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Trees in Commutative Nil-Semigroups of Index Two 

VÁCLAV FLAŠKA, ANTONÍN JANČAŘÍK*, VÍTĚZSLAV KALA AND TOMÁŠ KEPKA 

Praha 

Received 31. October 2006 

Binary trees in commutative semigroups satisfying 2x = 3y are studied. 
Studují se binární stromy v komutativních pologrupách splňujících 2x = 3y. 

1. Introduction 

Throughout this short note, all semigroups are assumed to be commutative and 
their operations will usually be denoted additively. 

1.1. A semigroup S will be called a zP-semigroup in the sequel if S is 
a nil-semigroup of index (at most) two. It means that S contains an absorbing 
element o (= os) and 2a = o for every ae S. In other words, S satisfies the 
equation 2a = 3b for all a, be S. 

1.2 Lemma. Let a zp-semigroup S be generated by a finite set with m > 0 
elements. Then \S\ < 2m. 

Proof. Easy to see. A 

1.3 Lemma. Let S be a zp-semigroup. Define a relation ^s on S by a = ŝ b if 
and only if a = b + u for some ue S u {0}. Then: 

(i) The relation = ŝ is an ordering ofS and it is compatible with respect to the 
addition. 
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(ii) o is a smallest element. 
(Hi) If S is non-trivialf then S\(S + S) is the set of maximal elemens of 

S(<). 
(iv) The set Ann(S)\ {o} = {a\ S + a = o 7-= a} is the set of minimal elements 

of(S\{o})(^). 
Proof. Easy to check. • 

1.4. A zp-semigroup S will be called a zs-semigroup if S = S + 5 (equivalent, 
either 5 = {o}or S(^) has no maximal elements — see 1.3(iii)). 

1.5. Let S be a non-trivial zs-semigroup. Then S is infinite and not finitely 
generated. 

Proof. The ordered set 5(=^) has no maximal elements, and hence it is infinite. 
Consequently, it follows from 1.2 that S is not finitely generated. • 

1.6. Let A be a subset of a zp-semigroup such that A <= T + T, T being the 
subsemigroup generated by A (eg.y A c A + A). Then T = T + T and T is 
a zs-semigroup. 

Proof. Use the fact that T + T is a subsemigroup. • 

2. Auxiliary concepts (A) 

2.1. Define two relations a and /J on the set M of positive integers as a = {(i,2i), 
(i,2i + l ) | i eN}and j» = {(i,2ki + l) | i ,fceN,0 < / < 2k}. 

2.2 Lemma, (i) a is irreflexive, antisymmetric and a <= /J. 
(ii) (ij) e P implies i < j . 

(Hi) (1, /) e fi for every i e N, i 7-= 1. 
(iv) P is irreflexive, antisymmetric and transitive. 

Proof, (i), (ii) and (iii) are easy. As concernes (iv), the properties of irreflexivity 
and antisymmetry are clear. Finally, if i,r,s e N, 0 < p < 2r, 0 < q < 2s, then 
2s(2r/ + p) + q = 2r+si + 2sp + q and 2sp + q < 2sp + 2s(p + 1) < 2s • 2r = 
= 25+r. The transitivity of /? is now clear. • 

2.3 Lemma. The relation ft is just the transitive closure of a. That is, (ij) e jS 
iff there are m > 1 and positive integers io,..., im such that /o = /, im = j and 
(ik,ik+i)eoc(orik+ie{2ik,2ik + I})for every k = 0,1,..., m - 1. 

Proof. Denote, for a short moment by T the transitive closure of a (defined on 
N). Since ft is transitive and contains a by 2.2(i), (iv), we get x ^ /J. To prove the 
converse inclusion, we will proceed by induction on k, where (ij) e fi,j = 2k\ + /, 
1 < k, 0 < / < 2k. 
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If k = 1, then j = 2/ + /, 0 < / < 1, and hence (i,j) e a ~\ T. If fc > 2 and 
/ < 2*_1, then; = 2*_1p + /, p = 2i, (i,p) e a and (p,j) e /?. By induction, (p,j) e T, 
and hence (i,j) e T. On the other hand, if k > 2 and 2*_1 < /, thenj = 2k~lq + h, 
q = 2i + 1, / = 2*"1 + h, 0 < h < 2*"1, (i,q)ex and (q,j)ep\ By induction, 
(-,j) e T and hence (i,j) e T. • 

2.4 Remark. According to 2.2 (iv), the relation /? is a sharp ordering defined 
on N, and hence y = /? u U/N is a (reflexive) ordering on N. 

2.5 Lemma. Let i,j e N. Then (i,j) e ft, provided that at least one of the 
following is true: 

(1) (2i,2j)ep; 
(2) (2i,2j+ 1)6)3; 
(3) (2i+ l,2j)ep; 
(4) (2i + 1, 2j + 1) e 0; 
(5) i *jand(i,2j)eP; 
(6) i # ; and (i, 2j + 1) e p. 

Proof, (i) If (2i,2j)ep, then 2j = 2*+1i + /, 1 < k, 0 < / < 2*. Clearly, / is 
even, j = 2*i + 1/2, 0 < 1/2 < 2 \ and so (i,j) e p\ 

(ii) If (2i,2j + l ) ep \ then 2j + 1 = 2*+1i + /, 1 < k, 0 < / < 2*. Clearly, 
/ is odd, j = 2*i + (/ - l)/2, 0 < (/ - l)/2 < 2*, and so (i,j) e p. 

(iii) If (2i + 1, 2j) e p\ then 2j = 2*+1i + 2* + /, 1 < k, 0 < / < 2*. Clearly, 
/ is even, j = 2*i + 2k~l + 1/2, 0 < 1/2 < 2k~\ 2*"1 + 1/2 < 2*, and so 
(ij)~P-

(iv) If (2i + 1, 2j + 1) e p\ then 2j + 1 = 2*+1i + 2* + /, 1 < k, 0 < / < 2*. 
Clearly, / is odd, j = 2*i + 2*"1 + (/ - l)/2, (/ - l)/2 < 2k~\ 2*"1 + 
+ (/ - l)/2 < 2* and so (i,j) e p. 

(v) If i ^ j and (i,2j) e p, then 2j = 2*i + /, 1 < k, 0 < / < 2*. Clearly, / is 
even, j = 2*_1 + 1/2, 0 < 1/2 < 2*_1. Since i ^ j, we have fe > 2, and so 
(uj)-p. 

(vi) If i * j and (i,2j + 1) e p, then 2j + 1 = 2*i + /, 1 < k, 0 < / < 2*. 
Clearly, / is odd, j = 2*"1 + (/ - l)/2, 0 < (/ - l)/2*-!. Since i ^ j, we 
have k > 2, and so (i,j) e p\ • 

2.6 Lemma. L f̂ i,j e N be such that (i,j) e P and 2i # j # 2i + 1. Then either 
(2i,j)epor(2i+ l,j)ep. 

Proof. We have j = 2*i + /, 1 < fc, 0 < / < 2*. The inequalities 2i ^ j # 
# 2i + 1 imply k > 2. Now, if / < 2*"1, then; = 2*_1 • 2i + / implies (2i,j) e p. 
On the other hand, if 2*"1 < /, then j = 2*-1(2i + 1) + (/ - 2*"1), / - 2*-1 < 
< 2* - 2*-1 = 2*"1 and we have (2i + l,j) e p. A 

2.7 Lemma. Let i,j e N be such that (i,j) e P and 2i # j ^ 2i + 1. Ifj is even, 
then j > 4 and (i,j/2) e p. Ifj is odd, then ;' > 5 and (i, (/ - l)/2) e p\ 
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Proof. We have j = 2ki + /, 1 < k, 0 < / < 2k. Since 2i ^ ; # 2i + 1, we 
have in fact k > 2. Now, if j is even, then j > 4, / is even, j/2 = 2/c_1i + 1/2, 
0 < 1/2 < 2k~\ and hence (i,j/2)e p. On the other hand, if j is odd, then 
j > 5, I is odd, (/ - l)/2 = 2k~H + (/ - l)/2, 0 < (/ - l)/2 < 2k~\ and hence 
( i , ( / - l ) /2 )e / , . A 

2.8 Lemma. Let ij, k e N be such that (i, k) e a and (j, k) e a. Then i = j . 

Proof. Obvious from the definition of a. A 

2.9 Lemma. Let ij, k e N be such that (i, k) e P and (j, k) e p. Then just one of 
the following three cases takes place: 

(0 i=j: 
(ii) (i,j)eP; 

(Hi) (j,i)ep. 

Proof. We will proceed by induction on 2k — i — j : 
Firstly, if (j,k) e a, then k e {2j,2j + 1 } and, due to 2.5(5),(6), either i = j or 

(ij) e p. Similarly, if (i, k) e a. Consequently, we can assume that (i, k) $ a and 
(j, k) $ a. Then it follows from 2.3 that there are p, q e N such that (i, p) e ft, 
(p, k) e a, (j, q) e P, (q, k) e a. By 2.8, p = q and, of course, 2p — i — j < 2k — 
— i — j . The rest follows by induction. A 

2.10 Remark. If (ij) e /}, then there exists just one a-chain between i andj (see 
2.3, 2.8 and 2.9). 

2.11 Remark. Let A be a non-empty subset of N, 1 £ A and put 
B = {i\ (ij) e p for every jeA}. Then 1 e B by 2.2(iii) and i < j for all i e B and 
j e A. Consequently k = max(B) exists and, if / e B, then either / = k or (/, k) e P 
(use 2.9). 

2.12 Lemma. Let (ij) e p. 
(i) Ifj is even, then (ij + 1) e p. 

(ii) Ifj is odd, then j > 3 and (ij — 1) e /?. 

Proof. There is k e N such that (i, k) e y and (kj) e a. Consequently, either 
j = 2k, (kj + 1) e a and (ij + 1) e P orj = 2k + 1, (fcj — 1) e a and ( i j — 1) e 
e/J. A 

2.13 Lemma. The following conditions are equivalent for a permutation p 
ofN: 

(i)(i,j)e^iff(p(i),p(j))€p. 
(ii) (i,j) exiff(p (i), p (/)) e a. 

(Hi) (i,j) e a implies (p (j), p (/')) e a. 
(iv) (p(i),p(j)) e oc implies (i,j) e a. 
(v) \p(2i), p(2i + 1)} = {2p(i),2p(i) + 1} for every i > 1. 
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Proof, (i) implies (ii). Let ( i j )ea . Then i < j , p(i) ^ p(j) and, by (i), 
(p(i),p(j))e/?. Further, by 2.3, there are positive integers m,ko,...- km such that 
k0 = p(i), km = p(j) and (/co,ki)ea, ..., (km-Ukm) e a. Using (i) again, we get 
(i,p-l(ki))ep, ..., (p-l(km-i)j)efr and so i < p~l(h) < ... < p-l(km-\) <j 
(use the fact that the numbers i, ki,..., km-uj are pair-wise different). Now, (ij) e a 
implies m = 1 and (p(/),p(/))ea. Quite similarly, (p~l(i),p~l(j))ea» 

(iii) implies (ii). Let (p (i), p (/)) e a. By (iii), we have (p (i), p (2i)) G a and 
(p(i),p(2i + 1)) e a. Thus either; = 2i orj = 2i + 1. In both cases, (ij) e a. 

The remaining implicatins are easy. A 

2.14 Lemma. If p is a permutation of N satisfying the equivalent conditions of 
2.12, then p(l) = 1 and {p(2),p(3)} = {2,3}. 

Proof. Easy to check. A 

2.14 Remark. Denote by s/ the set of permutations satisfying the equivalent 
conditions of 2.12. The si is a subgroup of the group M! of all permutations of N. 
It is clear that permutations from si are just automorphism of the ordered set N (y). 

3. Auxiliary concepts (B) 

3.1. In the sequel, ^ stands for the set of non-empty finite subsets of N and 
&o = & u {0}. 

For every i e N, let Tt = {2i,2i + 1} e &. 
ForAe^0, let fi(A) = {i\Tt^ A},Q(A) = y ^ t f = i2i>2i + l I ie^(A)} ^ 

c= A9tii(A) = V(A) n (A^(A% <lM) = V(A) n Q(A) (SO that rj{(A) u >/2(_4) = 
= fi(A) n A) and £(,4) = fi(A) u (-4\g(-4)). 

A set A G J*, will be called reduced if fi(A) = 0. 

3.2 Lemma. Let Ae&0. Then: 
(i) A \ Q (A) is reduced. 

(ii) \t{A)\ = \n{A)\ + \A\Q{A)\ - \m{A)\ = \Q{A)\/2 + \A\g{A)\ - |-..(_4)| = 
= \A\ - \q{A)\/2 - \m{A) < \A\. 

(iii) \{{A)\ = \A\ iff A is reduced (and then £{A) = A). 

Proof. Easy to check. • 

3.3 Lemma. For every Ae3F0 thhere exists m > 0 with £m+1{A) = £m{A). 

Proof. By 3.2(ii), \£{A) < \A\ and the rest follows from 3.2(iii). • 

3.4. Let A e 3F0. Then we put 1{A) = t?{A) where ^m{A) = Zm+l{A) (see 3.3). 

3.5 Lemma. For every Ae^, the set 1{A) is reduced and \%{A)\ < \A\. 

Proof See 3.2 and 3.4. • 
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3.6 Lemma. Let A, Be«f0. Then: 
(i) Q(A) U Q(B) C Q(A U B) <md (A u B)\g(-4 u B ) c (-4\g(-4)) u (B\g(B)). 

(ii) fi(A) KJ fi(B) ^ fx(Au B). 

Proof. Easy to see. • 

3.7 Lemma. Let A, Be &0 and ieN. Then ie£(A)n£ (B) iff at least one of 
the following seven cases takes places: 

(1) i is odd, ie A n B and i — 1 $ A u B; 
(2) i is even, ie A n B and i + \ $ A v B; 
(3) i is odd, Tt c= A, ie B and i — \ $ B; 
(4) i is odd, Tt c B, ie A and i - 1 <£ A; 
(5) i is even, Tt _= A, ie B and i + 1 ̂  B; 
(6) Ti^ AnB. 

Proof. Easy to see. • 

3.8. Define a relation X on & by (B, A) e X iff B = (A \ T) u {i}for some i e N 
such that Ti ̂  A. Moreover, put /c = l u id^, denote by Q the transitive closure 
of k defined on 3F and finally, put o = Q U id^. 

3.9 Lemma. (0 2 w irreflexive and antisymmetric. 
(ii) If (B, A) el then \B\ < \A\ (more precisely, \A\ - 2 < \B\ < \A\ - \). 

(Hi) K is reflexive and antisymmetric, 
(iv) If(B,A)eK, then \B\ < \A\. 

Proof. Obvious from the definition of X. • 

3.10 Lemma, (i) Q is irreflexive, antisymmetric and transitive (i.e., Q is a sharp 
ordering of 3F). 

(ii) (B,A)eQ iff there are m>\ and A0,Ax,...,Ame^ such that A0 = B, 
Am — A and (At,Ai+l) e Xfor i = 0 ,1 , . . . , m — 1. 

(Hi) If(B,A)eQ, then \B\ < \A\. 

Proof Easy to see (use 3.9). • 

3.11 Lemma, (i) o is reflexive, antisymmetric and transitive (i.e., o is a (re­
flexive) ordering of ^) and o is the transitive closure of K. 

(ii) (B,A)eo iff there are m>\ and A0,Ah..., Ame3F such that A0 = B, 
Am = A and (AhAi+l) e Kfor i = 0,1,..., m — \. 

(Hi) If(B,A)eo, then \B\ < \A\. 

Proof. Easy to see (use 3.9 and 3.10). • 

3.12 Lemma. Let (B, A) e K. Then: 
(i) For every i e B there is at least one j e A, wih (i,j) e a u idN. 
(i) For every ke A there is at least one I e B, wih (I, k) e a u idN. 

Proof. Obvious from the definition of a, X and K. • 
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3.13 Lemma. Let (B, A) e o. Then: 
(i) For every i e B there is at least one j e A with (ij) e y. 
(i) For every ke A there is at least one Ie B with (I,k)e y. 

Proof. Combine 2.3, 3.11(H) and 3.12. • 

3.14 Lemma. (£ (A), A)eo for every Ae3P. 

Proof. If A is reduced, then £ (A) = A and there is nothing to show. Henceforth, 
let fi(A) = {h,..., im, m > 1, ix < i2 < ... < im}. Now, put Am = A and Aj_i = 
= (Aj\ T}) u {ij} for j = m, m — 1,..., 1. One checks easily by induction that 
Aj = (A^ [Jk=j+iTik) u {$+i, *,•+*-, Q for every j = m - 1, m - 2,..., 0. Clear­
ly, A0 = £(A), (Am_uAm)eX, (Am_2,Am_)eX,...,(A0,Al)eX. Consequently, 
(£(A),A) = (A0,Am)eQ. • 

3.15 Corollary. Let A e &. Then: 
(i) (£m(A),A) e ofor every m > 0. 

(ii) (1(A)A)so. 

3.16 Remark. One sees easily that minimal elements of the ordered set 3F (o) 
are just reduced sets. Now, if AetF, then £(A) is reduced and (1(A), A) eo. 
(3.15) 

3.17 Example, (cf. 3.16) Put A = {2,3,4,5} Then £(A) = {1,2}, {1,2} is 
reduced, and so 1(A) = {1,2}. On the other hand, ({2,3},^) e X and ({l},{2,3})e X. 
Thus ({1}^4)G^, {l}is reduced and {1}# {1,2}. 

3.18 Let S be a zp-semigroup and f :N -> S a mapping such that 
f(2i) + f(2i + 1) = f(i) for every ieN. Define a mapping g: $F0 -> S by 
g(0) = os and g(A) = __iGA/(0 f o r everY A G & 

3.18.1 Lemma. If(i,j) e 0, then f(i) eS + /(/). 

Proof. The assertion is clear for (ij) e a and the general case follows by 
induction on the length of the corresponding a-chain. • 

3.18.2 Lemma. If Ae 3F such that (ij) e flfor some (ij) e A, then g(A) = o. 

Proof. By 3.18.1, f() = f(j) + a for some aeS. Then f(i) + f(j) = 
= 2f(j) + a = o. • 

3.18.3 Lemma. Let AeS? be such that rj1(A) = 0 (see 3.1). Then 
9 (A) = g(t(A)\ 

Proof. Easy to check directly. • 

3.18.4 Lemma. g(A u B) = g (A) + g(B)for all A,B e &, A n B = 0. 

Proof. Obvious. • 
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4. Auxiliary concepts (C) 

4.1. A finite subset A of N will be called pre-pure if (i9j) $ /? for all ij e A. The 
set A will be called pure if it is both pre-pure and reduced (see 3.1). We denote 
by 21 (2P9 resp.) the set of non-empty finite pre-pure (pure, resp.) subsets of N and 
we put J 0 = i u {0}(^o = & u {0},resp.). 

Notice that if A is pre-pure, then >/i(-4) = 0 = rj2(A) (see 3.1). 

4.2 Lemma. Let (B9 A)eXbe such that Ae2L. Then B e 21. 

Proof. We have B = (A \ T) u {i}9i eN9T{_l A. Take j9keB. If j, k e A9 then 
(/', fc) ̂  /J, since >1 e 21. If jf ^ A9 k$ A9 then j = i = k and (j, /c) ^ /J again. 

If j G ,4 and fc ^ A9 then fc = i, 2i e A9 (i, 2i) e /?, (j, 2i) £ /?, and therefore 
(j, /c) = (j9 i) $ p. Assume, finally, that j' $ A and ke A. Then j = i and 2i 7-= k # 
7̂  2i + 1. Further, since i e „ , we have (2i,k)<£/? and (2i + \9k)$fl. Now, 
it follows from 2.6 that (j9 k) = (i, fc) £ /?. We have proved that (7, k) ^ /?, so 
Be 21. A 

4.3 Lemma. Let (£, i j e d t e swc/i t/za1 A e 21. Then Be 21. 

Proof. Combine 4.2 and 3.11(h). A 

4.4 Lemma. Let A9B9Ce2 be such that (B9 A) e X9 (C, A) el and B # C. 
Then there is D e 21 such that (D9 B) e X and (D9 C) e X. 

Proof. We have B = (A\T)\J {i}and C = (C\ T}) u {j}jje N9 Tt u Tj _= A. 
Since B ^ C, we have also i =£ j and it follows that Tj _: _? and Tt _: C. If i = 2/ 
or i = 2/ + 1, then i G A, a contradiction with (i,2i) e /?. Thus 2/ 7̂  i # 2j + 1, 
(B \ 7;) u {/} = D and (D, B) G A, where D = (4 \ (7J u T])) u {ij} e 5 use (4.3). 
Quite similarly, D = (C \ 7;) u {i} and (D, C) e L A 

4.5 Lemma. Let A9B9Ce 21 be such that (B9 A)eo and (C, A) e o. Then there 
is D e 21 such that (D9 B)eo and (D9 C) e o. 

Proof. There are B09..., Bm9 C0,..., Cne2l9m9ne N9 such that B0 = B9 C0 = C, 
Bm = -4 = Cn and all the pairs (Bi9Bi+1)9(Cj9Cj+1)9 i = 0, 1, ..., m — 1, j = 0, 
1,..., n — 1 are in /c (use 4.3). 

Firstly, assume that m = 1 and define sets £n_ l 9 . . . , E0 e 21 by induction in the 
following way: It follows from 4.4 that (£„_i, B)eK and (£„_i, C„_i) G K for some 
£„_i G J . Now, if 1 <j < n and the sets En_l9...9E}e 21 are found such that 
(£„_i ,C„_I)GK;, (£n_2,Cn_2)G/c,...,(£ ;,C /)G/c, (En_l9B)eK9 (£n_2,£„_i) G/c, ..., 
(Ej9Ej+1)eK9 then (by 4.4 again) there is E}_xe2l with (Ej_l9Cj_1)e K and 
(£/_i, £,) G /c. Consequently, (£0, f?) G a and (£0, C) = (£0, C0) e K _= o. We can put 
D = E0 in this case. 

In the general case, we proceed by induction on m + n. According to the 
preceding step of the proof, we can assume tat m > 2. Then, by induction, there 



is F e 21 with (F, Bx) e o, and (F, C) e o. Further, (B, B) e K and, due to the first part 
of the proof, we find D e 21 such that (D, B)eo and (D, F) e o. Then, of course, 
(D,C)eo. A 

4.6 Remark. Let A,B,Ce2L be such that (B,A)eQ and (C,A)eQ. By 4.5, 
(D, B) e o and (D, C)eo for some D e 21. If D = B, then (B, C) e o, and hence 
either B = C or (B, C) e Q. Similarly, if D = C, then either B = C or (C,B) e Q. 
Thus, if B # C, (£, C) £ £ and (C, B) £ £, then (D, B)eQ and (D, C) e Q. 

4.7 Lemma. Let Ae 21. Then: 

(i) t;m (A) is pre-pure and (£m (A), A)eo for every m > 0 
(ii) 1(A) is pure and (I (A), A) e o. 

Proof. We have (£m(A),A)eo and (1(A), A) eo by 3.15. Consequently, both 
£m(A) and 1(A) are pre-pure by 4.3. Finally 1(A) is reduced, and hence pure. • 

4.8 Remark. The ordering o of ^ (see 3.11) induces an ordering of 21 and we 
will denote it again by o (but see also 4.3). By 4.5 the ordered set 2l(o) is 
downwards confluent and (see 3.16) minimal elements of 2l(o) are just pure sets. 
Of course, 21 (o) satisfies the minimum condition, and therefore for every A e 21 
there exists a minimal element MAe 1 with (MA, A) e o. Because of the confluen-
cy, MA is determined uniquely and it follows from 4.7(ii) that MA = 1(A) 
(cf. 3.17). 

4.9. Lemma. Let A,B,C e 21 be such that A n B = 0, .4uBei and 
(C,A) e K. Then C n B = 0 and C u B e 21. 

Proof We can assume that C =£ A. Then (C,A)e! and C = (A\T])u {i}, 
ieN, Tt ̂  A. Moreover, if j e C n B, then A n B = 0 implies j = i. But then 
i,2ie AKJ B and (i,2i) e p yields a contradiction with A v Be 21. Thus 
C n B = 0 and it remains to show that C v Be 21. Let, on the contrary, 
k, I e C u B be such that (fc, /) e /?. Since ( 4 \ 7 j ) u B G i a n d C G i , w e have either 
k = i, / G B or k e B, I = i. 

lfk = i and / e B, then (i, /) e )S and A n B = 0 implies 2i # / # 2i + 1. Now, 
by 2.6, either (2i, /) e /J or (2i + 1, /) G /?, a contradiction with i u B e l 

If k e B and / = i, then (k, i) G jS, and hence (i, 2i) G /? implies (k, 2i) e p. But 
k, 2i e A u B, a contradiction with A u B e l A 

4.10 Lemma. Let .4,B,C,DeJ be such that A n B = 0, i u B = J, 
(C,^) G /c and (D,B) G K. Then C n D = 0 and C u D e 21. 

Proof. By 4.9, C n B = 0 and C u B e l Consequently, using 4.9 once more, 
we get C n D = 0 and C u D G 21. • 

4.11 Lemma. Let A,B,C,Del be such that A n B = 0, i u B e i , 
(C, A) G a and (D,B) G (j. 77*en C n D = 0 and C u D e 21. 
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Proof. There are m > 1 and C0,..., Cm, D0,..., Dm e 2 such that C0 = C, D0 = D, 
Cm = A, Dm = B and (C„Cl+i), (DhDi+l) e K for every i = 0,1,..., m — 1. Now, 
our result follows easily from 4.10 by induction on m. • 

4.12 Lemma. Let A,Be£ be such that AnB = 0 and AKJ Be£. Then: 
(i) £m(A) n Zm(B) = 0 and £m(B) el for every m > 1. 

(ii) 1(A) n |(B) = 0 and 1(A) u?(B)e £. 

Proof. Combine 4.11 and 4.7. • 

4.13 Lemma. Let A,B,C e 2 be such that A n B = 0, A u Be 2 and 
(C,A) e K. Then (C u B, Au B)eK. 

Proof. We can assume that C =£ A. Then C = (A \ 7;) u {i},i e N, Tt c A[, and 
w e g e t C u B = ( i \ i ; ) u B u {/} = ((4 u B ) \ I j ) u {/}.Thus (Cu B,AuB)e 
e l A 

4.14 Lemma. Let A,B,C,De£ be such that A n B = 0, AKJ Be X(C,A)eK 
and (D, B) e K. Then (C u D, Au B)eo. 

Proof. By 4.13, we have (C u B, A KJ B)e K. Further, by 4.9, C n B = 0 and 
C \J Be 2. Consequently, using 4.13 again, we get (C u D, C u B) e K. From this, 
(CuD , ,4uB)e<7. • 

4.15 Lemma. Let A,B,C,De£ be such that A n B = 0, A U S G J , 

(C, A) e o and (D,B) e o. Then (C u D, A u B)eo. 

Proof. Using 4.14, we can proceed similarly as in the proof of 4.11. • 

4.16 Lemma. Let A,Be£ be such that A n B = 0 and Au Be ± Then: 
(i) (ET(A) u £m(B), AuB)eofor every m > 0. 

(ii) (cf(il)u l(B),AuB)eo. 

Proof Combine 4.15 and 4.7. • 

4.17 Lemma. Let A,Bel be such that A n B = 0 and A\j Be± Then 

Z(AuB) = Z(Z(A)uZ(B)\ 
Proof. It_ follows from 4.7 and 4.16(ii) that (£(AvB), A\jB)eo and 

(l(l(A) u 1(B)), AvB)eo. However, both the sets £(AvB) and l(^(A) u 1(B)) 
are pure (see 4.7(H)), and hence they coincide by 4.5 (see also 4.8). • 

4.18 Lemma. Let A,B,Ce 2 be such that A n C = 0, A u C e £} and 
(C,B)eo. Then AnB = 0. 

Proof Let, on the contrary, ieAnB. By 3.13(iii), (jj)ey for some 7'eC. 
But i,j e A u C and i u C e l Henceforth, i = j and i e A n C, a contradic­
tion. • 
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4.19 Lemma. Let A,Belbe such that A n 1(B) = 0 and A u 1(B) e 21. Then 
AnB = 0. 

Proof. We have (£(B),B) eaby 3.15(ii) and we use 4.18. • 

4.20 Lemma. Let A,B,Ce 21 be such that A n C = 0, A u C e 21 and(C,B)e 
e a. Then Au Bel. 

Proof. Let on the contrary, (i,j) e p for some i,j e Au B. Since A, Be 21, we 
have either ie A,j e B or i e B,j e A. 

Firstly, assume ieA, j e B. By 3.13(iii), (k,j)e(i for some keC. Since 
A n C = 0, we have k 7-= i, and hence either (1, k) e ft or (k, i) e /? by 2.9, 
a contradiction with A\J Ce 21. 

Next, let ie B, j e A. Again (fc, i) e /? for some keC, and therefore (k,j) e /?, 
a contradiction with A u C e 21. • 

4.21 Lemma. Let A,Be2lbe such that A n £ (B) = 0 arcd ,4 u <J(B) e 21. Then 
Au Bel. 

Proof. Combine 3.15(ii) and 4.20. • 

4.22 Lemma. Let A,B,C,D e 21 be such that (C, A)e a,(D,B)e a, C n D = 0 
and C u D e 21. Then A n B = 0 and A u B e 21. 

Proof. By 4.18 and 4.20, A n D = $ and Au De 21. Using 4.18 and 4.20 once 
more, we get our result. • 

4.23 Lemma. The following conditions are equivalent for A, Be 21: 
(i) AnB = 0 and A u Be 21. 

(ii) There exists m > 0 such that £m(A) n £m(B) = 0 and £m(A) u Zm(B) e 21. 
(Hi) For every m > 0, £m(A) n ^m(B) = 0 and £m(A) u £m(B) e 21. 
(iv) 1(A) n£(B) = Q and 1(A) u 1(B) e 21. 

Proof. Combine 4.7, 4.12 and 4.22. • 

4.24 Lemma. Let A e 21 be such that k = max (A) is even. Then k + 1 ^ A and 
i u { H l } e l 

Proof Clearly, k + 1 $ A and k = 2j,j e N. Now, assume that Av{k+ 1} £ Q. 
Since A < k + 1, there is ieA with (i, k + 1) e p. If k + 1 = 2i + 1, then i = j 
and (i, /c) = (i, 2i) e /?, a contradiction with .4el Thus fc + 1 # 2i + 1 and 
(i,j)eP by 2.7. On the other hand, (j,2j)e ft, and hence (i,k) = (i,2j)e/3, again 
a contradiction. • 

4.25 Lemma. Let A eg? be such that A ^ {\}and k = max (4) is odd. Then 
k - \ $ A and A u {k - \}e 21. 

Proof. We have k = 2j + 1 > 3 and, since A is reduced, we conclude that 
k — l$A. Now, assume that A u {k — \}$2l. Since max (A\{k})< k — \, 
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there is ie A with (i, k — 1) e /}. If k — 1 = 2i, then i = j and 
(i, k) = (i, 2i + 1) G /? a contradiction with i e l Thus fc — 1 7-= 2i and (ij) e /? by 
2.7. On the other hand, (/, 2/ + 1) G /?, and hence (i, k) = (i, 2/ + 1) e /?, again 
a contradiction. A 

4.26 Corollary. Let A e & be such that A ^ {l}.The there exists at least one 
/ G N such that / $A and A u {/}G J. 

4.27 Lemma. Let Ael and ieN be such that M = {je A \ (ij) e /?} is 
non-empty. Put k = max (M). 

(i) Ifk is even, then A v {k + l } e l 
(ii) If k is odd, then k > 3 and A u {k — 1 } G 1 

Proof (i) If / G A is such that (/, k + 1) G /J, then (Z, k) e p by 2.12(ii), a contra­
diction with 4 G J . Onn the other hand, if / e A is such that (k + 1, /) e /?, then 
(i, k + 1) G j8 (2.12(i)) implies (i, /) G /? and / G M, a contradiction with k < I. Thus 
z l u { k + 1}GJ2. 

(ii) If Z G A is such that (Z, k — 1) G /?, then (Z, k)e (i by 2.12(i), a contradiction 
with A e £. On the other hand, if Z G .4 is such that (k - 1, Z) G /?, then (i, fc - 1) G /? 
(2.12(H)) implies (ij)e(5 and Z G M , a contradiction with k < I. Thus 
A u { k - 1}GJ2. A 

4.28. Let S be a zp-semigroup and f'.N^Sa. mapping such that f(2i) + 
+ f(2i + l) = f(i) for every ie N. Define g : £0 -• S by g(0) = os and 
e(A) = lisAf(i) for every A e 1 (see 3.18). 

4.28.1 Lemma. g(l(A)) = g(A) for every AeSt. 

Proof. By 3.18.3, g(^(A)) = g(A). Consequently, we get g(£m(A)) = g(A) by 
induction on m > 0. A 

5. One particular zs-semigroup 

5.1. Define a binary operation © on the set 2P0 of (finite) pure subsets of r̂J (see 
4.1) by A ® B = l(A u B) for all A,Be&> such that AnB = Q and AvBe£ 
(see 4.7(H), and A ® B = 0 otherwise. 

5.2 Lemma, (i) A® B = B® A. 
(ii) A®0 = 0 = 0®A. 
(Hi) A® A = 0. 

Proof. Obvious from the definition of the operation ©. • 

5.3 Lemma. Let A,B,C^^ Then A ® (B ® C) 7- 0 iff the sets A,B,C 
are non-empty, pair-wise disjoint and AvBvCe£. Then A ® (B ® C) = 
= | ( z l u B u C ) . 
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Proof, (i) Let A ® (B ® C) # 0. Then the pure sets A, B, C are non-empty, 
B n C = 0, B u Ce J2, B © C = l(B u C), ,4 n f (Bu C)e J2 and ,4 © (B © C) = 
= cJ(,4u(£(BuC)). 

Using 4.19 and 4.21, we get A n (B u C) = 0 and A u (B u C) e _?. Conse­
quently, the sets A, B, C are pair-wise disjoint and i u f l u C e l Finally, A ® 
® (B ®C) = l(A u I(B u C)) = |(|(-4) u | (Bu C)) = £(-4 u B u C) by 4.17. 

(ii) Let the sets A, B, C be non-empty, pair wise disjoint and let A u B u C e 21. 
Then B u C e 21, so that B ® C = I (B u C). Moreover, 4 n f (B u C) = 0 
and zl u l(B u C) e J by 4.11. Thus A © (B © C) = A © I(B u C) = 
= c f ( .4uf ( .BuC))#0 . A 

5.4 Lemma. Let A,B,Ce&>0. Then (A ® B) ® C # 0 ijjf rfte sets >1,B,C 
are non-empty, pair-wise disjoint and i u B u C e l Then (A ® B) ® C = 
= %(AuBvC). 

Proof. Similar to that of 5.3. A 

5.5 Lemma. 0>o(@) is a commutative zp-semigroup and 0 is the absorbing 
element of this semigroup. 

Proof Combine 5.2, 5.3 and 5.4. A 

5.6 Lemma. For every Ae0> there are B,Ce0> such that A = B ® C. 

Proof. If \A\ = 1, then A = {i}, ieN, and we put B = {2i}, C = {2i + 1}. 
Then B ® C = A. If A = A{KJ A2, where Ax n A2 = 0 and Au A2 are 
non-empty, then AhA2 e 0> and A = Ax® A2. A 

5.7 Proposition. @>0(®) is a non-trivial commutative zs-semigroup. 

Proof. See 5.2, 5.5 and 5.6. A 

5.8 Lemma. Let Au..., Ame 0>o, m > 2 Then Ax ® ... ® Am ^ 0 iff the sets 
Ax,..., Am are non-empty, pair-wise disjoint and Ax u ... u i f f l e l Then A{ © 
©. . . ®Am = 1(A,KJ ... KjAm). 

Proof. We will proceed by induction on m. The case m = 2 is clear from the 
definition 5.1. If m > 3 and B = Ax ® ... ® Am_{ (see 5.7), then Ax ® ... ® Am = 
= B ® Am and B © A =* 0 iff B # 0 7- v4m, B n Am = 0 and B u Am e J ; then 
B © 4 = ^ (Bu Am). The rest is clear. A 

5.9 Proposition, (i) If A = {iu ..., im},m > 1, is a pre-pure set, then {ij} © ... 
••• © {̂ } = <̂ M) fartd so A = YJLI ® {$> provided that A is pure). 

(ii) The semigroup 0>o is generated by the set {{i}\ i e N}. 
(Hi) (2i} © {2i + 1} = {i}for every ieN. 

Proof. Use 5.7 and 5.8. A 
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5.10 Lemma. Let AeSP be such that A 7-= {l}and and let k = max (A). 
(i) Ifk is even, then k>2,k+ \$A and Au {k+ l}el and A ® {k + 1} = 

= {((A\{k})u{k/2}). 
(ii) If k is odd, then k > 3, k - 1 $ A, A u {k - 1} e 1 and A ® {k - 1} = 

= £((A\{k})u{(k-l)/2}). 

Proof See 4.24 and 4.25. • 

5.11 Corollary. Let A e 0> be such that A # {l}.Then A ® {/} ?- 0 for at least 
one le N. 

5.12 Proposition. Ann(0>o(®)) = {Ae SP0 \ 0>o ® A = 0} = {0,{l}}(and hence 
\Ann(0>o(®))\ = 2). 

Proof Clearly, both the sets 0 and {1} belong to the annihilator. On the other 
hand, if A e 0* is such that A ^ {l},then it follows from 5.11 that A is not in the 
annihilator. • 

5.13 Lemma. Let AeSP and ieN be such that M = {je A \ (ij) e /?} is 
non-empty. Put k = max (M). 

(i) If k is even, then k > 2, k + 1 $ A, A u {k + 1} e 1 and A ® {k + 1} = 
= Z((A\{k})u{k/2}). 

(ii) If k is odd, then k> 3, k - 1 $ A, A u {k - l}e £ and A® {k- 1} = 
= l((A\{k})u{(k-l)/2}). 

Proof See 4.27. • 

5.14 Proposition. Let A,Bt0>o be such that A ?- B and {A,B} # 
=̂  {05{1}](= Ann(^0(®))). Then there exists at least one peN such that either 
A ® {p} = 0 ?- B ® {p}or A ® {p} * 0 = B ® {p}. 

Proof It is divided into four parts: 
(i) A = 0 (or B = 0), then B # {1} (or A ?- {l})and the assertion follows 

from 5.11. 
(ii) Let ieA be such that M = {jeB\ (ij) e p} ¥= 0 and let k = max(M). 

Clearly, i$B. If k is even, then (i,k + l)e/J by 2.12(i), and hence 
A ® {k + 1} = 0 7-= B ® {k + 1} by 5.13(i). 

If k is odd, then k > 3, (i, k - 1) e ft by 2.12(H), and hence A ® {k - 1} = 
= 0 7-= B®{k- l}by5.13(ii). 

(iii) Let j e B such that N = {i e A \ (/, i) e /?) 7-= 0. Now, we can proceed in the 
same way as in (ii). 

(iv) In view of (i), (ii) and (iii), we can assume that A,B e &>, (ij) $ /? and 
(j, i) $ P for all i e A and j e B. Now, since A 7-= B, we find k e A \ B (or 
(/ e B \ A). Then B u {k}e £ (A u {/}e 2), and therefore A ® {k} = 0 ^ 
*B®{k}(A®{l}*Q = B® {/}). • 
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5.15 Proposition. The semigroup £P0(@) is subdirectly irreducible and the 
monolith of 0>o {i.e., the smallest non-identical congruence) is just the congruence 
corresponding to the ideal Ann(^0(®)). That is, \i#o = {(0,{1}),({1},0)} u id&o. 

Proof. Let Q # ii9o be a congruence of &0 (®) and let X = {Ke 0> \ (K, 0)GQ}. 

There are A, B e 0>o such that A 7- B and (A, B) e Q. NOW, it follows from 5.14 that 
X 4= 0 and we take Le X such that / = max(L) is smallest possible. If / = 1, 
then L = {1} and ({1},0) e g. On the other hand, if / > 2, then, by 5.10, there is 
qeN such that L © {q} # 0 and max (L © {<?}) < /. Of course, (L © {<?},0) e Q 
and this is a contradiction. • 

5.16 Proposition. Let S be a zp-semigroup and f : N -> S a mapping such that 
f(2i) + f(2i + 1) = /(/) /or every i G N. Put 0(0) = o(= o5) and 0(A) = ^ A = 
= f (i) for every Ae £?. Then g is a homomorphism of the semigroup &„ (©) into 
the semigroup S. Moreover, if f (1) ^ o, then g is injective. 

Proof, (i) First of all, let A, B e &0 and C = A © B. We have to show that 
g(C) = g(A) + g(B). 

If A = 0 (or B = 0), then C = 0, g(A) = o (ox g(B) = o), g(C) = o, and hence 
g(C) = o = g(A) + g(B). 

If ieAnB, then C = 0, #(C) = o, g(A) + g(B) = 2f(i) + u for some 
u e 5 u {0}and hence g(C) = o = g(A) + g(B). 

If A^0^ B, AnB = 0 and i U i 5 ^ , then C = 0, g(C) = o and 
9(C) = o = YieAuBf(i) = g(A) + g(B) by 3.18.2. 

I f A # 0 # B , AnB = Q and AvBe£, then C = l(A \j B) and, by 4.28.1, 
g(C) = flf(^ u B) = 5^4^/(1) = L^f(j) + IteBf(0 = ^(A) + g(B). 

(ii) Assume that / ( l ) 7-= o and put Q = Ker(g). Then ({1},0) £ £, and hence the 
equality Q = id&o follows from 5.15. • 

5.17 Proposition. Let S be a zs-semigroup. Then for every aeS, a$ S, 
a # os, there exists an injective homomorphism g of gP0(®) into S such that 
*({l})=a. 

Proof. By induction on m > 0, define a mapping fm: {1,2,..., 2m, 2m + 1} -• S 
in the following way: Firstly, f0(l) = a. Then if m > 0 and f),... fm are 
defined, then we put fm+l \ {1,2,..., 2m + 1} = fm and fm+l(2m + 2) = x 
a nd fm+i(2m + 3) = y, where x,y = S are chosen such that x + y = 
= /m(w + 1). Now, put / = u/m, so that / is mapping of N into S such that 
f(l) = a and /(2i) + /(2i + 1) = f(i) for every i e N. The rest follows from 
5.16. • 

5.18 Proposition. Let S be a zs-semigroup. Then for every ae S there exists 
a homomorphism g of ^0(@) into S such that g({l})= a. 

Proof. This is an immediate consequence of 5.17, the case a = o being 
trivial. • 
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6. Trees in zp-semigroups 

6.1. In this section, let S be a non-trivial zp-semigroup. An infinite sequence 
a = (au a2, a3,...) of elements from S (i.e., a mapping from r\J into S) will be called 
an 5-tree if at = a2i + a2i+l for every ieN. 

We denote by 3T(= 3~(S)) the set of trees. 

6.1 Proposition. ST is a subsemigroup of the cartesian power Sw. 

Proof Clearly, the constant sequence o = (o) belongs to ST, and so 2T is 
non-empty. Furthermore, if a, b e ST then the sequence a + b = (a,- + b) is a tree, 
too. A 

6.2. If a = (aha2,a3,...), then we denote by i?(a)(= .R(S,a)) the subsemigroup 
of 5 generated by the elements aha2,a3,..., i.e., i?(a) = <a; | i e N}s. 

6.3 Theorem. Let a = (a{,a2a3,...) be tree such that a{ 7- o. Then there exists 
an isomorphism g of 0O(®) onto i?(a) such that g({i})= a, for every ie N (in 
particular, g({l})= ax). 

Proof Put f(i) = a, for every ieN, g(0) = os and g(A) = £ lG/4f(i) for every 
A e2P. By 5.16, g is an injective homomorphism of the semigroup ^0(@) into 
the semigroup S. Since ^0(®) is generated by the set {{i}| ieN] (5.9(ii)), the 
image Im(g) is a subsemigroup of S generated by the set g({{i}| i e N}) = 
= [jieN f(i). Consequently, Im (g) = R (a) and g is an isomorphism of &0 (©) onto 
K(a). A 

6.4 Corollary. Let a , b e « f be trees such that a{ ^ o ^ bx. Then the 
zs-semigroups R(a) and R{b) are isomorphic. 

6.5 Remark. According to 5.9(ii), the sequence w = ({1},{2},{3},...) of ele­
ments from 0>o is a tree and R (w) = &0. 

6.6 Lemma. Let a be a tree. 
(i) If (i,j) e p, then ax = aj + a for some ae R (a). 

(ii) If(i,j) e y, then at = aj + ufor some ue i?(a) u {0}. 

Proof, (i) The assertion is clear for (i,j) e a and, in the general case, it follows 
by induction on the length of the corresponding a-chain. 

(ii) This follows immediately from (i). A 

6.7 Lemma. Let a be a tree and let i,j e N be not comparable in y. Then 
1 7-= i # j 7-= 1 and, if k e N is maximal with respect to (k, i),(k,j) e fi (see 2.11), 
then ak = ax + a} + ufor some u e i?(a) u {0}. 

Proof. There are m,n,i0,..., im,j0,...,jneN such that i0 = k = j 0 , im = i, jn =j 
and all the pairs (i0,ii),..., (im-iJm),(joJi\-.', (jn-ujn) are in a. Clearly, (ii , i)ey, 
(ji,j) e y, and hence ah = ax + ux, ah = a, + u2 for some uh u2e R (a) u {0} 
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(6.6 (ii)). If i{ 7- jl9 then (k9 i{) e a, (k9jx) e a implies ah + ah = ak9 and therefore 
ak = at + aj + ux + u2 = at + a^ + u9 u = ux + u2e S u {0}. 

On the other hand, if i{ = ij9 then using the maximality of k9 we get either 
(il5 i) $ ft or (/*!,;) i p. But, if (i1? i) <£ p9 then ^ = i- = i, and hence (i J) e y9 

a contradiction. The other case is similar. • 

6.8 Proposition. Let a be a tree such that al ^ o and let ij e N. The following 
conditions are equivalent: 

0)(ij)eP 
(ii) a{ e R (a) + a, 

(iii) ateS + a,. 

Proof, (i) implies (ii) by 6.6(i) and (ii) implies (iii) trivially. 
(iii) implies (i). Assume, on the contrary, that a, = aj + a9 ae S9 and that 

(ij) $ p. If (i9j) e y than a, = a, + u, u e S u {0}, by 6.6(ii), and hence a, = 
= ai + u + a = ai + u + a + u + a = ai + 2u + 2a = ai + 2u + o = o. But 
(1, i) G y implies aj = a, + i;, so that ay = o, a contradiction. It follows that (i, j) £ y 
and (/, i) £ y. Now, if k is an in 6.7, then ak = a, + a, + w, w e S u {o}. Again, we 
get ak = 2a, + u + w = o and ax = o9 a contradiction. • 

6.9 Corollary. Let a be a tree such that ax ^ o and let ij e N. The following 
conditions are equivalent: 

(i) (ij)ey. 
(H) at <R()^r 

(iii) at =<sa;. 

6.10 Proposition. Let a be a tree such that a{ ^ o. Then the elements o9 al9 a2, 
a3,... are pair-wise different. 

Proof If a, = a,, then a, ^ a, and a, =̂  a, and a, =̂  a, implies (i,j) e y and 
(/, i) G y (6.9). Thus i = j . (Notice that assertion follows immediately from 6.3). • 

6.11 Proposition. Let a be a tree such that ax 7-= o. The following conditions 
are equivalent for permutation p ofN: 

(i) The sequence (a^a^a^...) is a tree, 
(ii) p satisfies the equivalent conditions of 2.13. 

Proof, (i) implies (ii). Put bt = a^. Clearly, b{ ^ o. Further, if (ij) e /}, then 
bieS + bj9 and so (p(i)9p(j))e P (use 6.8). Similarly, if (p(i),p(j)) e j8, then 
(ij)*P. 

(ii) implies (i). We have am + a^^ = a^ = a2p(l) + a2p(0+1 = ap(i). • 

6.12 Lemma. Let a = (ai9a29a39...) be a tree and meN. Put b2k+l = a2km+l 

for all k > 0 and 0 < / < 2k. Then the sequence (bl9b29b3,...) is a tree (we have 
&. = aj. 

Proof. Easy to check directly. • 
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7. Trees in zp-semigroups - continued 

7.1. Let S be a non-trivial zp-semigroup. A finite sequence (ai9..., am)9 m > 1 
of elements from S will be called a partial tree if m is odd and at = a2i + a2i+l 

for every i = 1,2,..., (m — l)/2. 

7.2. Let a = (al9...9am) and b = (b{9...9bm) be partial trees. We say that 
b extends a if m > n and ax = bl9...9 am = bm. 

The relation of extension determines a (reflexive) ordering on the set 0t of 
partial trees. Maximal elements of this set are non-extendable partial trees. 

If c = (c1,c2,c3,...) is a tree, then we say that c extends the partial tree a if 
a{ = ci,..., am = cm. 

7.3. If a = (al9...9 am) is a partial tree, then i?(a)(= i?(S,a)) is the subsemi-
group of S generated by the elements al9...9am. According to 1.2, we have 
|/?(a)| < 2m. 

7.4 Lemma. Let a = (al9..., am)9 m = 2k + 1, k > 0, be a partial tree. Then 
|.R(a)| < 2k+l. 

Proof. R(a) is generated by the set {̂ ,\ k + 1 < i < m) and 1.2 applies. • 

7.5 Lemma. Let S be a zs-semigroup and a = (ai9...9 am)9 m = 2/c + 1, k > 0, 
be a partial tree. Then there is a partial tree b = (bl9...9 bn) such that 
n = m + 2 = 2k + 3 and b extends a (i.e., a{ = bl9..., am = bm). 

Proof. We have k + 1 < m and there are bm+ubm+2 e S with afc+1 = bw+1 + 
+ bm+2. • 

7.6 Lemma. If S is a zs-semigroup, then every partial tree extends to a tree. 

Proof. Denote by m the length of a partial tree a. By induction, put 0a = a and, 
for n > 0, let n+1a be a partial tree of length m + 2n + 2 such that „+1a extends 
the partial tree „a (see 7.5). One sees easily, that there exists just one tree b = u„a 
extending all the partial trees „a, n > 0. A 

7.7 Corollary, (cf 5.17) If S is a zs-semigroup, then for every ae S there exists 
at least one tree (aua29a39...) such that ax = a. 

7.8 Remark. Let S be a zp-semigroup. Then S is a subsemigroup of 
a zs-semigroup T. Now, if a is a partial S-tree, then there exists a T-tree b, such 
that b extends a. Clearly, R (a) .= R (b). 

8. A few remarks 

8.1. Define an operation + on the set 3F0 of finite subsets of N by A + B = 
= AvB if A=£(I)^B9 An B = 0, and , 4 * 5 = 0 otherwise. 
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8.1.1 Proposition. ^0{k) is a free zp-semigroup over the set N = {{i}\ ieN} 
andAnn(^o(i,)) = {0}. 

Proof. Easy to check. A 

8.1.2. Denote by v the congruence of ^ ( * ) generated by the ordered pairs ({i}, 
{2i,2i + 1}), ie N, put <f0(*) = ^>(* ) / v and denote by K the natural projection 
of &Q onto S0 (so that v = Ker(K)). 

8.1.3 Lemma. S0 is a zs-semigroup. 

Proof The semigroup S0 is generated by the set 7r(IV) and K(N) ^ 
c 7c(IV) + K (IV). By 1.6, S0 is a zs-semigroup. A 

8.1.4 Proposition. There exists an isomorphism Q : S0(ic) -> ^o(@) such that 

Q({i}lv)= QK({I})= {i}for every ieN. 

Proof. Since ^0(ic) is free over IV, there is a homomorphism a: ^ ( * ) - • ^?(®) 
such that a | IV = idN. Moreover, since ^ ( 0 ) is generated by IV (5.9(H)), the 
homomorphism a is projective and it follows from 5.9 (iii) that v <= ker(ot). 
Consequently, a induces a projective homomorphism Q : S0(it) -* ^0(@) such that 
Q({I}\ V) = {i}for every i e N. On the other hand, {2i}/v* {2i + l}/v = {i}/vand 
it follows from 5.16 that there exists a homomorphism a: ^0(@) - • S0(*k) such 
that o({i})= {j}/vfor every ie N. Now, GQ({I}/V) = {i}/v,i.e., GQ \ K(N) = idn(N), 
and hence GQ = idSo, since S0 is generated by 7c(IV). Thus Q is injective, Q is an 
isomorphism and G = Q~1. A 

8.1.5 Lemma. 9 = 3F0\ 2, is an ideal of the semigroup ^0(^k). 

Proof. Clearly, 0 e 9 and if A e & \ J and B e &0, thenn i u B ^ l A 

8.1.6 Lemma. <§ = 7r_1(o). 

Proof. We have TT(0) = 0/v = o and, if Ae &\2l, then QK(A) = Q&teA* 
* (l'}/v) = YJZA © (O = ° ' s o t h a t K (A ) = ° and AeK~l (o). Thus 9 .= 
^ K-1(O). On the other hand, if AeSl, then erc(-4) = Z.eA © (0 = f (-4) # o 
(5.9(i)). A 

8.1.7 Lemma. If A, Be X then K(A) = K(B) iff 1(A) = 1(B). 

Proof. The assertion follows easily from 5.9(i). A 

8.1.8 Proposition, v = (9 x <g) u {(A,B) \A,Be£,%(A) = 1(B)}. 

Proof. Combine 8.1.6 and 8.1.7. A 

8.2 Remark. As it follows from 8.1.4, the zs-semigroup ^ ( 0 ) is, as a semig­
roup, given by generators al9a2,a3,... and relations a, + a, = a, + a„ 2a, = 3a,-, 
a,. = a2l. + a2.+1, i , j 6 N . 
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8.3. Let M be a set, Jt the set of all subsets of M and Jf a subset of 
Jt. Further, let Sf be a subset of J4 such that 0e9 and, if A,Be9\{0] 
are such that A n Be Jf, then i u B e ^ . Now, define an operation ® on 
& by A®B = AKJB if ,4, B e 5 \ {0}, AnBeJf and ,4 ® B = 0 other­
wise. 

8.3.1 Lemma. 
(i) A® B = B® A for all A,BeS. 

(ii) A® 0 = 0 = 0 ® Afar all A e 9. 
(Hi) A® A = Qfor every Ae9\Jf. 
(iv) A® A = A for every Ae Sf n Jf. 
(iv) A® A = 0\for every Ae9 iff either 9nJf = $or9nJf = {0}. 

Proof. Easy. • 

8.3.2 Lemma. Let A,B,Ce Sf. Then: 
(i) A ®(B ® C) 7-= 0 iff the sets A, B, C are non-empty, B nCeN and 

(AnB)Kj(AnC)eJT (then A ® (B ® C) = A u B u C). 
(ii) (A ® B) ® C 7-= 0 iff the sets A,B,C are non-empty, AnBsJf and 

(AnB)Kj(BnC)eJf (then (A® B) ® C = A u B u C). 

Proof. Easy. • 

8.3.3 Corollary. If A,B,Ce9 are such that A®(B ® C) # 0 # (A ® B)® 
® C, then A ® (B ® C) = A u B u C = (A ® B) ® C. 

8.3.4 Lemma. If Jf is an ideal of Jt, then £f(®) is a (commutative) 
semigroup with absorbing element. 

Proof. Combine 8.3.1, 8.3.2 and 8.3.3. • 

8.3.5 Lemma. If Jf is an ideal of Jt such that 9 n Jf c {0} (then 
9 n Jf = {0}), then £f(®) is a zp-semigroup. 

Proof. Combine 8.3.4 and 8.3.1(v). • 

8.3.6 Proposition. Assume that Jf is an ideal of Jt such that 9 n Jf = {0} 
and for every Ae9,A^0, there exist B,C e 9, B * 0 ^ C, with BnCeJf 
and B u C = A. Then 9(®) is a zs-semigroup. 

Proof. By 8.3.4, £f(®) is a zp-semigroup and the rest is clear. • 

8.3.7 Example. Assume that M is infinite, Jf is an ideal of Jt and that every 
set from Jf is finite. 

(i) Let 9*\ = Jc u {0}, Jc being the set of countable infinite subsets of M. 
Then 9X(®) is a non-trivial zs-semigroup. If M is countable, then 
Ann(9{(®)) = JfKj {0}, where Jf is the set of cofinite subsets of M. If 
M is uncountable, then Ann(9i(®)) = {0}. 
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(ii) Let £f2 = J u {0},-/ being the set of infinite subsets of Jt. Ten 9>
2{®) is 

a non-trivial zs-semigroup and Ann{6^2{®) = Jf\j {0},where ^ i s the set 
of cofinite subsets of M. 
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