ 1}e

(ii) If l € A is such that (L,k — 1) € B, then (I, k) € B by 2.12(i), a contradiction
with 4 € 2. On the other hand, if | € A is such that (k — 1,]) € B, then (i,k — 1) e
(2.12(ii)) implies (i,/)ep and le€M, a contradiction with k < I. Thus
Auik—1}e2 A

4.28. Let S be a zp-semigroup and f:N — S a mapping such that f(2i) +
+ f(2i + 1) = f(i) for every ieN. Define g:2,—> S by g(f) = o5 and
g(A) = Yieaf (i) for every A € 2 (see 3.18).

4.28.1 Lemma. g((A4)) = g(A) for every A€ 2.

Proof. By 3.18.3, g(¢(A)) = g(A). Consequently, we get g(&™(A4)) = g(A4) by
induction on m > 0. A

5. One particular zs-semigroup

5.1. Define a binary operation @ on the set &, of (finite) pure subsets of N (see
41)by A® B=E(AUB)forall A,Be ?suchthat AnB=0and AU Be 2
(see 4.7(ii), and A @ B = 0 otherwise.

5.2 Lemma. (i) A® B =B ® A.

(i) A0 =0=00 A

(iii) A® A =0.

Proof. Obvious from the definition of the operation ®@. A

5.3 Lemma. Let A,B,CeP?. Then A@® (B® C) # 0 iff the sets A,B,C

are non-empty, pair-wise disjoint and AU BU Ce 2. Then A® (B® C) =
=(AUBuUC)
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Proof. (i) Let A ® (B @ C) # (. Then the pure sets A, B,C are non-empty,
Br\_C=Q),_BuCe.@,B(—BC=E(BUC),Anf(BuC)e.@andA(—B(B@C)=
= E(Au(E(Bu Q)

Using 4.19 and 4.21, we get An(Bu C) =0 and A U (Bu C)e 2. Conse-
quently, the sets A4, B, C are pair-wise disjoint and A U B U C € 2. Finally, A ®
@BOC)=¢,AUiBuC)=¢¢EA)ui(BuC)=¢AuBuUC)by4.ll.

(i) Let the sets 4, B, C be non-empty, pair wise disjoint and let A U Bu C e 2.
Then BuCe 2, so that B@ C = &(Bu C). Moreover, Ané(BuC) =90
and AUé(BuUC)e2 by 411. Thus A®@BDC)=ADEBUC) =
=8AUEBUCQ)#0. A

5.4 Lemma. Let A,B,Ce %, Then (A@® B)® C # 0 iff the sets A,B,C
are non-empty, pair-wise disjoint and AU B U Ce 2. Then (A® B)® C =
=E¢AuUBuUC)

Proof. Similar to that of 5.3. A

5.5 Lemma. % (@) is a commutative zp-semigroup and Q) is the absorbing
element of this semigroup.

Proof. Combine 5.2, 5.3 and 54. A
5.6 Lemma. For every A€ & there are B,Ce & such that A= B ® C.

Proof. If |A| =1, then A = {i},ieN, and we put B = {2i}, C = {2i + 1}.
Then B@OC=A. If A=A, UA, where A,nA,=0 and A, A, are
non-empty, then 4, A,e P and A = A, @ 4, A

5.7 Proposition. (@) is a non-trivial commutative zs-semigroup.
Proof. See 5.2,5.5 and 5.6. A

58 Lemma. Let A,,..., A,e?, m>2Then A, @ ... ® A, # 0 iff the sets
Ay, ..., A, are non-empty, pair-wise disjoint and A, U ... U A, € 2. Then A, ®
@. DA, =¢(Av.. U4,

Proof. We will proceed by induction on m. The case m = 2 is clear from the
definition 5.1. f m >3 and B=A, ® ... D A,,_1(see 5.7),then 4, D ... P A, =
=B®A,and BO A #Qiff B#0 # A,, BN A, =0 and Bu A4, € 2; then
B@® A, = £(B U A,,). The rest is clear. A

5.9 Proposition. (i) If A = {i, ..., in},m > 1, is a pre-pure set, then {i,} @ ...
. @ {i.} =E&(A) (and s0 A = Y, @ {i}, provided that A is pure).

(ii) The semigroup &, is generated by the set {{i}| i e N}.

(iii) (2i} @ {2i + 1} = {i}for every ie N.

Proof. Use 5.7 and 5.8. A
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5.10 Lemma. Let A € 2 be such that A # {1}and and let k = max (A).

(i) Ifk_iseven, thenk > 2,k + 1¢_AandAu{k+ l}e,@andA® {k+ 1}=
~ £ (ko {k2).

(ii) Ifk_is odd, then k > 3,k — 1¢ A, Au {k— I}GQ and A ® {k— 1} =
= (AN {k})u {(k — 1)/2}).

Proof. See 4.24 and 4.25. A

5.11 Corollary. Let A € 2 be such that A # {1}.Then A @ {I} # 0 for at least
one [ e N.

5.12 Proposition. Ann(%(®)) = {Ae 2|2 ® A = 0} = {0,{1}}(and hence
|Ann(Z,(®))| = 2).

Proof. Clearly, both the sets ¢ and {1} belong to the annihilator. On the other
hand, if 4 € 2 is such that A # {1},then it follows from 5.11 that A is not in the
annihilator. A

5.13 Lemma. Let Ac? and ie N be such that M = {je A|(i,j)€ B} is
non-empty. Put k = max(M).
(i) If k is even, thenk > 2,k + 1¢ A, Au {k + l}e,@andA(-B{k+ 1} =
= £((AN (R 2
(ii) If k is odd, then k >3,k — 1¢ A, Au{k—1}e2and A® {k— 1} =
= (AN (kDo {(k — 1)/2}).
Proof. Sec 427. A

5.14 Proposition. Let A,Be? be such that A # B and {A,B} #*
# {0,{1}}(= Ann(2(®))). Then there exists at least one p € N such that either
A®{p}=0+#B@ {plorA® {p}# 0 =B {p}.

Proof. 1t is divided into four parts:

(i) A =0 (or B=9), then B # {1} (or A # {1})and the assertion follows
from 5.11.

(i) Let ie A be such that M = {je B|(i,j)e B} # @ and let k = max(M).
Clearly, i¢ B. If k is even, then (i,k + 1) by 2.12(i), and hence
A®{k+1} =0+ B {k+ 1} by 5.13().

If k is odd, then k > 3, (i, k — 1) B by 2.12(ii), and hence A ® (k — 1} =
=0 #B® {k— 1} by 5.13(i).

(iii) Let j € B such that N = {ie 4 |(j,i) € B) # 0. Now, we can proceed in the
same way as in (ii).

(iv) In view of (i), (ii) and (iii), we can assume that 4,Be 2, (i,j) ¢ p and
(J,i)¢ B for all i€ A and j € B. Now, since A # B, we find ke A\ B (or
(le B\ A). Then B U {k}e 2(A U {I}€ 2), and therefore A @ {k} =0 #
#B@{kj(A®@ {}#0=Ba{l}). A
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5.15 Proposition. The semigroup P,(®) is subdirectly irreducible and the
monolith of 2, (i.e., the smallest non-identical congruence) is just the congruence
corresponding to the ideal Ann(%,(®)). That is, ps, = {(0,{1}){{1},0)} U ids,

Proof. Let g # ids, be a congruence of Z,(®) and let #* = {Ke 2 |(K,0) € ¢}
There are A, B € 2, such that A # B and (A, B) € ¢. Now, it follows from 5.14 that
A + 0 and we take Le A" such that | = max (L) is smallest possible. If | = 1,
then L = {1}and ({1},0) € ¢. On the other hand, if I > 2, then, by 5.10, there is
g€ N such that L ® {q}# 0 and max(L @ {q}) < I. Of course, (L ® {g}0)€e¢
and this is a contradiction. A

5.16 Proposition. Let S be a zp-semigroup and f :N — S a mapping such that
f(2i) + f(2i + 1) = f(i) for every i€ N. Put g(9) = o(= o5) and g(A) = Y,ea =
= f (i) for every A€ P. Then g is a homomorphism of the semigroup Z,(@®) into
the semigroup S. Moreover, if f (1) # o, then g is injective.

Proof. (i) First of all, let A,Be %, and C = A @ B. We have to show that
g(C) = g(4) + g(B).

IfA =0 (or B=0),thenC =9,g(A4) = o(or g(B) = 0),g(C) = o, and hence
9(C) =0 =g(4) + g(B).

If ieAnB, then C=0, g(C) =0, g(4) + g(B) =2f(i) + u for some
ue S v {0}and hence g(C) = o = g(A4) + g(B).

If A#0#B, AnB=0 and AUB¢2, then C =9, g(C)=0 and
g(C) = 0 = Yieaunf (i) = g(A4) + g(B) by 3.18.2.

IfA#0+#B AnB=0and AU Be 2, then C = £(4 U B) and, by 4.28.1,
9(C) = g(A U B) = Yiecaos f () = Yiea S () + Dies f (i) = 9(4) + g(B).

(ii) Assume that f (1) # o and put ¢ = Ker(g). Then ({1},0) ¢ ¢, and hence the

equality ¢ = idp, follows from 5.15. A

5.17 Proposition. Let S be a zs-semigroup. Then for every a€S, a¢s,
a # os, there exists an injective homomorphism g of %,(@®) into S such that

g({1})=a

Proof. By induction on m > 0, define a mapping f,, : {1,2, e, 2m,2m + 1} - S
in the following way: Firstly, f;(1) =a. Then if m >0 and f,... f, are
defined, then we put f,.,,|{1,2,....,2m + 1} =f, and f,,,(2m +2) =x
and f,,,(2m + 3) =y, where x,y =S are chosen such that x + y =
= fu(m + 1). Now, put f = Uf,, so that f is mapping of N into S such that
f(1) =aand f(2i) + f(2i + 1) = f(i) for every i e N. The rest follows from
5.16. A

5.18 Proposition. Let S be a zs-semigroup. Then for every a€ S there exists
a homomorphism g of 2Z,(@®) into S such that g({1})= a.

Proof. This is an immediate consequence of 5.17, the case a = o being
trivial. A
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6. Trees in zp-semigroups

6.1. In this section, let S be a non-trivial zp-semigroup. An infinite sequence
a = (a;,ay, ay,...) of elements from S (i.e., a mapping from N into S) will be called
an S-tree if a; = a, + ay,, for every i e N.

We denote by 7 (= 7 (S)) the set of trees.

6.1 Proposition. J is a subsemigroup of the cartesian power S°.

Proof. Clearly, the constant sequence o = (o) belongs to 7, and so J is
non-empty. Furthermore, if a,b €  then the sequence a + b = (a; + b)) is a tree,
too. A

6.2. If a = (a;,a,,as,...), then we denote by R (a)(= R(S,a)) the subsemigroup
of S generated by the elements a,,a,,as, ..., i.e., R(a) = (a4 |ie N)s

6.3 Theorem. Let a = (al,a2a3,...) be tree such that a; # o. Then there exists
an isomorphism g of 2,(®) onto R(a) such that g({i})= a; for every ie N (in
particular, g({1})= a,).

Proof. Put f (i) = a; for every i€ N, g(0) = o5 and g(A) = Y4 f (i) for every
A€ 2. By 5.16, g is an injective homomorphism of the semigroup 2,(@®) into
the semigroup S. Since %,(@®) is generated by the set {{i}|ie N} (5.9(ii)), the
image Im(g) is a subsemigroup of S generated by the set g({{i}jie N})=
= | Jien f (i). Consequently, Im(g) = R (a) and g is an isomorphism of 2, (@) onto
R(a). A

6.4 Corollary. Let a,beJ be trees such that a; # o # b,. Then the
zs-semigroups R (a) and R (b) are isomorphic.

6.5 Remark. According to 5.9(ii), the sequence w = ({1},{2},{3}....) of ele-
ments from &, is a tree and R (W) = 2,.

6.6 Lemma. Let a be a tree.
(i) If (i,j) € B, then a; = a; + a for some a € R (a).
(ii) If (i,j) € 7, then a; = a; + u for some u € R(a) L {0}.

Proof. (i) The assertion is clear for (i,j) € o and, in the general case, it follows
by induction on the length of the corresponding a-chain.
(ii) This follows immediately from (i). A

6.7 Lemma. Let a be a tree and let i,je N be not comparable in y. Then
1 #i+#j+#1and if ke N is maximal with respect to (k,i),(k,j) € B (see 2.11),
then a, = a; + a; + u for some u € R(a) U {0}.

Proof. There are m,n,iy,..., iy joy--» jn € N such that iy = k = jo, i,, = i, j, =
and all the pairs (ig,i1), .--s (im—1 im)> (forJi1)s -+ (n—1-Jiw) @re in a. Clearly, (i;,i) €y,
(isj)€y, and hence a, = a; + u,, a;, = a; + u, for some u,,u, € R(a) L {0}
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(6.6 (i)). If i, # ji, then (k,i;) € «, (k,j;) € « implies a;, + a;, = @, and therefore
G=a+a+u+u=a+a+uu=u+ueSul}

On the other hand, if i; = i;, then using the maximality of k, we get either
(i,i)¢B or (jnj)¢B. But, if (i,,i)¢ B, then j, =i, =i, and hence (i,j) €,
a contradiction. The other case is similar. A

6.8 Proposition. Let a be a tree such that a; # o and let i,j € N. The following
conditions are equivalent:
(i) (i.j) e B
(ii) a;€ R(a) + g
(iii) a;e S + a;

Proof. (i) implies (ii) by 6.6(i) and (ii) implies (iii) trivially.

(iii) implies (i). Assume, on the contrary, that a; = a; + a, a€ S, and that
(i,j)¢ B. If (i,j)ey than a; = a; + u, ue S U {0}, by 6.6(ii), and hence a; =
=g+u+a=a,+ut+a+ut+a=a+2u+2a=a;+2u+o0=o.But
(1,i) € y implies a; = a; + v, so that a; = o, a contradiction. It follows that (i, j) ¢ »
and (j,i) ¢ 7. Now, if k is an in 6.7, then @, = a; + a; + w, we S U {0}.Again, we
get a, = 2a; + u + w = o0 and a; = o, a contradiction. A

6.9 Corollary. Let a be a tree such that a, # o and let i,j € N. The following
conditions are equivalent:
(i) (ij) €.
(i) a; <g() ;.
(iii) a; <s a;
6.10 Proposition. Let a be a tree such that a; # o. Then the elements o,a,, a,,
as,... are pair-wise different.

Proof. If a; = a;, then ;<X a; and 4; X g; and @; X g; implies (i,j)ey and
(j,i) € y (6.9). Thus i = j. (Notice that assertion follows immediately from 6.3). A

6.11 Proposition. Let a be a tree such that a, # o. The following conditions
are equivalent for permutation p of N:

(i) The sequence (ayu), Ay Ay ---) is a tree.

(ii) p satisfies the equivalent conditions of 2.13.

Proof. (i) implies (ii). Put b; = a,,. Clearly, b; # o. Further, if (i, j) € B, then
bieS + b, and so (p(i),p(j) € B (use 6.8). Similarly, if (p(i),p(j)) e B, then
Gep.

(ii) implies (i). We have ayp) + Gyiv1) = Gpy = Aopp) + o1 = @, (i) A

6.12 Lemma. Let a = (a,,a,,a;,...) be a tree and me€ N. Put by, | = ayp,

forall k > 0 and 0 < | < 2 Then the sequence (b, b,,bs,...) is a tree (we have
bl = am).

Proof. Easy to check directly. A
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7. Trees in zp-semigroups — continued

7.1. Let S be a non-trivial zp-semigroup. A finite sequence (al,..., a,,,), m>1
of elements from S will be called a partial tree if m is odd and a; = ay + ay,,
for every i = 1,2,..., (m — 1)/2.

7.2. Let a = (a,,...,a,) and b = (b,..., b,) be partial trees. We say that
b extends a if m > n and q, = by,..., a,, = b,,.

The relation of extension determines a (reflexive) ordering on the set # of
partial trees. Maximal elements of this set are non-extendable partial trees.

Ifc= (c,, Cs, c3,...) is a tree, then we say that c¢ extends the partial tree a if
Ay = Ciyeeny Ay = Cppe

7.3. If a = (ay,..., a,) is a partial tree, then R(a)(= R(S,a)) is the subsemi-
group of S generated by the elements ay,..., a,. According to 1.2, we have
IR(a)| < 2.

7.4 Lemma. Let a = (ay,..., a,), m = 2k + 1, k > 0, be a partial tree. Then
IR(a)] < 2%+

Proof. R(a) is generated by the set {4 |k + 1 < i < m} and 1.2 applies. A

7.5 Lemma. Let S be a zs-semigroup and a = (a,,..., a,,,), m=2k+ 1,k>0,

be a partial tree. Then there is a partial tree b = (b, ..., b,) such that
n=m+ 2 =2k + 3 and b extends a (i.e., a, = b,,..., a,, = b,,).

Proof. We have k + 1 < m and there are b,,,,b,,,, €S with a;,,, = b,,,, +
+ bpio A

7.6 Lemma. If S is a zs-semigroup, then every partial tree extends to a tree.

Proof. Denote by m the length of a partial tree a. By induction, put ,a = a and,
for n > 0, let ,,,a be a partial tree of length m + 2n + 2 such that ,,a extends
the partial tree ,a (see 7.5). One sees easily, that there exists just one tree b = U,a
extending all the partial trees ,a,n > 0. A

7.7 Corollary. (cf. 5.17) If S is a zs-semigroup, then for every a € S there exists
at least one tree (ay,a,, as,...) such that a, = a.

7.8 Remark. Let S be a zp-semigroup. Then S is a subsemigroup of
a zs-semigroup T. Now, if a is a partial S-tree, then there exists a T-tree b, such
that b extends a. Clearly, R (a) < R(b).

8. A few remarks

8.1. Define an operation % on the set &%, of finite subsets of N by A %« B =
=AuUBifA#0+#B,An B = 0, and 4 % B =  otherwise.
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8.1.1 Proposition. %, (%) is a free zp-semigroup over the set N = {{i}|ie N}
and Ann (%, (%) = 0}

Proof. Easy to check. A
8.1.2. Denote by v the congruence of %, (%) generated by the ordered pairs ({i},

{2i,2i + 1}),ie N, put &(*) = %, (%)/v and denote by 7 the natural projection
of &, onto &, (so that v = Ker(n)).

8.1.3 Lemma. &, is a zs-semigroup.

Proof. The semigroup &, is generated by the set m(N) and n(N) <
< n(N) % n(N). By 1.6, &, is a zs-semigroup. A

8.1.4 Proposition. There exists an isomorphism @ : &,(%) = P,(®) such that
e({i}/v)= en({i})= {i}for every ie N.

Proof. Since #,(%) is free over N, there is a homomorphism « : %, (%) - 2(®)
such that o | N = idy. Moreover, since % (@) is generated by N (5.9(ii)), the
homomorphism « is projective and it follows from 5.9(iii) that v < ker ().
Consequently, o induces a projective homomorphism ¢ : &, (%) — %, (@) such that
o({i}|v) = {i}for every i e N. On the other hand, {2i}/v {2i + 1}/v = {i}/vand
it follows from 5.16 that there exists a homomorphism ¢ : Z,(®) — &,(%) such
that ¢ ({i})= {i}/vfor every i e N. Now, ao({i}/v)= {i}/v.ie., 6o | n(N) = idyw)
and hence g = ids, since &, is generated by 7 (N). Thus g is injective, ¢ is an
isomorphism and ¢ = ¢~'. A

8.1.5 Lemma. 4 = %,\ 2 is an ideal of the semigroup 5‘—0(*)
Proof. Clearly, )e 4 and if Ae #\ 2 and Be #,,thenn AUB¢ 2. A
8.1.6 Lemma. ¥ = n~'(0).

Proof. We have nt(f) = @/v = o and, if Ae #\2, then on(A) = ¢(Yica %
* {i}/V)=Yiea® {i}=0, so that n(4) =0 and Aen'(0) Thus ¥ <
< n~'(0). On the other hand, if A€ 2, then on(A4) = Y, ® {i}= &(4) # 0
(5.9G)). A

8.1.7 Lemma. If A, B € 2, then n(A) = n(B) iff (A4) = &(B).
Proof. The assertion follows easily from 5.9(i)). A

8.1.8 Proposition. v = (¥ x 9)u {(4,B)| 4,Be 2, (A) = &(B)}.
Proof. Combine 8.1.6 and 8.1.7. A

8.2 Remark. As it follows from 8.1.4, the zs-semigroup %, (@) is, as a semig-
roup, given by generators a,,a,, a;,... and relations a; + a; = a; + a;, 2a; = 3a;,
a; = Ay + Qi+ 15 iaje N
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8.3. Let M be a set, .# the set of all subsets of M and A" a subset of
M. Further, let & be a subset of .# such that € ¥ and, if 4,Be &£\ {0}
are such that A n Be A/, then A U Be %. Now, define an operation ® on
¥ by AB=AUB if A, BeS\{0}, AnBe A and A ® B = other-
wise.

8.3.1 Lemma.

(i) A® B=B® A forall A,BeS.

() A®D=0=0® Aforall Ac ¥.

(iii) A® A = 0 for every Ac S\ N.

(iv) A® A = A for every Ae S n N

(iv) A® A = 0 for every Ac & iff either ¥ " N =Qor S n N = {p}.

Proof. Easy. A

8.3.2 Lemma. Let A,B,C € &. Then:
(i) A® (B® C) # 0 iff the sets A,B,C are non-empty, Bn Ce A and
(AnB)u(AnC)e AN (then A®(B® C) =AU Bu ().
(ii)) (A® B)® C # 0 iff the sets A,B,C are non-empty, A~ Be ¥ and
(AnB)U(BNC)e AN (then(A®B)® C =AU BuUC).

Proof. Easy. A

8.3.3 Corollary. If 4,B,Ce¥ are such that A®(B®C)# 0 #(A®B)®
®C,thnA®B®C)=AUBuUC=(A®B)®C.

8.3.4 Lemma. If A" is an ideal of M, then ¥ (®) is a (commutative)
semigroup with absorbing element.

Proof. Combine 8.3.1, 8.3.2 and 8.3.3. A

8.3.5 Lemma. If A is an ideal of M such that & O N < {Q} (then
L N = {0}) then ¥ (®) is a zp-semigroup.

Proof. Combine 8.3.4 and 8.3.1(v). A

8.3.6 Proposition. Assume that A" is an ideal of M such that & N N = {P}
and for every A€ &, A # 0, there exist B,Ce ¥, B # ) # C, with BN Ce NV
and BU C = A. Then & (®) is a zs-semigroup.

Proof. By 8.34, & (®) is a zp-semigroup and the rest is clear. A

8.3.7 Example. Assume that M is infinite, 4" is an ideal of .# and that every
set from A is finite.
(i) Let & = S, U {§}, 4, being the set of countable infinite subsets of M.
Then &,(®) is a non-trivial zs-semigroup. If M is countable, then
Ann (% (®)) = S, U {0}, where #; is the set of cofinite subsets of M. If
M is uncountable, then Ann (%, (®)) = {0}.
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(i) Let &, = # U {0}, # being the set of infinite subsets of .#. Ten % (®) is
a non-trivial zs-semigroup and Ann(%,(®) = 4 U {0}, where % is the set
of cofinite subsets of M.
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