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Quasitrivial Semimodules II 

KHALDOUN AL-ZOUBI, TOMÁŠ KEPKA and PETR NĚMEC 

Praha 

Received 4th October 2007 

The paper continues the investigation of semimodules. Main emphasis is laid on minimal (i.e., 
every proper subsemimodule has just one element) and congruence-simple semimodules. 

1. Auxiliary results (A) 

This paper is a continuation of [1] and we use the same notation. Let sM be 
a (left) semimodule. For arbitrary elements x,w e M, put ((x: W)S,M =)(X:W) = 
= {se S | sx = w}. Similarly, if x e M and _4 _: M, put (x: A)i = {seS\sxe A}. 

1.1 Lemma, (i) (x : w\) + (x : w2) = (x : w{ + w2). 
(ii) If w\ 7- w2 then (x : W\) n (x : w2) = 0. 

Proof Obvious. • 

1.2 Lemma. Assume that 2w = w. Then: 
(i) (x : w) + (x : w) = (x : w). 

(ii) (x:w)n(y:w) = (x + y: w). 

Proof Easy to check. • 
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1.3 Lemma. Assume that 2w = w and (M\{w})+ M c M\{w}.Then: 
(i) (x : w) n (y \ w) = (x + y \ w). 

(ii) (x\w) = (2x \ w). 
(iii) If x + y = x then (x \ w) c (y; w). 

Proof. Easy to check. • 

1.4 Lemma. Ifw is the absorbing element of M( + ) then S + (x \ w) ^ (x \ w). 

Proof. Easy to check. • 

1.5 Lemma, (i) (sx\w)={reS\rse(x\ w)} = (s\(x\ w))ifor every seS. 
(ii) If sw = w then s(x\ w) ^ (x\ w). 

(iii) If Sw = w (i.e., w e P(sM)) then 2w = w and ((x \w) + (x\ w)) u 
u S (x : w) ^ (x \ w). 

Proof. Easy to check. • 

1.6 Lemma. If Sw = w and (x: w) ^ 0 then (x \ w) is a subsemimodule of 
sS (i.e., a left ideal of the semiring S). 

Proof. See 1.5 (iii). • 

1.7 Lemma. Assume that Sw = w (i.e., w e P(sM)) and (x \ w) ^ 0. Then: 
(i) (x : w) y is a subsemimodule of sM for every yeM. 

(ii) If |(x : w) y\ = 1 then (x\w)y ^Q(SM). 
(iii) If |(x : w)y\ = 1 and |Q(sM)| = 1 (e.g., if sM is minimal and not quasitri-

vial) then (x\w)^(y\ w). 
(iv) If sM is minimal, not quasitrivial, and if (x \ w) £ (y \ w) then (x \w)y = M. 

Proof (i) By 1.6, (x : w) is a left ideal. Then, of course, N = (x\w)y is 
a subsemimodule of sM. 

(ii) Ssy ^ S(x : w)y ^ (x : w)y, and hence \Ssy\ = 1 for evey s e (x : w). Then 
syeQ(sM). 

(iii) Since |Q(sM)| = 1, we have Q(sM) = {w}.By (ii), (x: w)y = w, so that 
(x : w) ^ (y \ w). 

(iv) It follows from (iii) that |(x \w)y\ > 2. Thus (x : w) y is a non-trivial 
subsemimodule of SM and (x : w) y = M, since M is minimal. • 

1.8 Lemma. Assume that sM is minimal, not quasitrivial, and that Q (sM) ^ 0. 
Then: 

(i) P(sM) = Q(sM) = {w}for some w e M. 
(ii) Ifx.yeM and se S are such that sx = w # sy then for every z e M there 

exists r e S with rx = w and ry = z. 

Proof, (i) We have |Q(sM)| = 1 and the rest is clear. 
(ii) We have (x : w)y £ (y\w) and 1.7(iv) applies. • 
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2. Auxiliary results (B) 

Let SM be a semimodule. For every w e M, define a relation r\w on M by 
(x,j>)e*jwiff (x: w) = (y: w). 

2.1 Lemma, (i) r\w is an equivalence. 
(ii) If (x, >!) e r\w then (sx, sy) e r\w for every seS. 

Proof, (i) This follows immediately from the definition of r\w. 
(ii) By 1.5(i), (sx:w) = (sy:w). • 

2.2 Lemma. Assume that 2w = w and (M\{w})+ M ^ M\{w}. Then r\w is 
a congruence of the semimodule SM. 

Proof. By 2.1, r\ = r\w is an equivalence that is stable with respect to the scalar 
S-multiplication. By 1.3(i), (x,y) e r\ implies (x + z:w) = (x:w) r\(z:w) = 
= (y:w) n(z:w) = (y + z:w) and (y + z, y + z) e r\ for every zeM. Thus r\ is 
a congruence. • 

2.3 Lemma. The following conditions are equivalent: 
(i) r\w = idM. 

(ii) For all x,yeM,x^y, there exists at least one se S such that either 
sx ^ sy = w or sy ?- sx = w. 

Proof. The assertion follows easily from the definition of r\w. • 

2.4 Lemma. The following condition are equivalent: 
(i) r\w = M x M. 

(ii) There is a subset I of S such that Ix = w $ (S\l)xfor every xeM. 

Proof. The assertion follows easily from the definition of r\w. • 

2.5 Lemma. Assume that r\w = M x M and put I = (w : w). Then: 
(i) (x : w) = / for every xeM. 

(ii) I = (s: I), for every se S. 
(iii) rS ^ I for every r el. 
(iv) tS ^ S\I for every teS\I. 
(v) /f2w = w then / + / c /. 

(vi) If w is the absorbing element of M (+) then S + I ^ I. 
(vii) IfSw = w then I = S and SM = {w}(7.e., SM is cs-quasitrivial). 

Proof, (i) This follows immediately from the definition of r\w. 
(ii) By (i) and 1.5 (i), I = (sw :w) = (s:(w : w)), = (s : /),. 

(iii) and (iv). Use (ii). 
(v) See 1.2 (i). 

(vi) See 1.4. 
(vii) Obvious. • 
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2.6 Lemma. Assume that SM is congruence-simple and not cs-quasitrivial. If 
we M is such that Sw = w and (M\{w}) + M c M\{w}t/zerz /̂w = idM. 

Proof By 2.2, r/w is a congruence of SM and it follows from 2.5(vii) that 
r\w 7-= M x M. Since SM is congruence-simple, we conclude that r\w = idM. D 

2.7 Lemma. Let w e M be such that 2w = w, (M\{w})+ M c M\{w}anJ 
r/^ = idM. 77ie/i: 

(i) If x,y E M then x + y = x if and only if (x:w)^(y: w). 
(ii) If Sw = w, x + y ^ x and (x : w) ^ 0 1/ie.n (x: w)y is a subsemimodule of 

SM and (x : w) y ^ {w}. If moreover, (x : w) y £ Q (SM) then \(x :w)y\ > 2. 

Proof (i) If x + y = x then, with respect to 1.3(iii), (x:w)^(y: w). Conver­
sely, if (x:w)^(y: w) then (x : w) = (x : w) n (y : w) = (x + y : w) by 1.3(i), 
hence (x + y, x) E r\w = idM and x + y = x. 

(ii) By 1.7(i), (x:w)y is a. subsemimodule of SM. Since (x : w) £ (y : w) by (i), 
we get (x : w)y 9-= {w}. Finally, if (x : w)y £ Q(SM) then |(x : w)y\ > 2 by 
1.7(H). D 

2.8 Lemma. Assume that 2w = w and (M\{w})+ M _= M\{w}.Then: 
(i) (2x,x) G r\wfor every XEM. 

(ii) If r\w = idM then M (+) is idempotent. 

Proof See 1.3(H). D 

3. Minimal semimodules (A) 

Throughout this section, let SM be a minimal semimodule that is not quasitrivial 
(cf. [1, 4.1]) and such that Q(SM) ^ 0 (i.e., SM is not strictly minimal). 

3.1 Lemma. Q(SM) = P(SM) = {w} for some w EM and Sw = w. 

Proof Q (SM) is a proper subsemimodule of SM and the rest is clear. D 

3.2 Lemma. If w = M + x for at least one x E M, X ^ w, then WE M + y 
for every y E M. 

Proof. We have w = x + u for some UE M. Since x ^ w, we also have 
Sx = M, and hence y = sx for some s E S. Now, w = sw = sx + su = 
= y + su. D 

3.3 Lemma, (i) Q = ((M + w) x (M + w)) u idM /s a congruence of SM. 
(ii) If Q = idM then M + w = w and w is the absorbing element of M( + ). 

(iii) If Q = M x M then M + w = M and w is the neutral element of M( + ). 

Proof. It is easy. D 
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3.4 Corollary. If SM is congruence-simple then w is either absorbing or 
neutral in M (+). • 

3.5 Lemma. Either M( + ) is idempotent or w is the only idempotent element 
ofM( + ). 

Proof. The set of idempotent element of M (+) is a subsemimodule of SM. • 

3.6 Lemma. Assume that M (+) is idempotent. Then just one of the following 
two cases holds: 

(1) w is the absorbing element of M( + ). 
(2) M\{w}is an ideal ofM( + ). 

Proof. If (2) is not true then w e M + x for at least one x e M\{w}. Now, by 
3.2, for every y e M there is u e M with w = y + u and we get w = y + u = 
= 2y + u = y + w. Thus (1) is satisfied. • 

3.7 Lemma. r\w ̂  M x M. 

Proof. Use 2.5(vii). • 

3.8 Corollary. If SM is congruence-simple then and M\{w} is an ideal of 
M( + ) then r\w = idM. • 

3.9 Lemma. Assume that w = 0 is neutral in M( +). Then just one of the 
following two cases holds: 

(1) SM is a module (i.e., M( + ) is a group). 
(2) M\{w}is an ideal ofM( + ). 

Proof. Put IV = {xe M \0e M + x} (i.e., IV is the set of invertible elements of 
M( + )). One checks readily that IV is a submodule of SM. If IV = M then M is 
a module and if IV = 0 then (2) is true. • 

3.10 Lemma. Assume that M\{w}is an ideal ofM( + ) and r\w = idM (see 3.6, 
3.8 and 3.9). Then M( + ) is idempotent and if x,ye M are such that x + y ^ x 
then (x : w) y = M. 

Proof. Use 2.8, 2.7(ii) and the minimality of SM. • 

3.11 Lemma. Assume that SM is congruence-simple, not a module, and that 
w is not absorbing in M( +). Then: 

(i) rjw = idM . 
(ii) w = 0 is neutral in M( + ). 

(iii) M\{0}is an ideal of M( + ). 
(iv) M( + ) is idempotent. 
(v) Ifx, yeM are such that x + y ^ x then for every zeM there is seS with 

sx = 0 and sy = z. 

Proof (i) Use 3.4, 3.8, 3.9 and 3.10. • 

21 



3.12 Lemma. IfoeMis absorbing in M ( + ), w = 0 is neutral in M ( + ) and 
o ^ w f/ierz So = M and tM = 0 for at least one teS. 

Proof. Since SM is minimal and o $ Q(SM) = {w}, we have So = M. Now, 
to = 0 for some t e S, and hence tx = tx + 0 = tx + to = t (x + 6) = to = 0 
for every xeM. • 

3.13 Lemma. ([2,3.13]) Consider the situation from 3.11 and, moreover, 
assume that M = {ai,..., am} is finite. Then: 

(i) M ( + ) contains an absorbing element o. 
(ii) So = M and tM = 0 for at least one t e S. 

(iii) For all u,v e M there exists at least one se S such that, for every x e M , 
sx = 0 if x-\-u = u and sx = v ifx + u 7-= u. 

Proof, (i) It suffices to put o = a{ + ... am. 
(ii) See 3.12. 

(iii) If u = o then x + u = u for every xeM and we put s = t (see (ii)). 
Hence, assume u ^ o = v and put L = {xe M \ x + u ^ u). The set L is finite 
and non-empty, and (by 3.11 (v)) for every xe L there is sx e S with sxu = 0 and 
sxx = o. If s = ]TXezA then sx = o for every xe L. Moreover, su = 0 and if 
y + u = u then sy = sy + 0 = sy + su = s(y + u) = su = 0. Finally, if v is 
arbitrary then, by (ii), there is q e S with v = qo. Now, if x + u 7-= u then 
qsx = qo = v, and if ^ + u = u then gsy = qO = 0. 

3.14 Lemma. Assume that M is finite and w = o is absorbing in M ( + ). Then 
tM = o for at least one t e S. 

Proof. If x e M, x ^ o, then Sx = M, and hence txx = o for some tx e S. Put 
t = ZxeMtx- Then t M = o. • 

3.15 Lemma. Assume that M is finite, congruence-simple and not a module. 
Then tM = wfor at least one teS. 

Proof. Combine 3.4, 3.11, 3.13 and 3.14. • 

4. Minimal semimodules (B) 

4.1 Lemma. Let SM be a semimodule. Define a mapping cp : S -* End(M( + )) 
by cp (s) (x) = sx for all se S and xeM. Then: 

(i) cp is a homomorphism of semirings. 
(ii) ker (cp) is a congruence of the semiring S. 

(iii) ker (cp) = S x S if and only if the semimodule SM is quasitrivial. 
(i v) ker (cp) = ids if and only if for all r,se 5, r ^ s, there exists at least one 

xeM with rx ^ sx. 
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(v) If the semiring S is congruence-simple and the semimodule SM is not 
quasitrivial then q> is an infective homomorphism. 

(vi) If seS then cp(s) is a constant endomorphism of M ( + ) if and only if 
\sM\ = 1. 

Proof. Easy to check directly. • 

For a semimodule SM, put Ann( sM) = {se S | |sM| = 1}. 

4.2 Lemma. Put A = Ann (SM). Then: 
(i) Either A = 0 or A is an ideal of the semiring S (i.e., (A + A) u SA u 

u AS ^ A). 
(ii) For every se A there is wse M with sM = ws. 

(iii) wr+s = wr + wsfor all r,se A. 
(iv) wts = tws and wst = ws for all se A and t e S. 
(v) If A 7-= 0 then AM = {ws\se A} is a subsemimodule of SM. 

(vi) sx = stx for all se A, teS and xeM. 
(vii) If se A and qeS are such that qws = ws then sx = qsxfor every xeM. 

(viii) If se A is such that Sws = ws then AM = {ws} (i.e., wr = wsfor every 
re A). 

(ix) If se A is such that ws = 0M is neutral in M (+) then tx = (s + t)x for 
every t e S and xeM. 

(x) If se A is such that ws = oM is absorbing in M(+) then 
oM = sx = (s + t)x for every teS and xeM. 

Proof. Easy to check directly. • 

4.3 Lemma. Assume that ker(<p) = ids (e.g., S congruence-simple and SM not 
quasitrivial). Then: 

(i) Every element from A = Ann(sM) is left multiplictively absorbing in S. 
(ii) If se A and t e S are such that tws = ws when ts = s. 

(iii) If se A is such that Sws = ws then s is multiplicatively absorbing in S and 
A = {s}. 

(iv) IfseAis such that ws is neutral in M ( + ) then s is additively neutral in S. 
(v) IfseA is such that ws is absorbing in M( + ) then s is additively absorbing 

in S. 

Proof. Use 4.1 and 4.2(vi), (vii), (viii), (ix) and (x). • 

4.4 Proposition. Assume that S is a congruence-simple semiring and SM is 
a finite non-quasitrivial minimal congruence-simple semimodule with Q(SM) ^ 0. 
Then: 

(i) Q(SM) = P(SM) = {w}for some weM and Sw = w. 
(ii) Either w = 0M is neutral in M ( + ) or w = oM is absorbing in M (+) . 

(iii) If w = 0M is neutral in M ( + ) then S contains an additively neutral and 
multiplicatively absorbing element 0S and 0SM = 0M. 
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(iv) If w = oM is absorbing in M (+) then S contains a bi-absorbing element 
os and osM = oM. 

Proof, (i) See 3.1. 
(ii) See 3.4. 

(iii) We have ker(<p) = ids by 4.1(v). Furthermore, A = Ann(sM) ^ 0 by 
3.13(ii). Now, by 4.3(iii) and 4.3(iv), we have A = (O )̂, where 0S is 
additively neutral and multiplicatively absorbing, 

(iv) Again, ker(<p) = ids. Furthermore, A ^ 0 by 3.14 and, by 4.3(iii) and 
4.3(v), we have A = {os}, where os is bi-absorbing. • 

4.5 Lemma. Let SM be a semimodule such that M = Sx for some x e M. 
Then: 

(i) If S has a left multiplicatively absorbing element then Ann (SM) ^ 0. 
(ii) If S has a right multiplicatively absorbing element then P (SM) 7-= 0. 

(iii) IfS has the additively neutral element then M( + ) has the neutral element. 
(iv) If S has the additively absorbing element then M( + ) has the absorbing 

element. 

Proof The mapping s 1—• sx is a homomorphism of SS onto SM. • 

References 

[1] AL ZOUBI, K., KEPKA, T. AND NÈMEC, P.: Quasitrivial semimodules I (preprint). 
[2] ZUMBRÄGEL, J.: Classification offinite congruence-simple semirings with zero (preprint). 

24 


		webmaster@dml.cz
	2012-10-06T04:48:45+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




