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Various subsemirings of the field Q of rational numbers are studied. For every subsemiring
of Q* a set of characteristic sequences is presented. All maximal subsemirings of Q* are
found and classified.

I. Introduction

A (commutative) semiring is an algebraic structure with two commutative and
associative binary operations (an addition and a multiplication) such that the multi-
plication distributes over the addition. The notion of semiring seems to have first
appeared in the literature in a 1934 paper by Vandiver [4]. Semirings are widely used
in various branches of mathematics and computer science and in everyday practice as
well (the semiring of natural numbers for instance).

The structure of subrings and subgroups of rational numbers is quite well known.
On the other hand, structural properties of subsemirings and subsemigroups of Q is
not well understood, although the concept of semiring is a very basic one. In this
paper we present a natural way how to deal with subsemirings of positive rational
numbers.

Department of Algebra MFF UK, Sokolovskd 83 186 75 Praha 8, Czech Republic

Department of Mathematics & Computer Science Wabash College Crawfordsville, IN 47933 USA
2000 Mathematics Subject Classification. 11A99, 16Y60

Key words and phrases. Semiring, rational number.

Partially supported by the institutional grant MSM 113200007. The first author was supported by
the Grant Agency of Charles University #8648/2008 and the second author was supported by the Grant
Agency of Czech Republic, No. 201/09/0296.

E-mail address: vita211@gmail.com

E-mail address: kepka@karlin.mff.cuni.cz
E-mail address: miroslav.korbelar @ gmail.com
E-mail address: phillipj@wabash.edu

29



For every subsemiring S of Q" and every prime number p we define, using the
p-prime valuation function, a characteristic sequence of S. Such sequences can be,
on the other hand, used for construction of a semiring that is (in some sense) a good
approximation of the original one. Using this idea we find and classify all maximal
subsemirings of positive rational numbers. As we will see, there is an uncountable
amount of them. In the end, we use this method to present another way of classifying
subgroups of Q(+).

For a more thorough introduction to semirings and a large collection of references,
the reader is referred to [ 1], [2], [3], [S] and [6].

2. Preliminaries

A semiring is called
(i) unitary if the multiplicative semigroup S(-) has a neutral element (usually
denoted by s or 1);
(i1) nullary if the additive semigroup S (+) has a neutral element (usually denoted
by Og or 0);
(ii1) a ring if the additive semigroup S (+) is an (abelian) group;
(iv) a semifield if it is nullary and the set S\{0} is a subgroup of the multiplicative
semigroup of S;
(v) aparasemifield if the multiplicative semigroup of S is a non-trivial group;
(vi) afield if S is both a ring and a semifield.
In the sequel we will use the following notation:
(1) Z, the ring of integers;
(i1) Q, the field of rationals;
(ii1) R, the field of reals;
(iv) Z* (Z, respectively), the semiring of positive (non-negative, respectively)
integers;
(v) QF (R*, respectively), the parasemifield of positive rationals (reals, respec-
tively);
(vi) Qf (R, respectively), the semifield of non-negative rationals (reals, respec-
tively);
(vii) Z; (respectively Qg,R;), the set (and additive semigroup) of non-positive
integers (rationals, reals respectively);
(viii) Q* (R*, respectively) the multiplicative group of non-zero rationals (reals,
respectively):
(ix) Qf ={g € Q: I < g} (aunitary subsemiring of Q);
(x) 1Q" ={geQ: 0<qg < 1} (asubsemigroup of the multiplicative group Q");
(xi) (R* ={reR: 0<r<l}(asubsemigroup of R");
(xil) P, the set of (positive) prime integers.
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Forall p € Pand g € Q", there exists a uniquely determined integer v ,(g) such that
q==%[1per p'7'P; (of course, only finitely many of the numbers v,(g) are non-zero).

Lemma 2.1 Let p e Pandr,s € Q*. Then
(1) Vp(_r) = Vp(r)r'
(i) vp(rs) = v,(r) + v,(s);
(iii) v,(r+s) 2 min(v,(r), v,(s)), provided that r # —s;
(iv) vp(r + s) = min(v,(r), v,(s)), provided that v ,(r) # v,(5).

Proof. (i) and (i1). Easy to check.

(iii) We have r = r p* and s = s, p/ where k = Vp(r), L= v,(s),v,(r1) =0 =v,(s),
and we can assume that [ < k. Then r + s = p't,t = s + r;p*/,k = 1 > 0. Further,
ry = a/b and sy = c¢/d, where a,b,c,d € Z* and p divides neither b nor d. Now,
t = (ad + bcp*")/bd, V() 2 0and v, (r+s) = [+ v,(t) =2 [ = min(v,(r), v,(s)).

(iv) We can assume that v,,(s) < v,(r). Then v,(s) = v,(r+s—r) 2 min(v,(r + s),
v,(r), and so v,(s) = v,(r+ 5) = min(v,(r),vp(s)) = vp(s). Thus v,(r + 5) =
= min(v,(r), vp(s)). m]

Lemma 2.2 Forallm € Z*,py,pa,....pm € P,p1 < p2 < -+ < PN, N2,. ..,
n, €Z, andr,s € Q,r < s, there exists at least one t € Q* such thatr <t < s, and
vp () =n,l<i<m.

Proof. Find pg € P\ {pi,..., pm) such that a = 1”1“” P pe < (s = 1))2.
Then2a < s—randa = p;...p,b > b, where b = p’l" ... P/ po. Obviously there is
k € Zsuch that (k— 1)a < r < kaand we putt = ka+b = (kpy ... p, + 1)b. Clearly,
r<ka<t=(k-Da+a+b<r+a+b<r+2a<r+(s—r)=s;thusr<t<s.
Moreover, v, (t) = v, ((kpi ... pw + D)b) = v, (kpy ... py + 1) + v, (D) = v, (b) = n;,
forl <i<n. m]

Forall p e P,re ;R* and g € Q", put |gl,, = r'»'? € R*. Put also |0],,, = 0.

Lemma 2.3 Let q1,q> € Q. Then:
() Igilpr = 0ifand only if g1 = 0;
(i) lql(/Z'/Lr = |qlip,r : ‘CIZIPJ;
(”1) [ql + ‘IZ![),r < max{|(I1|p.n lQZIp.r}; and
(iv) 1511 + qup,r = max{l‘hlp,r’ [flzlp,r}y PrUVfded that ‘Qlllhr * Iq2lp,r-

Proof. Taking into account the definition of the norm |gl, ,, the equalities follow
from 2.1. a

For every m € Z[, let ‘R, denote the set of sequences r = (r, Fs1, Fms2s - - .) Of
non-negative real numbers such that

(A) ryex < ry-rp wheneverm < nandm < k.

Furthermore, let R, denote the set of the sequences r € R, such that
(B) ry < r, whenever m < n < k.
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Lemma 24 Letm e Z; andr € R,
(i) If mo = mis such that r,,, = 0, then ry, = 0 for every k = m + my,
(1) If m=0andry =0, thenr =0 (i.e., rp, =0 foreveryk € Z,k > m).

Proof.
(1) We have k —mgy > mand ry = ri_pgimg < Feemg = Ymg = 0 by (A). Thus r = 0.
(11) This follows immediately from (i).
m}

Lemma 2.5 Letr e Ro. Ifro=0, thenr =0. If ro # 0, then ry > 1.
Proof. We have r, < r,-rpand ry < r(z). The rest is clear. O

Lemma 2.6 Letm € Zj andr € R,,. Then either lim{r, : n>m} = inf{r, : n>
>m}=0orr, =1 foreveryn > m.

Proof. Assume that r;, < 1 forsome k > m. If k = 0, then using 2.5is ry = 0,r =0
and our assertion is true. Hence, assume k > 0. Now, if 2k < n then n = lk + j for
some [ >2and0 < j < k. Wehave r, < ryy; - r,f“', and therefore r, < ry.; - ri"”’k)/k
and it follows that lim{r, : n > m} = 0. ]

Lemma 2.7 Letm € Z* and r € R,,. Then A(r) = inf{r)/" : n > m} = lim{r}/" :
:n > m). Moreover, ifr € R, then A(r) < 1.

Proof. 1f r,,, = for some my > m, then A(r) = 0 by 2.4 (i) and there is nothing
to prove. Hence, assume that r, # 0O for every n > m. Now, if m < k < n then

n=1lk+ jforsomel>1and0 < j <k Wehaver, <re., ", and therefore r,l/" <
J . j 1

k
< r,ii’}-r,(\,"”/” = rzfr'}-(rkl,/k)(””f““/”. Using this, one sees easily that limsup{r)/"} < r:_/k.
1/n 1/n 1/n

Consequently, A(r) < liminf{r,’"} < limsup{r,’"} < A(r), and so A(r) = lim{r,'"}.
Finally, if r € R, then A(r) < 1 by 2.6. O

Let R, denote the set of Z-sequences r = (...,r.o,r_1,ro,r,r2,...) of non-
negative real numbers such that

(A" rpsp <1, - foralln, k € Z.

Furthermore, let ﬁw denote the set of the sequences r € R, such that

(B") ry < r, whenevern,k € Z,n < k.

Lemma 2.8 letre Ro.r =(ri,ra,rs,...)andr = (r_y,r_o,r_3,...). Then:

(1) Eitherr = 0 orr, # 0 for every n € Z. In the latter case, ry > 1 and

rom = 1/r, for everym > 1.

(i) s =A@ = inf(r/™: m =1y =lm{rl/™: m=> 1),
(i) + = A0r) = inf(r": m> 1) = lim{rF " 0 m> 1),

@iv) " < r, and " <r_,, for every m > 1.

(v) st > 1, provided that ro # 0 (see (i)).

(vi) IfO < r, < 1foratleastonen > 1,then 0 <s <1<t



Proof. (i) We have ro = r_ <1, -1y and rg < 1.
(ii) and (iii). Clearly, r* € R and r~ € Ry, and 2.7 applies.

(iv) See (i1) and (iii).

(v) We have 1 < r(l)/'” < M mfor every m > 1. But st = lim{ry/™ - r'/™).

n —m
(vi) We have s < r}/" < 1.

. ]
Lemma 2.9 Letr € Reo. Then:
(1) rte %1.
(i1) Either lim{r,, : m>0}=0o0rr, > 1 foreveryn € Z.
(iii) A(r*) < L.
(v) Ifro # 0, then A(r-) > 1.
Proof. See 2.8. o

Remark 2.10 Let m € Z and r € R,, be such that r, > 0 for every n > m (see
2.4 (i), (ii)). For every k € Z}, put o (r) = sup{rysx/rn : n = m} € R* U {oo} and
pr(r) = sup{ry/rp : n = m) € R U {oo} .

Lemma 2.11

() oo(r) = 1and 0 < rpx/r, < op(r) < o(r)* for every k € Z§andn = m.
(1) oy(r) < r forevery l = m.
(i) Ifre ‘_}i—,,,, then o(r) < 1 for every k € Z.

Proof.
(1) We have r, /1, = I_I;’:,f“ rie1/ri < o(r)f foralln > m and k > 1. The rest
1s clear.
(11) We have r,y/rm, < 1.
(i11) Easy to see.

Lemma 2.12 o(r) < oo for every k € Z; in each of the following four cases:
(1) oy(r) < oo;

(1) m :—9 1;

(iii) re R,,;

(iv) 1y, <1y, forallm < ny < n,.

Proof. 1f (1) is true, then the result follows from 2.11 (1). If (ii) is true, then from
2.11 (1), (i1). If (ii1) is true, then 2.11 takes place. Finally, assume that (iv) is true. If
n>2m-123,thenr,1/ry < ry - Foemst[Tn < T o

Lemma 2.13 [fo(r) < oo, then o(r) = (oo(r), o 1(r), o2(r),...) € Ry.

Proof. By 2.12 (1), o(r) < co for every k > 0. Furthermore, 7,41/ hir < 0(r) =
sup{ry,+i/tn, © ny = mjforalln > mk > 0 and [ > 0. Thus, ryp/r, <

< oy(r) : Fnsi /T < o(r)o(r) and it follows that o, (r) < o(r)o(r). That is,
o(r) € Ry. =]
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Lemma 2.14 Ifr e 5%,,,, then o(r) € go and oi(r) < 1 for every k € Zj.

Proof. By 2.11(iii), o(r) < land o(r) € Roby 2.13. If 0 < k < [, then r,yy < Fpaks
and S0 ry41/rn < rusx /1. Consequently, o (r) < o (r) and r € Ro,. O

Lemma 2.15 Ifm = 0, then ro > | and ry/rg < oy(r) < rp for every k > 0. If,
moreover, ro = 1, then o (r) = ri (and hence o(r) = r; see 2.13).

Proof. We have rp > 1 by 2.5 and r/rg < oi(r) < 1 by 2.11(1), (i1). m]

Lemma 2.16 Letm = 1,5 € R andr’ = (s,r). Then:
(l) re T\Q.

(i1) o (r') = max{ry/s, o (r)ifor every k > 1.

(i) Ifre ﬁ} and s > ry, thenr’ € gl.

Proof. Easy to check. o

Lemma 2.17

(i) po(r) = 1 and 0 < r,/ryx < pr(r) < pi(0)* for every k € Z.
(1) 1/r; < pi(r) forevery l > m.
(iii) Ifr € R, then 1 < pi(r) for every k € Z;.

Proof.
(1) We have r,/r, = ﬂ;’:,f‘l ri/ric1 < p1(r)f foralln > mand k > 1. The rest
is clear.
(i1) We have ry /1o = rp/rary = 1/r.
(i11) Easy to see.

O
Lemma 2.18 p(r) < oo for every k € Z] in each of the following two cases:
(1) pi(r) < oo;
(i1) ry, <1y, forallm < ny < n,.
Proof. See 2.17(i), (ii). o

Lemma 2.19 If p(r) < oo, then p(r) = (po(r), p1(r), pa(r),...) € Ry.

Proof. By 2.18, pi(r) < oo for every k > 0. Furthermore, r,x/rpiksr < pi(r) =
sup{ry, /a1 = ny = myforall ny > mk > O0and [ > 0. Thus r,/rppe <

< pir) - ryfree < pi(r)pr(r) and it follows that pp(r) < pr(r)p(r). That is,
p(r) (S s}‘(). O

Lemma 2.20 Ifr € 5&7,,,, then 1 < pp(r) < py(r) forall 0 < k < L.
Proof. Easy to see. O

Lemma 2.21 Assume that o((r) < oo and pi(r) < co. Then o_1(r) < o(r)pk(r)
and p;_(r) < o (r)p(r) for all 0 < k < L.
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Proof. We have rp.q-i)/Tn+-t+k < pi(r) for all n > m. Consequently, r,4—x/ry
< pi)rpsi/ra < pi(r)o(r), and hence oy (r) < oy(r)pi(r).

Similarly, ryyg-ry+k/Tnsa-xy < ox(r) for all n > m. Consequently, r,/ry.1-k
< ok (P)ry/rasr < ow(r)pi(r), and hence p; 1 (r) < o (r)p(r). ]

IA

Lemma 2.22 Assume that o1 (r) < co, pi(r) < oo and put 1(r) =

(....pzﬁ‘),pl(r), 1,o1(r),oy(r),...). Then v(r) € Ro. Moreover, if r € R, then
7(r) € Re.

Proof. It is enough to combine 2.13, 2.14, 2.19, 2.20, and 2.21. O

Lemma 2.23 Assume that m = 0 and p,(r) < co. Then 7(r) = (..., p2(r), p1(r), ro,
ri,ra,...) € Re Moreover:

(DIf (... 52, 81,70, 71,72, ... ) € Re, then pi(r) < sy for every k > 1.

(ii) Ifr € go and ry < 1, then 7(r) € ﬁm.

Proof. 1f0 < k <[, then ry—;/ri—1+1 < pi(r), and therefore ry_; < ry.-p(r). Similarly,
Tnsl < Fnsq-nt for every n > 0, and therefore r,, /vy -y < 1 - rp/tner < ripi(r) and
p1-1(r) < rpi(r). Now, using 2.19 we conclude that 7(r) € Re.

As concerns (1), if n > 0 and k > 1, then r, < Sirusx, so that r,/r, < sk and it

followi_that px(r) < 5. Finally, if r € 5{0 and r; < 1, then p(r) > ro/ry > ro and
7(r) € R by 2.20. O

Lemma 2.24 Consider the situation from 2.16. Then p;(r') = max{s/ry, pi(r)} for
every k > 1.

Proof. It is easy. O

Lemma 2.25 Assume that m = 1 and p,(r) < co. Then 7(r) = (..., p2(r), p1(r), 1,
ri,r,...) € Re. Moreover:

(D)If (..., 52,81,80,71,72,...) € Ry, then 1 < sg and pi(r) < si for every k > 1.

(ii) Ifr € _951 and ry < 1, then 7(r) € Km_

Proof. Combine 2.16 and 2.23. O

Lemma 2.26 Assume that m > 2 and put k(r) = max{o,_(r), r;,/nz_z}.
(1) If a € R*, then (a,r) € R,y if and only if a > «(r).
(1) Ifa e R* and a = «k(r), then oy((a,r)) = max{ow(r), rmk-1/a} and p((a,r)) =
= max{pi(r), a/rmix-1} for every k > 1.
(iii) Ifa € R* and a > «(r), then (a,r) € R,,_ if and only ifr € R, and a > r,,.

Proof. (1) If a > «k(r), then ryypm_1/ry < 0p-1(r) < a, and hence r,4,,-1 < r,a for
every n > m. Moreover, ry,_» < a’ and we see that (a,r) € R,,_;. Conversely, if
(a,ry € Ry, then ryyp-1/ry < aforeveryn > mand ry, 5 < a?. Thus, a > k(r).

(i) and (ii1). It is easy. 0O

Lemmal_2.27 If m > 2 and o,,_1(r) < oo, then (k(r),r) € R,,_;. Moreover,
(k(r),r) € R,y ifand only ifr € R, and k(r) > r,),
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Proof. Use 2.26. u]

Remark 2.28 Assume that m > 2.

(i) If oy (r) < oo, then 0,1 (r) < o1 (r)" " and hence k(r) < max{oy(r)" ", r,)" ).

(i1) If o1 (r) < oo, then o ((«(r),r)) = max{o(r), r,,/k(r)}. Of course, r,,/«(r) <
< Pt/ Tosm—1 forevery n > m.

(i) If oy (r) < 1 (e.g., if oy (r) < 1) and ry,2 < 1, then «(r) < 1. If, moreover,
rm < 1, then we can find a € R* such that x(r) < aand r, < a. We
have (a,r) € R, and r,,,/a < 1. By 2.26(ii), oy ((a,r)) = max{o(r), r,/a}.
Consequently, o ((a,r)) < 1, provided that o (r) < 1.

If 72, < r,ps1, then we can choose a such that 72 /r,,.; < a. Then r,,/a <

< rm+1/rm < O'l(r), and so 0'1((0,7')) = 0'1(").

1/2

Lemma 2.29 The following conditions are equivalent:
(1) o1(r) < o (i.e., there exists r € R* such that r,.y < r-r, forevery n > m).
(ii) There exist ro,ry,...,rm_1 € R* such that (ro, ..., ety Fms T, - .- ) € Ro.

Proof. (1) implies (i1). We will proceed by induction on m. The result is clear for
m = 0 and follows from 2.16 form = 1. If m > 2 thenr’ = (k(r),r) € R,,_; and
o (1) < oo by 2.26(1),(i1).

(i) implies (i). Obvious. o

Remark 2.30 Assume that o(r) < oo and consider the situation from 2.29 and
put ¥’ = (1o, 71,725« o o s et Fins Tt 15 - - - ) € Ro. We have o (1) < 0.

(1) If py(r) < oo, then p(r') < oco.

() If oy(r) < 1 and r,, < 1 for every n > m, then the numbers ry,...,r,_; can be
chosen from ljl_%_*. .

(iii) If r € ‘R,,,, then the numbers ro, rq, ..., r,-1 can be chosen such that r € R.
If, moreover, r, < 1 for every n > m then we can find ry,...,r,-; € |R*.

Lemma 2.31 The following conditions are equivalent:

(i) oy (r) < co and py(r) < oo.

(ii) There exist ..., r_o,r_1,70,11,V2, ..., m-1 € R* such that
(oo s P P PO P 1 T2 e s Fone s Pty Y1 - - - ) € R

Proof. (i) implies (ii). Taking into account 2.29 and 2.30, we can assume that
m = 0. Now, the result follows from 2.23.
(i1) implies (i). Obvious. m]

Example 2.32 We are going to construct a sequence r € R, such that lim{r, :
:n>2} =0 (see 2.6) and oy (r) = o0 = p;(r). We will do it by induction.

First, choose ry,r3 € R* arbitrarily. Then assume that positive real numbers
12,13, ..., ra-1,n > 2, are found such that riy; < rirj whenever 2 < i,j < 2n -1
and i+ j < 2n—1. Now, put sy = min{riry,—; : 1=2,...,2n=2}, 55 = min{r;ry,,-; :
Jj = 2,...,2n — 1} and s = min{sy, 52, 1/n}. Choose ry,, r2,e1 € R such that
0 < rapstape2 < $.n < 12, /12,1 foreven nand n < ry, /1o, for n odd. The rest
is easy.
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Example 2.33 Put r, = 1/2"2 for every n > 2. Thenr = (r,r3,r4,...) €
€ Ry, 0(r) = 1/32 and p(r) = co. Moreover, «(r) = 1/4.

Example 2.34 Proceeding similarly as in 2.32 one can construct a sequence r €
€ R, such that lim{r,, : n > 2} =0,0(r) = o0 and p|(r) < .

3.Subsemirings and subrings of Q—First Observations

Proposition 3.1 Let S be a subsemigroup of Q(+) such that S NQ* # 0 # SNQ".
Then S is a subgroup of Q*.

Proof. Let a,b,c,d € Z* be such that a/b € S and —c/d € §. Then bc - 1 €
€ Zj,ad € Z* and hence, —a/b = (bc — 1)a/b + ad(—-c/d) € §. Similarly, bc €
€Z',ad-1€Zjandc/d = bc(a/b) + (ad — 1)(-c/d) € S. O

Proposition 3.2 Let S be a subsemiring of Q such that S N Q™ # 0. Then S is a
subring of Q.

Proof 1fa € S NQ7, thena* € S N Q" and S(+) is a subgroup of Q(+) by 3.1.
Thus § is a subring. O

Proposition 3.3 Let S be a non-zero nullary subsemiring of Q; and T = S\{0}.
Then:
(i) T is a (non-nullary) subsemiring of Q.
(11) T is unitary if and only if S is so.
(i) T is a (proper) maximal subsemiring of Q" if and only iff S is a maximal
subsemiring of Q.

Proof. It is obvious. O

Proposition 3.4 Let T be a subsemigroup of Q" and S = T U {0}. Then:
() S is a non-zero nullary subsemiring of Q.
(i1) S is unitary if and only if T is so.
(iii) S is a maximal subsemiring of Qg if and only if T is a maximal subsemiring

of Q"

Proof. It is obvious. o

Proposition 3.5 Let S be a subsemiring of Q andlet T = S UZ*U(S +Z"). Then:
(1) T is a unitary subsemiring of Q and S € T.
(11) S isanideal of T and S =T if and only if 1 € S.
(ili) S U(S +Z") is a bi-ideal of T (i.e., it is an ideal of both the semigroups T (+)
and T(+)).
(iv) T is a subring of Q if and only if S is a non-zero subring.
(v) T =Qifandonly if § = Q.
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Proof. (1), (i1), and (iii). Easy to check.

(iv). First, assume that 7" is a subring of Q. Then —1 € T and, since —1 ¢ Z*,
we have =1 € S U(S +Z%). If =1 € §, then S is subring by 3.2. If =1 € § + Z*,
then S N Z~ # 0 and we use 3.2 again. Conversely, if S is a non-zero subring, then
—a/beS CT,and T is a subring by 3.2.

(v) If S = Q, then, apparently, 7 = Q. Now, assume that 7 = Q. Then S is a non-
zero subring of Q by (iv). Consequently, S N Z* # 0 and we put n = min(S N Z").
Ifn=1,thenl €S and S =7 = Q by (ii). Finally, if there is a p € P such that p
divides n, then 1/p € T and we conclude easily that 1/p € S +Z*. Thus, l/p =a+m
for some m € Z* and then (pm — 1)/p = —a € S;,pm -1 € S NZ* = nZ" and p
divides pm — 1, a contradiction.

o

Remark 3.6 Let S be a subsemiring of Q. Then S = S U{0} is the smallest nullary
subsemiring containing S (see 3.2, 3.3, and 3.4). Clearly, S¢ # Qifandonly if S # Q.
Furthermore, by 3.5, S| = S UZ* U (S + Z%) is the smallest unitary subsemiring
containing §. Again, S| # Q if and only if § # Q. Finally, So1 = Zj U (S + Z)) is
the smallest nullary and unitary subsemiring of Q containing S. We have So; # Q if
and only if S # Q. In particular, if S is a (proper) maximal subsemiring of Q, then S
is both nullary and unitary.

Remark 3.7 (i) For every p € P put U(p) = {a/b : a € Z,b € Z*, p does not
divide b}. It is easy to check that U(p) is a maximal subring of Q. Of course, U(p) is
unitary.

(ii) Let R be a proper subring of Q. By 3.5 (iv), (v), R} = (R+Z*)UZ* is a proper
unitary subring of Q and there is at least one prime p € P such that 1/p ¢ R;. If
a/b € R, where a,b € Z*, gcd(a, b) = 1 and p divides b, then b = mp and na+kp = 1
for some m,n,k € Z. Now, 1/p = na/p + kp/p = nma/b + k € Ry, a contradiction.
We have proved that R} € U(p). Consequently, R € U(p), too.

(111) It follows from (i) and (i1) that the subrings U(p), p € P, are just all maximal
subrings of the field Q. According to 3.2, these subrings are maximal as subsemirings
as well.

Remark 3.8 If S is a proper subsemiring of Q such that S ¢ Qj, then S is a sub-
ring by 3.2, and hence S € U(p) for a prime p € P by 3.7 (ii). Using this (and 3.7
(iii)), we conclude easily that the subsemiring Q) and the sub(semi)rings U(p), p € P,
are just all maximal subsemirings of Q. Notice that Q) = {g € Q: |gl < g} = {q €
€Q: lgl=qland U(p) = (g€ Q" : vy(@ = 01U{0} = {geQ: lgl,, < 1},re R".

Remark 3.9 If S is a subsemiring of Q, then S =S ={a—-b: a,b € S}isthe
difference ring of S'. That is, it is just the smallest subring of Q containing S.

Remark 3.10 Let S, and S, be subsemirings of Q and let ¢ : S| — S, be
a homomorphism (i.e., ¢ is a mapping such that ¢(a + b) = ¢(a) + ¢(b) and ¢(ab) =
= p(a)p(b) for all a,b € Sy).
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(1) First, assume that S| € Zj. If 0 € Sy, then ¢(0) = (0 +0) = ¢(0) + ¢(0),
so that ¢(0) = 0 € S,. If m € S;\{0} then @(m)p(m) = @(m*) = me(m), and hence
either p(m) = 0 or ¢(m) = m. If m,n € §\{0} are such that ¢(m) = 0 and ¢(n) # 0,
then @(n) = n,@o(m +n) = p(n) = n # 0, and hence ¢(m + n) = m+nand m = 0,
a contradiction. We have shown that either O € S, andgp =0orS; € S, and ¢ = idg,.

(ii) Next, assume that S| € Q. Again,if 0 € §,then(0) =0.Ifa/b € Sy,a,b, €
e Z',thena=>b-a/beT =S8, NZ" and p(a) = bp(a/b),p(alb) = ¢(a)/b. Put
W = ¢|T. According to (i), either 0 € S, and ¢ = 0or T C S, and ¢ = idy. In the
former case, we get ¢(a) = 0 and ¢(a/b) = 0. In the latter case, we get ¢(a) = a and
¢(a/b) = a/b. We have thus shown again that either 0 € S, andp =0o0rS; € S, and
@Y= idsl.

(ii1) Assume, finally, that S ¢ Q;. By 3.2, S is a subring of Q. If a € §, N Q",
then —a € §; N Q" and 0 = ¢(a — a) = ¢(a) + ¢(—a) and ¢(a) = —¢(—a). Using (ii),
we see that eitherO € S, and g =0or S| € 5, and ¢ = idg,.

(iv) Combining (i1) and (iii), we conclude that either0 € S, and ¢ =0orS; € S»
and ¢ = idg,.

(v) It follows immediately from (iv) that different subsemirings of Q are non-iso-
morphic.

Remark 3.11 Let S be a subsemiring of Q. If m € S N Z*, then the set S + m is
again a subsemiring. Moreover, if r € S UZ", r # 0, then the set Sr is a subsemiring.

4. Subsemirings of Q*—First Steps

Throughout this section, let S be a subsemiring of Q* and let p € P,v = v,,.
& o ) !

Lemma 4.1 Ifm = v(a) > 0 for some a € S, then for every n > m there is at least
one b e S withv(b) = n.

Proof. Putb = p"™" -a. =]

Lemma 4.2 Ifm = v(a) < 0 for some a € S, then for every n € Z there is at least
one b € S with v(b) = n.

Proof. First, v(c) = —1, where c = p™ - a e S. If n > 0, then p"*!' - c € S and
v(p"!'-c)=n.Ifn <0, thenc™” €S and v(c™) = n. O

Definition 4.3 If v(a) > 0 for every a € S (see 4.1 and 4.2), then we put
W,(S) =) w(S) = min{v(a) : a € S} If v(b) < O for at least one b € S (see
4.2), then we put (W,(S) =) w(S) = —co.

Definition 4.4 For every n € Z such that n > w(S), (see 4.3) we put (u,,,(S) =)
u,(S) = inflc € § © v(c) £ n} (€ R)). Moreover, if m = w(S) > 0, then
(u,,(S) =) ulS) = (Up(S). w1 (S),uy2(5),...). If w(S) = —oo, then (u,,(S) =)
@(S) =(..us(S),u1(S),up(S),u; (§),u(S),...).
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Lemma 4.5 .
1) If m=w(S) =0, then u(S)S?%,,,.
(ii) Ifw(S) = —oo, thenu(S) € R.

Proof. Let n,k € Z be such that n > w(S) and k > w(S). It follows easily from
4.4 that u,(S) € Ry and ui(S) < u,(S) if n < k. To show the condition (A) ((A"),
respectively), consider sequences a = (ay, a,, as,...) and b = (by, by, bs, . ..) of num-
bers from § such that a; > a, > a3 > -+ ,v(a;) < n,lim(a) = u,(S),by > by, >
> by > ,v(b;) <k, and lim(b) = ui(S). Then v(a;b;) < n+ k,a;b; € S,lim(ab) =
=u,(S) - uw(S) and a;b; = u,,1(S). Thus lim(ab) > u, 1 (S). a

Definition 4.6 If w(S) > 0, then we put (1,(S) =) AS) = Aw(S)) (see 4.5
(i) and 2.7). If w(S§) = —oo, then (/l;(S) =) AYS) = Au(S)") and (A,(8) =)
A7(S) = Au(S) )(see 4.5 (ii) and 2.8).

Lemma 4.7 Assume that w(S) =m > 0. Then:
(1) Either limu(S)) =0 oru,(S) > 1foreveryn > m.
(i) If u,, (S) = 0 for some my = m, then ui(S) = 0 for every k > m + my,.
() Ifm=0anduy(S) =0, thenu(S) = 0.
@iv) Ifm=0anduy(S) # 0, then up(S) > 1.
(v) AS)" < u,(S) foreveryn=m, n #0.
(vi) 0<AS) < 1.

Proof. By 4.5(1), u(S) € g,,,. Now, we use 2.6, 2.4 (1), 2.4 (ii1), 2.5,and 2.7. O

Lemma 4.8 Assume that w(S) = —oo. Then:

(i) Either imu(S)*) =0 oru,(S) = 1 for everyn € Z.

(i1) Ifu,,(S) = 0 for some my € Z, then u(S) = 0.
(i) Ifup(S) # 0, thenug(S) = 1 and 17 (S) = 1.

(1iv) 0 <A*(S) < Land A7(S) < u(S) < up(S).

(V) A7) <uy(S)and A7 (S)" < u_,(S) for every m < 1.

(vi) If0 < u,,,(S) < 1 for at least one my > 1, then 0 < A7(S) < 1 < A7(S).

Proof. By 4.5 (1), u(S) € gm. Now, we use 2.6, 2.8 (1), 2.9 (ii1), 2.8 (iv), and
2.8 (vi). O

Lemma 4.9 IfS ¢ Q7, then limu(S)) = 0 (limu(S)") = 0, respectively).
Proof. We use 4.7 (i) and 4.8(1). O

Remark 4.10 Let §; and S, be subsemirings of Q* such that §; € S,. Then
Wy(S2) < Wp(S1), up(S2) < u,,(Sy) for every m € Z,m = w,(Sy), and AH(SH) <
< AT(SH).

Lemma 4.11 Let S be a proper subsemiring of Q. Then S| =S UZ" U (S +Z7)
is a proper unitary subsemiring of Q™.
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Proof. By 3.5(i), S is a unitary subsemiring of Q*. If p e Pis suchthat I/p € Sy,
then either 1/p € S or 1/p € S + Z*. In the latter case, 1/p =a+m,ae S,m e Z",
a contradiction. O

Remark 4.12 Let T be a subset of {Q* such that ab € T for all a,b € T and
c+deTforallc,deT,c+d<1.Denote by S the set of s € Q? such that sd € T
wheneverd e T and sd < 1. Then 1 € S;andweput S =T U S.

Ifr,seT,thenrseT CS. Assume, fora while,thatre Tand s e §,. Ifrs < 1,
thenrse T.If rs > 1 and d € T is such that rsd < 1, thenrd € T and rsd € T, since
s € 5. We have shown that rs € S| € S. Assume, finally, that r,s € §|. If d € T
is such that rsd < 1, then rd < 1 (since s > 1), and so rd € T and, since s € S|, we
have rsd € T. Thus rs € S| and, altogether, rs € S.

Letr,seS. Ifr+s<l,thenrnseTandr+seT CS. If r+s>1landde T is
such that (r + s)d < 1, then rd < 1, sd < 1 and by previous part (S is multiplicatively
closed) are rd € T and sd € T. Then (r+ s)d € T and we have proved thatr+ s € S .
It follows that r + s € S..

We have checked that S is a unitary subsemiring of Q*. Clearly, 7 = S n Q*.
Moreover, if R is a subsemiring of Q" with RN Q" =T,thenRC S.

Remark 4.13 Let 7 be a non-empty subset of Q" such thata+b € T and ab/(a +
by e T forall a,b € T. Then the set {a™! : a € T} is a subsemiring of Qf.

5.Maximal Subsemirings of Q*—First Steps

Lemma 5.1 Ler a,b,c € Z* be such that a < b, ¢ < b and ged(a,c) = 1. Then

1/b €S, where S =< a/b,c/b > denotes the subsemiring generated by the numbers
a/b and c/b (we have S € Q") .

Proof First, find m € Z* such that m > 2 and (5) = (m + (b - 1)*. We
are going to construct a sequence ko, ky,...,k, of integers such that 0 < k; < c.
Since ged(@”t!',¢) = 1, there is 0 < ky < ¢ with b" = koa™"' (modc). Simi-
larly, ged(a™,c) = 1, (b™ = koa"")/c = kja"(modc) for some 0 < k; < ¢ and
b = (koa™' + kia"c)(mod c?). Proceeding by induction, we find the remaining
numbers ks, ..., ky, such that b™ = (koa”*' + kja"c + - - - + k@' "ieh)(mod ¢*1) for

m

every 0 < i < m. Now, put [ = Y ka"*'"ic!. Since a < b and ¢ < b, we have
=0

[<(m+1)(b-1)"?< ('5’)(1) — 1)"2 < b, and hence b™ — | > 0. On the other hand,
" =1 = ky ™V and b = 1 + k™. Finally, it follows from the definition of /
that 1/b = (I + k™)™ e S O

Lemma 5.2 Let a,b,c,d € Z* be such that a < b, ¢ < d and gcd(a,b) =
= ged(e,d) = ged(a, ¢) = 1. Then 1/lem(b,d) €< a/b,c/d >.

Proof. We have a/b = e/g, c/d = f/g and gcd(e, f) = 1, where g = lem(b,d). It
remains to use 5.1. )
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In the rest of this section, let S be a subsemiring of Q.

Lemma 5.3 Let py,...,p, m 2 1, be pairwise different prime integers and let
ai,....ay €S N Q" be such v,(a;) <0 forevery | <i < m. Then thereisb € S
suchthatb < 1 and v, (b) <0 foralli=1,...,m.

Proof. First of all, find an integer n such that m < n and a! < 1/(m(p; ... p,)"),
i=1,2,...,m Puth; = (pi...pi-1pis1...pw)'d} and b = ¥,;b;. We have b; <
< (p1 ...p,,,)iai.’ <(pi...pn)"a" <1/mand b < 1. Clearly, b €< ay,...,a, >C S.
Moreover, v, (b;) = nv,(a;)) < 0and v, (b;) = nv,(a;) + jfor j # i. If vp(bj) =
= vy (b)) for ji < ja, j1 # i # ja, then n(v,(a;) - vp(a;,)) = j»— ji, 1 <
< Jja—Jj1 < m,acontradiction with m < n. Similarly, if v,, (b;) = v,,(b;) fori # j, then
n(vp(a;) = vp(a;) = j, 1 < j < m, again a contradiction. We see that the numbers
Vp(b1), ..., Vp,(by) are pair-wise different, and hence v, (b) = min{v, (b;): 1 < j <
<m}p < v, (b)) <0. a

Definition 5.4 Putp(S) = {p € P: w,(S) = —oco}. That is, p € p(S) if and only if
v,(a) <0 for at least one a € S.

Lemma 5.5 p(S) =0ifand only if S C Z*.
Proof. It is obvious. o

Lemma 5.6 p(S) = P if and only if for every prime p € P there are positive
integers a, and b, such that p divides b, p does not divide a, and a, /b, € S.

Proof. It is obvious. O

Definition 5.7 Let p € P. The semiring S will be called p-paradivisible if S N
N1Q" # 0 and v,(a) > 0 foreverya € S N Q. We denote by pd(S) the set of p € P
such that S is p-paradivisible.

Lemma 5.8 Assume that S N Q% # 0.
(i) If p € p(S) is such that S is not p-paradivisible, then v,(a) < 0O for at least
oneacS N Q.
(ii) If p € P\ p(S), then S is p-paradivisible if and only if v,(a) # O for every
aeSnN 1Q+.

Proof. (i) There are b € S and c € S N Q" such that v,(b) < 0 and v,(c) < 0.
Now, ¢”'b < 1 for suitable m € Z* and we have ¢”’b € S N ;Q" and v,(c"'b) < 0.
(11) This is obvious. a

Proposition 5.9 Assume that S N Q" # 0 and that pd(S) = 0. Then S =< 1/p:
peEDPS)>={acQ": v, (a) 20 forevery py € P\ p(S)}.

Proof. Put T =< 1/p : p € p(S) > (notice that p(S) # 0 by 5.5). Clearly, S € T
and T ={a: v, (a) 20,p; € P\ p(S)}. If p € p(S), then there are positive integers
b,c such that b < ¢, ged(b,c) = 1, p divides ¢, p does not divide b and b/c € S
(see 5.8(1). If b = 1, then 1/p € § follows easily. If b > 1, then there are positive
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integers m, ki,...,k, and primes py,...,p, such that p; < p» <--- < ppand b =
= pl;‘ .. .pﬁ;’. According to our assumption, we can find numbers fi,..., f,, € SN Q"
with v, (f;j) < 0. By 5.3, there are positive integers d, ¢ such that d < e, gcd(d,e) = 1,
d/e € S and none of the primes py, ..., p,, divides d. Then, of course, gcd(b,d) = 1.
Consequently, by 5.2, 1/g € S, where g = lcm(c, ). Since p divides ¢, we conclude
that 1/pe S, ThusS =T. O

Remark 5.10 Let S| and S, be subsemirings of Q* such that S| € S,. Then
p(S1) € p(S,). Moreover, if S N 1Q* # 0, then pd(S,) C pd(S).

6. Maximal Subsemirings of Q*—Some Of Them

Remark 6.1 It follows immediately from 4.11 that every maximal subsemiring of
Q7 is unitary.
Proposition 6.2
(1) Q7 is a (proper, unitary) maximal subsemiring of Q" and Q] ={g € Q: 1<
< lgl < g
(i) w,(Q7) = —oo for every p € P. Consequently, p(Q}) = P.
(iti) u,,(Q7) =1 forall p e Pand m € Z.
(iv) A;(Q‘l’) =1= A;(Qf)for all p € P.
(v) pd(@}) = 0.
(vi) The difference ring Q[ — Q is the field Q.

Proof. For all a,b € Q7 there is a positive integer n such that ¢ = b/a" > 1.

Thenc € QF, b = ca" and b €< QF,a >. It means that < QF,a >= Q" for every
a € Q" =Q"\ Q and we conclude that Q| is a maximal subsemiring of Q*. The
rest is clear. m]

Proposition 6.3 Let p e Pand S, = (g € Q" : v,(q) 20} =Q"'NnU, = {q €
€Q": lqlp, < 1}, r € |R*. Then:
(1) S, is a maximal subsemiring of Q.
(i1) w,(Sp) = 0 and w, (Sp,) = —oo for every p; € P\ {p}.
(iii) u,,,(Sp) =0 forallm > 0.
(iv) ,(S,) = 0.
(v) up, 4(Sp) =0 forall py e P\ {p}andn € Z.
(vi) /l;l(S,,) =0= A;l(Sp)for every p; € P\ {p}.
(vii) p(S,) =P\ {p} and pd(S,) = 0.
(viii) The difference ring S, — S, is the ring U(p) (see 3.7 (i))
Proof. Clearly, S, is a unitary subring of Q* N U(p). Now, if @ € Q" is such
that v,(a) < 0, then a = b/ p*c for some positive integers b, ¢, k, where p does not
divide b. We have ¢/b € S, and 1/p = p*!' - a-c/b €< §,,a >. Consequently,

Q" =<1/py:p1 €P>C<S,,a>and <S,,a>= Q" The remaining assertions are
easy to check. a
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Lemma 6.4 IfS is a subsemiring of Q°, then P\ p(S) ={peP: S CS,}.
Proof. It is obvious. o

Proposition 6.5 The following conditions are equivalent for a subsemiring S
of Q*:
(i) S=Q" (e, SCQ andS =S, p€0).
(1) p(S)=Pand 1/p €S for at least one p € P.
(iii) p(S) =Pand 1/m € S for at least onem € Z*, m > 2.
(iv) For every prime p € P there exist positive integers ay,b,, cp,d, such that p
divides by, p divides neither a, nor c,, ¢, < d, and a,/b, €S, c,/d, € S.

Proof. (1) implies (ii), (i) implies (iii) and (iii) implies (iv). These implications
are easy.

(iv) implies (i). Since ¢,/d, € S, we have ¢,/d, € S N Q% v,(c,/d,) < 0
and p ¢ pd(S). Consequently, pd(S) = 0. Further, a,/b, € § and v,(a,/b,) < 0.

Consequently, p(S) = P and it follows from 5.9 that § = Q™. o
Proposition 6.6 (S, =Q NS, =7Z"
pEP peP
Proof. It is obvious. O

Proposition 6.7 The following conditions are equivalent for a subsemiring S
of QF:
(i) § =2Z".
(i) S =S, peP.
(1) S is unitary and p(S) = 0.

Proof. Combine 5.5 and 6.6. O

Proposition 6.8 (cf. 6.5 and 6.7). The following conditions are equivalent for
a subsemiring S of Q*:

(i) S =Sy, p1 € Py, for a non-empty proper subset Py of P.

(i) 0 #£p(S)#PandS =(S,,p € P\ p(S).
(i1) p(S) # Pand 1/p, € S for at least one p, € P.

(iv) p(S)# Pand 1/m € S for at least onem € Z*, m > 2.

(v) p(S) # P and for every prime p € P there exist positive integers a,, b, such

that a, < by, p does not divide a, and a, /b, € S.

Proof. (1) implies (i1). Combining 5.10 and 6.3(vii), we get p(S) € P\ P; and P, C
C P\ p(S) (see also 6.4). In particular, p(S) # P. Furthermore, since P; # P, we have
1/p3eS,p3eP\P,S €Z" and p(S) # 0 by 5.5. Finally, S = (NS,,p € P\ p(S)
by 6.4.

(i1) implies (iii), (iii) implies (iv) and (iv) implies (v). These implications are easy.

(v) implies (i). We have a,/b, € S N Q" and v,(a,/b,) < 0. Consequently,
pd(S) =0. Now,S = 5,,p e P\ p(S)by5.9. o

44



Corollary 6.9 Let S be a subsemiring of Q°. Then S = N S,, p € P for a subset
P of P if and only if either S is unitary and p(S) = 0 or 1/m € S for at least one
meZ ', m=2.

Proof. Follows from 6.5, 6.7 and 6.8. ]

Remark 6.10 Every proper subsemiring of Q is contained in a maximal sub-
semiring of Q*.

Indeed, let S be a proper subsemiring of Q*. If S N |Q" = 0, then § € Q| and
our result is true (see 6.2(i)). Henceforth, we can assume that S N Q" # 0. Further,
due to 6.4 and 6.3(i), we can assume that p(S) = P. Since S is a proper subsemiring
of @, we have pd(S) # 0 by 5.9.

Let .7 denote the set of proper subsemirings 7 of Q* such that S € 7. Then
S € .7 and the set .7 is ordered by inclusion. Since S € T, we have P = p(S) C p(7T),
and so p(T) = P. Now, again, pd(7T) # 0 follows from 5.9. Taking into account that
v,(1/2) < 0O for all primes p € P, we conclude that 1/2 ¢ T for every T' € 7.
Consequently, the ordered set .7 is upwards inductive and it contains at least one
maximal subsemiring.

Remark 6.11 For all py,p, € P, py # p,, we have (p; + 1)/p; € Q] \ S, and
1/p2 € S, \ (§p, U Q). Consequently, Q7 £ S, £ Q) and S,, € S,,. Moreover,
p1Qf # Qf, piSy, # Sy, and piS,, = Sp,. From this, we conclude that the semirings
Qf and S, p € P, are pair-wise nonisomorphic (see also 3.10(v)).

Remark 6.12

(i) Notice that Q] + Q[ = {g€ Q: g =2},andso 1 ¢ Q] + Q7. If a,b € Qf
are such that ab = 1, then a = 1 = b. Moreover, let 1 < g € Q. Put
a = (qg+1)/2and b = 2g/(q + 1). Then a,b > | and ab = g. Hence
QN {ID (@ \ 1) = Q7 \ {1}

(ii) Let p e P. If p; € P, p; # pthen 1/p; € S, and (p; — 1)/p; € S,. Thus
1 € §,+ S, and it follows that a = a/p; + a(p; — 1)/p; for every a € S,,.
Consequently, S, + S, = S,. Moreover, a/p,p1 € S, and p| - a/p; =
= a, ifa # p;, and l/pl,pf € S, and pf -1/p1 = a, if a = p,. Hence
(Sp \ {1 - (S/r \{1p = Sp-

Remark 6.13

(1) Itis easy to see that for a maximal subsemiring S of Q* the following is true:
S is (additively) semisubtractive iff S —S # Q.

Indeed, if S is semisubtractive then for every a, b € Qf, a>b,isa-beS
and hence S =S = (=S)U {0} US # Q. On the other hand, if S isn’t
semisubtractive, then there are ay,b, € S, a; > by, such thata, — b, ¢ S.
Hence S S (S -S)NQ*and (§ —=S)NQ*" =Q*. Thus S - = Q.

(i) Q7 is not semisubtractive (see (i)). On the other hand, for all ¢,d € QJ there

exists m € Z" with mc —d € Q7. That is, Qy is (additively) archimedian.

(iii) Let p € P. The semiring S, is semisubtractive (see (i)) (and hence archi-

medean as well).
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Remark 6.14 Let p € P. Then pS,, is a proper ideal of the semiring S, (clearly,
1 ¢ pSp), and so S, is not ideal-simple. Now, let / be a non-empty subset of S, such
that / +S, Cland Il C 1. IfaelTandb € S, is such thata < b, thenb —a € S,
andsob =(b-a)+ael Putr=inf(l). If r <1, thenr=0and 7 =S, Ifr>1,
then I = {g € S, : g = r}. Using this, we conclude easily that the semiring S, is
bi-ideal-simple.

7. More Subsemirings of QF

Proposition 7.1 Forall p € P, m € Zj andr € ‘R, put V(p,m,r) = {a € Q" :
: m<vy(a)and ry q) < al. Then:
(1) V. =V(p,m,r) is a proper subsemiring of Q*.
(i1) Visunitary if and only if m = 0 and ry < 1.
(iii) w,(V) = m.
(iv) up, = r, for everyn > m.
(v) ,(V) = inf{rl/™: n>mj.
(vi) Wy, (V) = o for every py € P\ {p).
(vii) p(V) =P\ {p}.
(viii) pd(V) € {p} and pd(V) = {p} if and only if ry < 1 for at least one k > m and
eitherm>1orm=0andry > 1.

Proof. For all a,b € V, we have m < min(v,(a),v,(b)) < v,(a + b), and therefore
v a+h) S Ty Sa<a+ b, provided that v,(a) < v,(b). The other case is symmetric
and we see that a + b € V. Further, m < 2m < v,(a) + v,(b) = vp(ab) and ry ) =
= Iy, (a)+v,(b) < v (a) " T'v,(b) <ab. Thusab e V.

By 2.2, forallm <n € Zand s € R*, thereisc € Q* withr, <c <r,+s
and v,(c) = n. Then ¢ € V and we see that V # 0, V is a subsemiring of Q" and
w,(V) = m. Moreover, since s was arbitrary, we also see that u,,(V) < r,. On
the other hand, if 4 € V and v,(d) < n, then r, < Fv,d) < d and it follows that
up.n(v) =Tn.

If pp e P\{p}and k € Z*, thenr, < e = p’/p’;’ for some [ € Z*, m < [, and we
have m <l =v,(e),r <r, <e,e€Vandv,(e) = -k Consequently, w, (V) = —co
and p(V) = B\ (p}.

The assertion (ii) is obvious, (v) follows from (iv), and it remains to show (viii).
If r, > 1 for every n > m, then V € Q7 and pd(V) = 0 trivially. Hence, assume that
r, < 1 for at least one k > m. If p; € P\ {p}, then, by 2.2, there is a € Q" such
that i, < a < 1, v,(a) = kand v, (a) = 0. Thena € V N Q! and it follows that
p1 ¢ pd(V). Then pd(V) C {p}and pd(V) = {p}if m>1orm=0and ry > 1. O

Proposition 7.2 Assume that inf{r, : n>m} =0 (=r > 1, resp.) (see 2.6). Let
p1 € P\ {p}. Then:
(i) up,, =0(u, ,, =r, resp.) forevery n, € Z.
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(i) A% (V) =0 =2, (V) (A5, (V) = | = 4, (V), resp.).

Proof. Let s = inf{r,} and n; € Z. Forevery ¢ € R*, thereis k > m withr, < s+e&.
By 2.2, there exists b € Q such that r, < b < s+ ¢&,v,(b) = kand v, (b) = n;. Then

b € V and it is now clear thatu, , (V) = s. a
Lemma 7.3
() VeS,andV =S, ifandonlyifm=ry=r =r,=---=0.

(i) V.S, forevery py € P\ {p}.
(i) V € Q) (equivalently, V. C Q[ NS,) ifand only if inf{r, : n>m}> 1.

Proof. Itis easy (use 7.1). O

Lemma 7.4 V(p,m,r) € V(p,,ma,s) if and only if py = pa2, my < my, and
Sy < ry for every n > mj.

Proof. Only the direct implication needs a proof. First, the equality p; = p, = p
follows by combination of 7.3(i),(ii). Further, the inequality m, < m, follows from
4.10 and 7.1(ii1). Finally, if r, < s, for some n > my, then, by 2.2, v,(a) = n for
some @ € Q such that r, < a < s,. Then a € V(p;,my,r) and a ¢ V(p,y,my,s),
a contradiction. O

Remark 7.5 It follows immediately from 7.4 that the subsemirings V(p,m,r),

p e P.me Zg,r € R, are pair-wise different. Due to 3.10, they are pair-wise
non-isomorphic as well.

Lemma 7.6 Let S be a subsemiring of Q° and let p € P be such that m = w,(S) >
>0 (ie., peP\p(S)). Then S € V(p,m,u,(S)).

Proof. See 4.3, 4.4 and 4.5(1). m]

Proposition 7.7 Forall p € Pandr € R, put V(p,co,r) ={a € Q" : ry @ < a}.
Then:
(1) V = V(p,oo,r)is a subsemiring of Q*.
(1) V# Q" ifand only if ry # 0 (thenry > 1).
(ii1) Vis unitary if and only if ro < 1 (thenrog =0, 1).
(iv) wp, (V) = —co for every p; € P.
(v) u, (V) =ry, foreveryn € Z.
(vi) A5(V) = inf(r,/" : n> 1} < 1and L;(V) = inf{r!} : n > 1}.
(vil) p(V) =P.
(vii1) pd(V) € {p} and pd(V) = {p} if and only if ro # O (see (ii)) and ry < 1 for at
least one k € Z.

Proof. Similar to that of 7.1 (use 2.1, 2.2, 2.8 and 2.9). m}

Proposition 7.8 Assume that inf{r, : n > 1} =0 (=r > 1, resp.) (see 2.6). Let
p1 € P\ {p}. Then:
() up, (V) =0 (up, (V) =r, resp.) for every ny € Z.
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(i) 4, (V)=0=2, (V) (/I;I(V) =1=2, ) resp.).

Proof. Similar to that of 7.2. O

Lemma 7.9
(i) VLS, forevery p, €P.
(i) V. € Qy ifand only if r, > 1 for every n € Z (see 2.6). Moreover, V = Qrif
and only if r,, = | for everyn € Z.

Proof. 1tis easy. O

Lemma 7.10 Let py,p, e Pandr,s € 5’\—@. Then V(py,00,r) € V(p,,00,s) if and
only if at least (and then just) one of the following three conditions holds:
(1) so =0 (thens =0);
(2) p1=p2 so#0, s, <r,foreverynecZ;
3) pr#p2 so#0,r,>1ands, <inflr,: k> 0} foreveryn € Z.

Proof. Let V| = V(p;,co,r) C V(p,,00,5) = Vo, pi # p, and sy # 0. Suppose,
for contradiction, that r, < | for some k € Z. Then® # V; n(0,1) € V., n (0, 1) and
thus there is m € Z such that s,, < 1. By 7.7(viii) and 5.10 we have {p,} C pd(V;) C
C pd(Vy) € {p1}, a contradiction.

The rest is easy (use 2.2). O

Remark 7.11 It follows easily from 7.10 that the subsemirings V(p,co,r), r €
€ R, r not constant, are pair-wise different. Due to 3.10, they are pair-wise noniso-
morphic as well. Notice thatif r = (...,r,r,r,...), r = 0 orr > 1, is constant, then
V(p,oo,r)={ge Q" : r =g}

Proposition 7.12 Let S be a subsemiring of Q" and let p € P be such that w,(S) =
= ~oo (i.e., pep(S)). Then S € V(p,oo,u,(S)).

Proof. See 4.3, 4.4 and 4.5(i1). O

Lemma 7.13 Let S be a proper subsemiring of Q" such that S ¢ Q and S ¢ S,
for every p € P. Then:

1) SN Q" #0.
(i1) p(S) =P (i.e, w,(S) = —co for every p € P).

(i11) pd(S) # 0.

(iv) § € V(p,co,u,(S)) forevery p € P.

Proof. Since S € Qf, we have S N Q% # 0. The equality p(S) = P follows from
6.4. Further, pd(S) # 0 by 5.9. Finally, S € V(p, co,u,(S)) by 7.12. O

8. Maximal Subsemirings of Q" —AIll Found

Proposition 8.1 For p € Pand r € \R*, put W(p,r) = {a € Q" : la|,, < a}.
Then:

48



(i) W =W(p, r) is a proper unitary subsemiring of Q" and Q{ NS, C W.
(1) W =V(p,co,r), where r,, = r" for every m € Z.
(iii) w, (W) = —oo for every p; € P.
(iv) u, (W) = 1" for everyn € Z.
(v) p(W) =F.
(vi) A,(W) =r=2,(W).
(vii) pd(W) = {p}.
(viii) The difference ring W — W is the field Q.

Proof. Put r,, = r" for every m € Z. Thenr € ﬁo and it is clear that W =
= V(p,co,r). Now, the assertions (i),. .., (vii) follow from 7.7. To show (viii), put
A=W-W.Letae Q" besuchthatv,(a) <0.If p; € Pis such that |a|,, < p;, then
v,(p1+a)=v,(a)and p; +a € W. Of course, p; € Wand p; +a— p; = a. Itis easy
to see that A = Q. O

Proposition 8.2 Let p; € P\ {p}. Then:
(i) up, (W) =0 foreveryn € Z.

(ii) A5 (W) =0 =15 (W).

Proof. Combine 8.1(i1) and 7.8. O

Lemma 8.3 Let py,ps € Pand ry,r; € |R* be such that W(py,r1) € W(pa,r2).
Then py = pyandry = r.

Proof. Combining 8.1(ii) and 7.10, we get p; = p; and r§ < r forevery n € Z. In
particular, r» < rj and rz‘l <ri'ie.,r <r. Thenr = r,. a

Lemma 8.4 Let p € Pand letr € Re be such that 0 < re < 1 for at least one
ke€Z. Putr=A(r") (see 2.8). Then r € \R* and V(p,oco,r) C W(p,r).

Proof. By 2.8(vi), 0 < r <1 (infact, k > 1). Leta € V(p,co,r)and m = v,(a). If
m =0, then ro = r, < a. Butry > 1 by 2.8(i), and hence |al,, = 1 < a. If m > 1, then
r" < r, by 2.8(iv), and so lal,, = " <1, <a. If m < —1,then t™ < 1, t = A(r7),
by 2.8(iv), and 1@ = ™ <, < a. Butrt > 1, by 2.8(v), so that r > ™! and
" > " Thus |a|,, = ¥ <t < a. We have checked that a € W(p, r). O

Lemma 8.5 Let S be a proper subsemiring of QF such that S ¢ Qf and S ¢ S,
forevery p € P. Then:
(1) pd(S) # 0.
(i) If py € pd(S), then s = A(u,, (S)") € R* and S € W(py, s).

Proof. (1) See 7.13(iii).

(i1) By 7.13(iv), S € V = V(py,c0,u, (S)). Since p; € pd(S), we have u, o(S) >
> 1. By 4.8(ii), u,, ,(S) # 0 for every m € Z. Since S ¢ Qj, we have V ¢ Q7 and
then 0 < u, +(S) < 1 for at least one k € Z (in fact, k > 1) by 7.9(ii). Now, by 8.4,
V S W(py,s). O
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Proposition 8.6 For all p € P and r € |R*, the subsemiring W(p,r) is maximal
in Q*.

Proof. By 8.1(v),(vii) we have p(W) = P and pd(W) = {p}, W = W(p, r). Conse-
quently, W ¢ Q] and W ¢ S, for every p; € P. Now, let S be a proper subsemiring
of Q" such that W € §. By 8.5, S € W(pa,s), p» € pd(§S) and s € |R*. Thus
W(p,r) € W(pa,s) and we get p = p, and r = s by 8.3 and it means that W(p, r) is
a maximal subsemiring of Q. o

Theorem 8.7 The semirings Q:, S, and W(p,r), p € P, r € |R" are just all
(proper) maximal subsemirings of Q*. These subsemirings are pair-wise different
(and hence non-isomorphic). Every proper subsemiring of Q* is contained in (at
least) one of them.

Proof. By 6.2(i), 6.3(i) and 8.6, all the indicated subsemirings are maximal in Q.
If § is a maximal subsemiring of Q* such that § # Q and S # S, for every p € P,
then p(S) = P and pd(S) # 0 by 7.13. According to 8.5, we have S = W(py,s),
pP1 € pd(S), S € 1R+.

By 6.11, the subsemirings Q| and S, are pair-wise different. By 8.3, the same
is true for the subsemirings W(p, r). Moreover, W(p,r) # Q[ (compare 6.2(v) and
8.1(vii)) and W(p,r) # S, (compare 6.3(viii) and 8.1(viii)). Finally, by 3.10, all
these subsemirings are pair-wise non-isomorphic.

The rest follows from 8.5. O

Remark 8.8 The same result as in 6.10 follows (independently) also from 8.5, 8.6
and 8.7.

Remark 8.9 Let p € Pand r € |R*. If a,b € W(p,r) are such that a < 1 and
b < 1,thenv,(a) > 1, v,(b) = 1, and hence v,(a + b) > 1. In particular, a + b # 1.
Thus 1 ¢ W(p,r)+ W(p,r)and W(p,r)+W(p,r)# W(p,r).

Now, assume that 1 = ¢d for some ¢,d € W(p,r). If c = 1, then d = 1 and
conversely, and hence let ¢ # | #d,c < land 1 <d = 1/c. Wehave " < ¢ < |
and r'"™m <clym= vp(c) = =v,(d). Consequently, m > 1 and " = ¢ = p"c,/d,,
c1,dy € Z',p"c, < dy, p divides neither ¢; nor d;. From this, r = pe'/™, e = ¢;/d,,
ec Q% vy(e)=0,e<1/p", e=(r/p).

Conversely, assume that 7 is rational and v,(r") = m for some m € Z*. Then
¢ =1r" = p"c/dy, where c|,d, € Z*, p"c,; < d, and p divides neither ¢; nor d;.
We have m = v,(c), c € W(p,r), =m = v,(c") and ¢™' € W(p,r). Of course,
c# 1 £l

We have shown that cd = 1 for some ¢, d € W(p, r) such that ¢ # 1 # d if and only
if there exists f € 1Q* such that v,(f) =m > 1 and r = f'/".

Remark 8.10 From 6.13(i) follows that W(p, r) is not (additively) semisubtrac-
tive.

Let a,b € W(p,r). There are ki,k; € Z* with v,(b) — v,(a) < ki and r*»® <
< pfa—b. Putk = k; + ky and ¢ = p*a — b. Then v,,(p"'a) =k + vy(a) > vp(b),
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v,(c) = vp(b) and r = v < pkq — b = c. Thus c € W(p, r) and we have proved
that the semiring W(p, r) is (additively) archimedean.

Remark 8.11 Let S be a subsemiring of Q such thatS =S =Q. If S N Q™ # 0,
then S is a subring of Q by 3.2, and hence S =S —§ = Q. Now, assume that S C Q;
andput 7 =S NQ*. Then T is a subsemiring of Q* and 7 — T = Q. Assume, finally,
that 1 € T + 7. We are going to show that 7' = Q*.

Let, on the contrary, T be a proper subsemiring of Q*. Since T - T = Q we
get T ¢ S, for any p € P (use 6.3(viii)). Since 1 € T + T, we have T ¢ Q.
Now, it follows from 8.7 that T C W(p,r) for some p € P and r € ;R*. But
1 ¢ W(p,r)+ W(p,r)by 8.9, a contradiction.

We have proved the following assertion (see also 6.9): Let S be a subsemiring of
QsuchthatS =S =Qand 1 =a+bforsomea,beS,a#0+b. Theneither S = Q
orS§ =QjorS =Q".

As a corollary, we get such an assertion: Let S be a subsemiring of Q such the
S-S =Qand 1/me€ S foratleastone m € Z, m > 2. Then either § = Qor S = Q]
orS =Q".

9. Unitary and non-unitary subgroups of Q(+)

Definition 9.1 Let A be a unitary subgroup of Q(+), (i.e., 1 € A). For every
prime p € P let ch(A, p) = suplk € Z] : pheA)e Z; U {co}. Furthermore, put
ch(A) = (ch(A, p) : p € P).

Lemma 9.2 Let A be a unitary subgroup of Q(+). If a/b € A where a,b € Z,b # 0
and ged(a,b) = 1, then 1/b € A.

Proof. We have 1/b = ma/b + nb/b € A, where m,n € Z are such that 1 =
= gcd(a, b) = ma + nb. m]

Lemma 9.3 Let A be a unitary subgroup of Q(+) and let p € P. If c/d € A and
k€ Zs, where c,d € Z,d # 0, p does not divide ¢ and p* divides d, then k < ch(A, p).

Proof. We have d = p*l,c/p* = Ic/d € A, gcd(c, p*) = 1 and 9.2 applies. o
1,

Lemma 9.4 Let A be a unitary subgroup of Q(+) and let py,p2,...,Pm,m =

be pair-wise different primes. Then a/p’;"p‘é2 . --pf;,”‘ €eAforallae Zand 1 < k; <
<ch(A,p),i=1,2,...,m.
ki ky ki N m .k kit kje <m :
Proof. Put b = p{'p}---p,’ and ¢ = Zjllpl{'P;Z“'ij_;Pjill P = 1if

m = 1). Thenc/b = ", I/ph € A and ged(c,b) = 1. By 9.2, 1/b € A, and hence

=

alb € A, too. O

Proposition 9.5 Let A be a unitary subgroup of Q(+). Then A = {g € Q" : v,(q) =
> —ch(A, p) for every p € P} U {0} and ch(A, p) = sup{=v,(x) : 0 # x € A} for every
peP
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Proof. First, take g € A,q # 0. We have g = a/b,a,b € Z*,gcd(a,b) = 1. If
p € Pand v,(q) = 0, then —ch(A, p) < 0 < v,(q) trivially. If m = v,(¢q) < 0, then
m > —ch(A, p) by 9.3.

Conversely, if g € Q" is such that v,(q) > —ch(A, p) for every p € P, then ¢ =
=a/b,a,b € Z*,gcd(a,b) = 1 and either b = =1 and ¢ € A trivially or b # £1 and
qg=albeAby94. O

Corollary 9.6 Let A and A, be unitary subgroups of Q(+). Then:
(1) Ay € Ay if and only if ch(A)) < ch(A3) (i.e., ch(Ay, p) < ch(A,, p) for every
peP)
(1) Ay} = A, if and only if ch(Ay) = ch(A»).

Remark 9.7 Let A; be a unitary subgroup of Q(+) and let ¢ be a (group) homo-
morphism of A; into a subgroup A, of Q(+). Then ¢(0) = 0 and, if a,b € Z \ {0} are
such that a/b € Ay, then ¢(1)a = ¢(a) = ¢(b - a/b) = be(a/b) and ¢(a/b) = ¢(1)a/b.
Thus ¢(q) = ¢(1)q for every ¢ € A;. In particular, either ¢(1) = 0 and ¢ = 0 or
(1) # 0 and ¢ is injective. If ¢(1) # 0, then A3 = ¢(1)A; is a subgroup of A,
and A; = A,. Clearly, A is unitary if and only if ¢(1)"! € A;. Finally, ¢ is an
isomorphism of A; onto A, if and only if ¢(1) # 0 and A; = ¢(1)A;.

Remark 9.8 Let A; be a unitary subgroup of Q(+) and let » € Q* be such that
r— € A;. Put Ay = rA;. Then A; is a unitary subgroup of Q(+) and the mapping
a — rais an isomorphism of Ay onto A; (cf, 9.7). Moreover, v,(ra) = v,(r) + v,(a)
for every p € P. Now, is clear that ch(A;, p) = ch(Ay, p) = v, ().

Consequently, the following two conditions are satisfied:

(1) For every p € P,ch(A}, p) = oo if and only if ch(A,, p) = oo;

(2) The set {p € P: ch(Ay, p) # ch(A,, p)} is finite.

1

Remark 9.9 Let A; and A; be unitary subgroups of Q(+). Then the following are
equivalent:

(1) Ay = A,.

(i) Ay = rA, for some r € Q(+) (thenr # O and ™' € A)).

(ii1) The conditions 9.8 (1), (2) are satisfied.

Indeed, the first two conditions are equivalent by 9.7 and 9.8 and they imply the
third one by 9.8. Now, assume that the conditions 9.8 (1), (2) are satisfied. Put
s, = ch(Ay, p) — ch(A,, p) for every p € P (here, co — co = 0) and r = [] p* (use
9.8 (1), (2)). Then r € Q" and v,(r) = s, for every p € P. If A3 = rA, then
ch(As, p) = ch(Ay, p) — s, = ch(Ay, p) for every p € P (see 9.8). Now, rA; = A;
follows from 9.6.

Remark 9.10 Let @ : P — Zj U {oo} be a mapping. Put A(e) = {¢g € Q" :
: vp(g) = —a(p) for every p € P} U {0}. Then A(a) is a unitary subgroup of Q(+) and
ch(A(@)) = a.
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Proposition 9.11 There exists a biunique correspondence between unitary addi-
tive subgroups of Q(+) and mappings « : P — Z;jU{co}. The correspondence is given
by A — ch(A) and @ — A(«@) (see 9.1 and 9.10). Moreover:

(i) If Ay and A, are unitary subgroups of Q(+), then Ay C A; if and only if
ch(A)) < ch(Ay) and Ay = A, if and only if the conditions 9.8 (1), (2) are
satisfied (see 9.9).

(i1) If A is a unitary subgroup of Q(+), then A is finitely generated if and only
if the set {p € P : ch(A, p) # 0} is finite. In such a case, A is cyclic and
A =7Z/m for some m € Z*.

(1) ch(Z) = (0,0,...) and ch(Q) = (o0, 00,...).

Proof. See and combine 9.1, ..., 9.10. O

Proposition 9.12 Let A be a non-zero subgroup of Q(+). Then:
(1) ANZ"#0and ANZ = xy(A) - Z, where y(A) = min(A NZ").
(11) A/x(A) is a unitary subgroup of Q(+) isomorphic to A.
(i11) A is unitary if and only if y(A) = 1.
(iv) If p € Pdivides y(A), then ch(A/x(A), p) = 0.
(v) Ifa,b € Z,b # 0 are such that a/b € A, then x(A) divides a.

Proof. It is easy (if 1/p € A/x(A), then y(A)/p € A, and so p does not divide
X (A)). o

Definition 9.13 Let A be a non-zero subgroup of Q(+). We put ch(A,p) =
= ch(A/x(A), p) for every prime p € P and ch(A) = ch(A/x(A)) (see 9.12).

Lemma 9.14 Let A be a non-zero subgroup of Q(+) and let p € P.

(i) If p divides x(A), then ch(A, p) = 0.

(ii) If p does not divide x(A), then ch(A, p) = suplk € Z : x(A)/p* e A)e VARV
U {oo}).

Proof. (i) See 9.13 and 9.12 (iv).
(ii) For every k € Z¢, we have 1/p* € A/y(A) if and only if y(A)/p* € A.

Lemma 9.15 Let A be a non-zero subgroup of Q(+) and let p € P.

(i)Ifa/b € A, where a,b € Z,b # 0, and gcd(a, b) = 1, then y(A)/b € A.

(ii)Ifc/d € Aand k € Z;,, where c.d € Z,d # 0, p does not divide ¢ and p* divides
d, then k < ch(A, p).

Proof. (1) We have a € ANZ, and so a = y(A)e for some e € Z. Consequently,
e/beAlx(A).1/b e A/x(A), by 9.2 and, finally, x(A)/b € A.
(i1) Using 9.3, we can proceed similarly as in the proof of (i).
m}

Lemma 9.16 Let A be a non-zero subgroup of Q(+) and let py, p2, ..., pm,m = 1,
be pair-wise different primes. Then a/p’;‘pgz ~-pf‘,;" € A for all a € Z such that y(A)

divides a and all 1 < k; < ch(A, p),i=1,2,...,m.
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Proof. Use 9.4 (see the proof of 9.15(1)). O

Proposition 9.17 Let A be a non-zero subgroup of Q(+). Then A = {q € Q" :
2 vp(q) 2 v (x(A)) — ch(A, p) for every p € P} U {0}.

Proof. If g € A,q # 0, then g/x(A) € A/x(A) and v, (q) — v,(x(A)) = —ch(A, p) by
9.5. Conversely, if g € Q" is such that v,(g) > v,(ch(A)) — ch(A, p) for every p € P,
then v,(g/x(A)) = —ch(A, p), q/x(A) € A/x(A) by 9.5, and so g € A. o

Lemma 9.18 Let A| and A, be non-zero subgroups of Q(+). Then A; C A, if and
only if x(Az) divides (A1) and ch(Ay, p) < ch(Az, p)+v,(x(A1)) =V, (x(A2)) for every
peP.

Proof. If A} € A,, then Af NZ C A, N Z and it follows easily that y(A;) di-
vides y(A}), x(A}) = my(A,) for some m € Z*. Moreover, A|/x(A)) C Ay/x(A)) =
= (A2/x(A2))/m and ch(A/x(Ay), p) < ch(A2/x(A1), p) by 9.6(1). But ch(A,/x (A1),
p) = ch(Ay/x(Az), p)+v,(m) = ch(A2/x(Az), p)+V,(x (A1) = V,(x(A2)) follows from
9.8. The rest follows from 9.17. O

Corollary 9.19 Let Ay and A; be non-zero subgroups of Q(+). Then Ay = A, if
and only if (A1) = x(A,) and ch(A}) = ch(A»).

Remark 9.20 Let A; and A; be non-zero subgroups of Q(+). Then A} = A, /x(A))
and A; = A,/x(A,). Using this and 9.9, we conclude that A; = A, if and only if the
conditions 9.8 (1), (2) are satisfied.

Remark 9.21 Let m € Z" and let @ : P — Zj U {co} be a mapping such that
a(p) = 0 whenever p divides m. Put A(a,m) = mA(a) = {g € Q" : v,(q) =
> v,(m)—a(p) for every p € P}U {0} (see 9.10). Then A(a, m) is a non-zero subgroup
of Q(+), x(A(a, m)) = m and ch(A(a, m)) = a.

Proposition 9.22 There exists a biunique correspondence between non-zero addi-
tive subgroups of Q(+) and ordered pairs (a,m), where m € Z* and a : P — Zj U {0}
is a mapping such that a(p) = 0 for every p dividing m. The correspondence is given
by A — (ch(A), y(A)) and (o, m) — A(a,m) (see 9.12, 9.13, and 9.21). Moreover:

(i) If Ay and A, are non-zero subgroups of Q(+), then A} C A, if and only if y(A3)
divides x(Ay) and ch(Ay, p) < ch(Az, p) + v,(x(A1)) = v,(x(A2)) for every p € P and
Ay = Ay if and only if the conditions 9.8 (1), (2) are satisfied (see 9.20).

(ii) If A is non-zero subgroup of Q(+), then A is finitely generated if and only if the
set {p € P 1 ch(A, p) # 0} is finite. In such a case, A is cyclic and A = Zq for some
q€Q".

Proof. See and combine 9.18, ...,9.21 and 9.11. m]

10. Unitary and Non-unitary Subrings of Q

Proposition 10.1 Let A(= A(+)) be a unitary subgroup of Q(+). Then A is a (uni-
tary) subring of Q if and only if ch(A(+), p) € {0, oo} for every p € P (see 9.1).
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Proof. Use 9.5 and 9.1. O

Proposition 10.2 There exists a biunique correspondence between unitary sub-
rings of Q and subsets of P. If A is a unitary subring of Q, then the corresponding
subsetispy ={p €P: 1/p e A} If Pisasubset of P, then the corresponding unitary
subring is Ap = {q € Q" : v,(q) 2 0 for every p € P\ P} U {0}. Moreover:

(1) If Ay and A, are unitary subrings of Q, then Ay C A, if and only if pa, € pa,
and Ay = A, ifand only if A} = A,.

(11) If A is a unitary subring of Q, then A is a finitely generated ring if and only if
the set py is finite.

(i11) pz = 0.
(IV) Po = P.
Proof. Itis easy (see 10.1, 9.5 and 3.10). O

Proposition 10.3 Let A(= A(+)) be a non-zero subgroup of Q(+). Then A is
a subring of Q if and only if ch(A(+), p) € {0, oo} for every p € P (see 9.1, 9.12, 9.13
and 10.1).

Proof. Put m = y(A) (see 9.12). If A is a subring of Q and p € P is such that
ch(A(+),p) = 1, then p does not divide m (9.12(iv)), 1/p € A/m and m/p € A.
Consequently, m"/p" € A and m"~'/p" € A/m for every n € Z* and it follows from
9.3 that ch(A(+), p) = ch(A(+)/m, p) = co.

Now, if ch(A(+), p) € {0, oo} for every p € P, then A/m is a subring of Q by 10.1,
and hence ab/m* € A/m and ab/m € A for all a,b € A. Then, of course, ab € A and
A is a subring. O

Proposition 10.4 There exists a biunique correspondence between (non-zero) sub-
rings of Q and ordered pairs (P,m), where m € Z* and P is a subset of P such
that p € P\ P whenever p € P divides m. If A is a subring of Q, then the corre-
sponding pair is (pa, x(A(+))), where ps = {p € P : x(A(+))/p € A}. If (P,m)
is a pair as above, then the corresponding subring is Ay = {qg € Q" : v,(q) =
> v,(m) for every p € P\ P} U {0}. Moreover:

(i) If Ay and A, are subrings of Q, then Ay C A, if and only if x(Ay(+)) divides
Y(A1(+)) and pa, € pa, and Ay = A, if and only if A} = As.

(i1) If A is a subring of Q, then A is a finitely generated ring if and only if the set
pa IS finite.

Proof. Itis easy (see 9.14, 9.22, 10.2, 10.3 and 3.10). a

11. Subsemigroups of Q+)—First Observations

Proposition 11.1 (see 3.1) Let S be a subsemigroup of Q(+) such that S N Q* #
#0#SNQ . ThenS is a subgroup of Q(+).
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Proposition 11.2 Let S be a subsemigroup of Q,(+) (Qj(+), resp.). Then =S =
=1{~q: q € S}isasubsemigroup of Qj(+) (Qy(+), resp.) and the mapping q — —q
is an isomorphism of S (+) onto (=S )(+).

Proof. 1t is obvious. o

Proposition 11.3 Let S be a subsemigroup of Q[ (+) such that O € S. Then:
(1) Ois a neutral element of S (+).
(i1) If S is non-zero, then T = S \ {0} is a subsemigroup of Q*(+); the semigroup
T(+) has no neutral element.

Proof. It is obvious. O

Proposition 11.4 Ler S be a subsemigroup of Q*(+) such that r € Q*, where
r = inf(S). Then r™'S is a subsemigroup of Q*(+), inf(r"'S) = 1 and the mapping
q — r~'q is an isomorphism of S (+) onto (r~ 1S )(+).

Proof. It is obvious. o

Proposition 11.5 Let S be a non-zero subsemigroup of Q(+). If r€ S, r # 0, then

r~'S is a unitary subsemigroup of Q(+) and the mapping q — r~'q is an isomorphism
of S(+) onto (r’'S)(+).

Proof. 1t is obvious. o

Lemma 11.6 Let S be a subsemigroup of Q(+) and let a,b,c,d € Z be such that
b>1,d+0,a/beS anda/b-c/de€S.
Then:
(1) aeS, (ad-bc)/d € S.
(i) a—=c/d = (ad-c)/d € S.
(i) Ifd =1, thenad € S, ad —bc € S andad —c € S.

Proof. (1) We have a = b-a/b € S, (ad — bc)/bd = a/b — c/d € S and hence
a-beld = (ad - bc)/d € S.

() If b > 2, thena-a/b = (b- Da/b € S and (ad — ¢)/d = a - c¢/d
=(a—-a/b)+ (a/b-c/d) € S.

(111). Use (1) and (ii). a

1l

Lemma 11.7 Let S be a subsemigroup of Q(+) such that S —S = Q and T
=S NQ* # 0. Then for every n € Z* there are a,,a, € T N Z* such that a, — 1/n =
= (na,—1)/neT, na,-1#0,anda,—1/(na,—-1) = ((na, - )a,—1)/(na,-1) € T.

Moreover, r =na, — 1€ TNZ", s=ra,—1e€T NZ" and gcd(r,ns) = 1.

Proof. Clearly, T is a subsemigroup of Q(+). If S N Q™ # 0, then S is a subgroup
of Q(+) by 11.1, and therefore S =S =S = Qand 7 =Q". If S N Q™ = 0, then
S €Qjand T =S \ {0}. Now, we see that 7' — 7" = Q anyway.

By 11.6, there are a,, b, € Z* such that a,/b, € T,a, € TNZ", a,/b,—1/neT
anda, — 1/n = r/n € T. Thenr € T NZ*, too. In particular, r # 0 and, by 11.6
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again, there are a,, b, € Z* such that a, /b, € T, a, € TNZ", a,/b, — 1/r € T and
a,—1/r=s/reT.ThenseTNZ", too,and hencens € T NZ".

Now, if p € P divides both r and ns, then p divides na, — 1 and p does not divide
n. Consequently, p divides s = ra, — 1 and p divides 1, a contradiction. Thus

gcd(r,ns) = 1. O

Lemma 11.8 Let S be a subsemigroup of Q(+) such that T = S N Q* # 0. The
following conditions are equivalent:
i S-5S=Q
(ii) Foreveryn € Z* there is m, € Z* such that k/n € T for every k € Z, k > m,,.
(iii) Forallt e T and g € Q thereisl € Z" withlt—q € T.

Proof. (i) implies (ii). By 11.7, there are r,s € T NZ" suchthatr/n € T, s/re T
and ged(r,ns) = 1. Wehave r,ns € T and we put Ty = {ur+vns : u,v € Zj, u+v # 0}.
Clearly, T, is a subsemigroup of (7' N Z*)(+) and r,ns € T,. Using the equality
ged(r,ns) = 1, we find m,, € Z* such that m,, m, + 1,m, +2,... € Ty (see 12.1). Now,
if k € Z* is such that k > m,,, then k = u;r + vyns for some uy, vy € Z*, u; +v; # 0,
andk/n=wyr/n+vins/n =uy -r/in+vir-s/reT.

(i1) implies (iii). We have r = a/b and ¢ = c¢/d, where a,b,d € Z* and ¢ € Z. By
(i1), there is m € Z* such that k/bd € T for every k € Z*, k > m. Now, find [ € Z*
with lad — bc > m. Then It — q = la/b — c/d = (lad — bc)/bd € T.

(iii) implies (i). It follows immediately that Q =7 -7 C S - S. ]

Remark 11.9 Let S be a subsemigroup of Q(+) suchthat 7 =S N Q™ # 0. Con-
sidering the subsemigroup —S and using 11.8, we see that the conditions 11.8(1),(iii)
remain equivalent and, moreover, they are equivalent to:

(ii2) For every n € Z* there is m,, € Z~ such that k/n € T for every k € Z, k < m,,.

Remark 11.10 Let S be a subsemigroup of Q(+) suchthat S —S =Qand 1/r€ S
forsome t € Z*, t > 2.

Clearly, S is unitary and we show that for every g € Q% there exists [ € Z* with
fges.

Put7 =SNQ andR=TUT/tUT/t*U---. ThenT —T = Q and R is
a subsemigroup of Q*(+). If n € Z*, then it follows from 11.8 that #//n € T for some
leZ*. Wehavet/n=a €T, € Z,and so 1/n = a/t' € R. We have shown that
1/n € R for every n € Z* and it follows easily that R = Q*.

Remark 11.11 (cf. 8.11). Let S be a subsemiring of Q such that S —S = Q. Then
T =S NQ"isasubsemiringof Q* and 7 - T = Q.

(i) Assume that 1/t € T for some t € Z*, t > 2. If g € Q*, then #/q € T for some
l€Z* (by 11.10). But 1/t € T, and hence ¢ € T. Thus T = Q* and either
§=Q orS =QjorS =Q.

(i1) Assumethat 1 € T+ 7. Then | = a/b+ c/d for some a, b, c,d € Z" such that
a/beT,c/d €T and ged(a,b) =1 = ged(e,d). We have 1 = (ad + be)/bd,
and hence ged(a,c) = 1 as well. Now, using 5.2, we get 1/t € T, where
t=lem(b,d) > 2. By (i), T = Q*.
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12. First Observations On Subsemigroups of Z(+)

Lemma 12.1 Let S be a subsemigroup of Z*(+) such that gcd(S) = 1. Then there
exists at least one positive integer s such that s, s+ 1,s+2,... € S.

Proof. Let m denote the smallest positive integer such that m + n € § for some
neSU{0} Ifm € Z" and n; € S U {0} are such that m; + n; € S, then m; =
=km+1LkeZ" e Z0 <[ < m,and both km + kn + n; = k(m + n) + n; and
km+kn+n; +/=my +n, +knareinS. Since [ < m, we get [ = 0 and it follows
that m|m;. Consequently, m | a for alla € S, and hence m| gcd(S) = 1, m = 1. Thus
n+leS;ifn=0,thenl €S andS =Z".

We have shown thatr € S andr+ 1 € § for atleastoner € §. If r; > t and
O<m<tthenrit+r,=(—nrn)t+nrnt+l1)eS. Wecanput s = 1% a

Proposition 12.2 Let S be a subsemigroup of Z* and let r = gcd(S). Then there
exists a uniquely determined positive integer s = o(S) such that (s — )r ¢ S and
sr,(s+ Dr,(s+2)r,...€8S.

Proof. T = r~'S is a subsemigroup of Z*(+) and gcd(T) = 1. Now, the result
follows from 12.1. o

Proposition 12.3 Every subsemigroup of Z(+) is finitely generated.

Proof. Let S be a subsemigroup of Z(+). If S is a non-zero group, then S(+) is
a cyclic group and it is, as a semigroup, generated by the two-element subset {a, —a},
where a = min(S NZ*). If S is not a group, then, taking into account 11.1, 11.2 and
11.3, we may restrict ourselves to the case S € Z*. If r = gcd(S), then the semigroups
S (+) and T'(+) are isomorphic, T = r~1S € Z*, gcd(T) = 1, and therefore we can
assume that r = 1. Put s = o(S) (see 12.2) and m = min(S). Now, denote by R
the subsemigroup of Z(+) generated by the set {n € S : n < s+ m — 1}. Clearly,
RcCS,{npeS: n <s} CR meR,s e RandR(+) is a finitely generated

semigroup. If m = 1, thenR =S =Z". Ilf m > 2, then s,s + 1,...,s + m—1 € R,
and hence s+ km,s+km+1,...,s+(k+ 1)m—1 € R for every k > 1. Consequently,
{s;: s < s} € Rand we conclude that R = S'. m]

Example 12.4 The set A,, = {m,m+ 1l,m +2,...}, m > 1, is a subsemigroup
of Z*(+) and the set {m,m + 1,...,2m — 1} is the smallest generator set of A,,(+).

Consequently, the semigroup A,,(+) cannot be generated by less than m elements.
Notice also that S = A,, when S is a subsemigroup of Z*(+) such that ged(S) = 1
and o(S) = min(S).

Remark 12.5 Let S be a finitely generated subsemigroup of Q(+). Then the dif-
ference subgroup A = S — S is finitely generated, and hence it is a cyclic group.

Remark 12.6 Let S be a subsemigroup of Q(+) such that S N Q* # @ (see 11.2).
Then S N Z* # 0 and, if r = gcd(S N Z*%), then there exists s € Z* such that
sry(s+ Dr,(s+2)r,...€8.
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