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ACTA UN1VERSITATIS CAROLINAE - MATHEMATICA ET PHYSICA VOL. 50, NO. 1 

Various Examples of Parasemifields 

TOMÁŠ KEPKA and MIROSLAV KORBELÁŘ 

Praha 

Received 15, October 2008 

We find an equivalent condition under which is the semiring Q+[ar], a € C, contained in 
a parasemifield of C. A classification for the case when a is algebraic of degree 2 is made. 
Various examples of parasemifields are constructed. 

1. I n t r o d u c t i o n 

A (commutative) semiring is an algebraic structure with two commutative and 
associative binary operations (an addition and a multiplication) such that the multi­
plication distributes over the addition. A (commutative) parasemifield is a semiring 
where the multiplicative part is a group. There was proved in [1] that the problem of 
showing that 

(a) Every infinitely generated ideal-simple commutative semiring is additively 
idempotent, 

is equivalent to the question that 
(b) Every (commutative) parasemifield that is finitely generated as a semiring is 

additively idempotent. 
By [2, 2.2], a parasemifield that is not additively idempotent contains a copy of the 

parasemifield Q+ . Reformulating the conjecture from (b), we get that 
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(c) Every (commutative) parasemifield that contains a copy of G4 is not initely 
generated as a semiring. 

In context of (c) we can naturally ask about the structure of parasemifields that 
contain a copy Q of Q+ and are (as semirings) generated by QD K where K is a finite 
set. Of course, Q+ is an easy example of such a parasemifield. 

In this paper we find other examples of such parasemifields. 
Another interesting problem is to describe all parasemifields that are contained in 

the field C of complex numbers. As we know, they must contain a copy of Q'+. In this 
paper we characterize the case when Q^br] c C is a parasemifield, where a e C is 
algebraic of degree 2 over Q. 

2. P r e l i m i n a r i e s 

The following notation will be used in the sequel: 

N . . . the semiring of positive integers; 

No . . . the semiring of non-negative integers; 
Z . . . the ring of integers; 
Q . . . the field of rationals; 
Q+ . . . the parasemifield of positive rationals; 
0^ . . . the semifield of non-negative rationals; 
G~ . . . the set of negative rationals; 
Pi. . . the field of reals; 
R+ . . . the parasemifield of positive reals; 
?^ . . . the semifield of non-negative reals; 
£r . . . the set of negative reals; 
]?!" . . . the set of non-negative reals; 
C . . . the tick: of complex numbers. 

3. A u x i 1 i a r y r e s u l t s ( a ) 

Put s(a,n) = (2")a" for all a ( ;r. and /? € 1T0. 

Lemma 3.1 (i) s(a. 0) - 1. s(a, 1) = 2a, s(a, 2) = (vr, s(a, 3) = 20a3. 
(ii) If a = 0, then s(a. k) = Ofor every k > 1. 
(iii) If a G R+, then s(a*n) C r.f for every n. 
(iv) If a e Mr, then s(a,n) c. P.4* for n even and s(a,n) £ Rrforn odd. 

Proof It is obvious. • 

In the rest of this section, assume that a -£ 0 and put t(a, n) = s(a, n + 1 )/s(a, n) for 
every n G NO. 
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Lemma 3.2 t(iu n) = (4 - 2/(/i + 1 ))a. 

Proof. Easy to check. [J 

Lemma 3.3 lim t(a, n) = 4a. 
/?->(.X) 

Proof The assertion follows easily from 3.2. n 

Lemma 3.4 If\a\ < 1/4, then lim .y(*r/,/0 = 0. 

Proof For a = 0 is the statement clear. Let 0 < \a\ < 1/4. By 3.3, we have 
Mm \s(a,n + l)|/|s(a,//)| = lim |/(a,//)| = 4|a| < 1, hence lim s(a,n) = 0. 

Suppose now, \a\ = 1/4. Then, using the Stirling's formula, Mma„/n\ = 1, where 
crri = (n/e)n V2/r/f, we get lim \s(a,n)\ = lim i(2n)l/a2n)((rn/nl)2(\/ yfrm) = 0. n 

Lemma 3.5 If\a\ > 1/4,, then lim|s(tf,n)| = oo. 

Proof By 3.3, there are no € No and r e R such that r > 1 and |t(<z,&)| > r for 
every k > /%. Now, \s(a, k)\ > J**""0 • |s(#, /to)I for k > «o and the rest is clear. • 

Lemma 3.6 (i) If a > 1/4, then lim s(a, n) = +oo. 
(if) Iffl < —1/4, tlieit lim s(€i, ri) does not exist 

Proof Combine 3.5 and 3A(iii),(iv). n 

4. A u x i l i a r y r e s u l t s ( b ) 

Put h(/i,a,b) = (.v + 1) 11 ((x2 + hf + (ax)2') e F:|.v] for all a , k R and n € N0. 

Lemma 4.1 h(n, a, b) is a monic polynomial of degree 2n+1 - 1. 

Proof It is obvious. D 

Put j»(//, a, IK c\ d) = (.v2 + /; - a;c)h(n, c, rf) € R[x] for all a,b,c,d €R and n e 1T0. 

Lemma 4.2 g(/z, a, /;, c, d) /s a monk polynomial of degree 2n+1 + 1. 

Proof Is is obvious. n 

Put f{/i, <:i, />) = g(/ / , a, /?, a, b). 

Lemma 4.3 f(n,a,b) = (x + \)((x2 + h)2" - (ax)2"' ) is a monic polynomial of 
degree 2,tf2 + 1. 

Proof Put / = .v2 + /; and # = ax. Then f(//,«. b) = (.v + 1)(/ - #)( / + g)(f2 + g2) 
(fUgA)^,(fn+g2n) = (x+l)(f2^r)(j '2 + ir i ( f4+g4) . .4/2 ' '+r ) = U+i)( /4-#4) 
(/4 + A'4)...(7 ,2"+r ) = ••• = u + i)(/2" - r X / ^ + r ) = (*+ lX/2"' - j r* ' ) . • 

Let i(n,a,b) = X rk(n,a,b)xk e P.|x], where rk(n,a,b) € Fl. 
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Lemma 4.4 (i) rk(n, a, b) = Ofor every k > 2""2 + 2. 

(ii) rk(n,a,b) = rkt\OuaJ>) = Q"')/r'!"1^A"/2/Or cir/T cvcw k, 0 < k < 2"4> 

k * 2 " M . 
(iii) ryi(tLaJ)) = r2>f\ .\Oha.b) = (2\n )lr" -a2' . 

Proof Combine 4.3 and the binomial formula. a 

Lemma 4.5 !i) Ifb > 0, then rk(n,aJ)) > Ofor every k e No such that k # 2"*l 

andk + 2n^ + 1. 
(ii) Ifb > 0, //?c/i rk(n,aj)) > Ofor every k £ N0 such that k < 2,lt2 + 1, k * 2"<! 

a w / * * 2"+l + l. 

Proof The assertion follows immediately from 4.4. a 

Lemma 4.6 Assume that b > 0 (/; > 0, resp.). Then the following conditions are 
equivalent: 

f \ {2nil\i*>n ^ ->«,! / / 2 " , ! \ / ™ ^ 2"+I \ 

0) ( 2« f1" > ' r ({ > f r ^ a » r e j F 'A 
(ii) tiOi, £i, b) > 0 faO/, </, //) > 0, resp.) for every 0 < k < 2fHl + 1. 

Moreover, if a -£ 0, ///c// ///c.vc conditions are equivalent to 

(iii) ( 2 ^ ) ( b / : r r > 1 (> IrespJ 

Proof Combine 4.5 and 4.4(ii),(iii). o 

Lemma 4.7 If 4b > a1 > 0. then there is m e N JIIC/I that rk(nu a, b) > Ofor every 
0 < k < 2m+2 + I 

Proof We have b/a2 > 1/4, and hence llm sib/a1, n) = +cx> by 3.6(i). Conse­
quently, there is k £ No such that s(b/a2J) > 1 for every / > k. Now, it suffices to 
find m e N with 2"1 > k and our result follows from 4.6. D 

Lemma 4.8 Assume that 4b > a2 > 0. Then there exist m e N and c, d e O such 
that g(m, a, b, c, d) e R+ [x]. 

0O 

Proof First, let g(n,a,b,u,v) = 2 sk(n,a,b,u,v)x, e i [ i ] , where sk(n,aj?, 
k=o 

w, v) e >. Clcar'y, A>(/I, a, b, •, •) : E x R —» R is a polynomial function and .vz (//. O, /?. 
a, b) = r*(/?, O, /;), .v/0i, a, I?, M, v) = 0 for every a, b, u, v e R, n e N, 0 < /; < 2'1; 2 + 1 
and />2 ' , + 2 + 2. 

Now, by 4.7, there are m £ N and 0 < r e E such that sjni, a, /?, a, b) = /'*(///, 0,6) > 
> r for every 0 < k < 2m+2 + 1. Since the functions sk(fu,aj),%-) are continuous, 
there are c, d e O such that sjt(m, a, b, c, d) > 0 for every 0 < k < 2m4~2 + 1. It follows 
that g(m, a, />, c, d) £ >>[xl a 
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5. A u x i l i a r y r e s u l t s ( c ) 

Lemma 5A Let f G r:[x] be a monic irreducible polynomial such that fi has no 
positive root ///1?:. Then there exists It G Q[x| such that It =£ 0 and all the coefficients 
of the product hfi are non-negative. 

Lroofi We have deg(/) G {1,2}. I f / = x + a, a G P., then a > 0 and we put 
// = 1, I f / == x2 + r/x + /?, </,/> G !?„, then /' has no real roots at all, and it follows 
that b > a2/4. In particular, b > 0 and we put h = 1 for n > 0. Anyway, if 
a =t 0, then gim%aJ?,(\d) G R+ [x] for some /// € II and t\d e O, by 4.8, and we put 
// = h(///. (\ d) G Q[x] (see 4.1 and 4.2). • 

Lemma 5.2 Let fi G rl|x] be a polynomial such that fi has no positive real root. 
Then there exists It G Q|x] such that It t 0 and all the coefficients of the product hfi 
are non-negative. 

Troofi We have fi = af\ - • • / , , where a G ?., n G Ho and / , . . . , / , are monic irre­
ducible polynomials from P:[x[. By 5.1, there are non-zero polynomials //i , . . . , //„ G 
G Q[xj such that all the products //,/• belong to F:+[x|. Now, it is enough to put 
// = //,••• //,. for a > 0 and // = -h\ - • * //„ for a < 0. D 

Proposition 5.3 Let F /*' a subjield O/TL The following conditions are equivalent 
for a non-zero polynomial f e F[x]: 

(i) The polynomial fi has no positive real root. 
(ii) There exists a (non-zero) polynomial It G Q[x) such that hfi G F+[x]. 

(iii) There exists a (non-zero) polynomial g G F* [x] such that fi divides g in F\x\. 

Proof (i) implies (ii). By 5.2, there is /. G Q|x] such that // t 0 and /?/ G P'^. 
Clearly, / / / * 0, / / / G F[x], and therefore / / / G F^ [x]. 

(ii) implies (iii). Put g = /?/. 
(iii) implies (i). We have g = «(} + Ojx + • •• + <7„.v", where n G I I Q , ^ e F{\ and 

</„ ^ 0. Now, if r G Fi is such that f(r) = 0, then deg(/) > 1, and hence /? > 1 and 
a{) + a\r + • • - + rt„r" = 0. It follows easily that r < 0. D 

Corollary 5.4 ,4 non-zero polynomial fi G Q[x] //a.y w; positive real root if and 
only if fi divides (in Q[x]j a polynomial from Q4'[.v]. 

Remark 5.5 Denote by SH the set of algebraic complex numbers a such that fi(a) £ 
0 for every / G Q1 [x) (!I[x), rcsp.) Then <r G 11 if and only if the minimal polynomial 
of a over 0 has a positive real root. 

Remark 5,6 Let a G C be algebraic and let / = niin-.Or) G Q[x] ( / is a monic 
irreducible polynomial in CJxJj. 

fi) If / has no positive real root then there is g G 04[x] such that g(a) = 0 (see 
5 4). We have g = q{) + q\x + ••• + q,,xJ\ where // G IT, <// G 0(

4, £/„ 9- 0 and 
q{] + t7iO' + • • • + qna

H = 0 (we can assume, without loss of generality, that qn = 1 or 
that q{ G N0). 
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(ii) If deg(/) = I, then / = x - a and / has no positive real root iff a i r'Y. 
(iii) If deg(f) = 2, then f = (x - a)(x - fi) and f has no positive real root iff 

a,p i R+. 

Eemark 5.7 (cf. 5.6) Let a e C be algebraic of degree 2 and such that 
the minimal polynomial f = nuii-(a') has a positive real root. Then f = (x-a)(x-fi), 
a,/$ £ R, and either a £ Fi" or/i € Pi*. Furthermore, there are q £ Q+ and t G Q such 
that just one of the following four cases takes place: 

(1) a= y/q + t>0,fi= -yjq + t>0: 
(2) a= \/q + t>{),fi=-\Jq + t< 0; 
(3) a = - yiy + t>()./i= \Jq + t > 0; 
(4) c? = - \Jq + t < (!, /i = \Jq + t> 0. 

Lemma 5.8 Lc*t rr G C or algebraic of degree 2, 7'//c7? //ic* minimal polynomial 
minQ(cY) /IO.Y ci positive real root if and only if there exist q G Q+ r.7?d t G Q .yur// t/^/t 
^Jq > ~tf ^Jq g Q A/id either a = t + ^ or cr = / - ^y. 

Proof Easy (see 5.7). • 

6. A u x i l i a r y r e s u l t s ( d ) 

In this section, let q £ CY be such that y/q iQ_(\Jci £ ? / ). Furthermore, let I € Q, 
q\= y/q + t,q2 = -<s/q-rt,A= Q+|<y, ] (= {/(</, )| f <- Cf |.v|}) and B = Q + [ f 2 l 

Lemma 6.1 Both A and H are subsemirings of the field ?.. 

Proof Easy to see. D 

Proposition 6.2 The following conditions are equivalent: 
(i) \Jq > -/. 

( i i ) ()<£A. 
(iii) 0 £ II 

Proof Put/ = min^ / i ) (= x2~2tx + r ~ o f Then 0 c /I iff/divides a polynomial 
g £ Of [x\ and the rest follows from 5.4 and 5.8. n 

Lemma 6.3 (i) Q*"[ y[q\ = [a + b yjq\ a, b £ Q0 , a 4 b t- 0} is a subsemiring o f?/ . 
(ii) Q+ | \JqY = [o,a \Jq\ a G Q+( (the group ofinvertible elements of the semiring 

Q+rv£j>. 

Proof (i) Easy lo see. 
(ii) Let o + h\Jq £ C41 V*/-^ ^ E Q + ^ ^ + ^; ;^ ()~ ( ) f course, (a + byjqf1 = 

= o/o + (-b/c) \Jq, c = a2 - b2q. Consequently, if a/c f- 0 then c > 0 and /? = 0, and 
if -b/c -£ 0 then c < 0 and a = 0. The rest is clear. D 

Lemma 6.4 The mapping f(q\) i-» fU/2), f G QHAJ, /s an isomorphism of the 
semiring A onto the semiring B. 
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Proof If J\(cj\) = fi(cj\), then minqUyi) divides the difference f\ - ft- But then 
(fi - fK<T>):r ^ an<J hence fi(</2) = fiiiqi)* The rest is clear. • 

Lemma 6.5 Aw///?/.? ///a/ / > 0. Then: 
(0 A Q Q:\yjql 

<ii) Ift = 0. //?c/?/t = Qfr>/<7|. 
(in) //7 * 0, then A ± Q+[ yjq] and A* = Q \ 

FEwf We have r/i € Q+[ yjq] and the res: follows from 6.3. D 

Lemma 6.6 Ift > 0, //w/i 1 + / + yjq e A \ A" and \ +t- %Jq £ B\B*. 

Proofi Use 6.5 and 6.4. D 

Corollary 6.7 Ift > 0, then () £ A, 0 £ B, but neither A nor B is a parasemifield. 

Lemma 6.8 (i) Q;[ yjq] is a subfile Id of¥L 
(ii) Q| yjq] * is a subparasemifield of'?.*. 
(iii) If yjq > -/, ///*'/? ,4 c Qltfi T c Q[ yfq\\ 

Proof Easy to see. D 

Lemma 6.9 Ift < 0, then yjq + Q+ c A 

Proof We have yjq +a = (yjq +t) + (a- t) = cj\ + a-t e A for every r/ G Q+ . D 

Lemma 6.10 Let a, b G Q be such that a + b e Q+ a//d - yjq + cu - y/q + b € A. 
Then - yjq + (q + ab)/(a + /;) G A Moreover, if yjq < a and yjq < b, then yjq < 
< iq + ab)/(a + b) < cub. 

Proof We have - yjq + (q + ah)/(a + b\ = (- yjq + a)(- yjq + b)/(a + b) £ A. 
Moreover, if yjq < a and yjq < /;, then ab + q -ciyjq — b yjq = (a - yjq)(b - yjq) > 0, 
and so yjq < (q + ab)/(a + b). Finally, <y < a2, q + ab < cr + aband(q+ab)/(a + b) < a. 
Similarly, (q + ab)/{a + b) < b. D 

Lemma 6.11 Ifit < 0, then — yjq + a G A for every a G Q+ such that yjq < a. 

Proof Put/i = (q+r)/(-2t). We have /, G Q4 and-yiy+/i = cj]/(-2t) e A. Since 
q + r + 2/ yjq = cjj > 0, we have y<y < t\. Now, by induction, put /„41 = (tjl+q)/2tn G 
G Q ' . According to 6.10, /| > /2 > ^ > • • • > yjq, and - yjq + tn G /I. If /0 = lim /„, 
then /,, = (/~ + <l)/2/o, and hence /<> = -̂ iy. Finally, if ^ < cu a G Q+, then /,„ < a for 
some /// G II and we have a - /,„ G Q f and - yjq + a = ( - yiy + /„,) + (a - /,„) G A n 

Lemma 6.12 I jet a, b G Q be such that a + b G Q4 and yjq ~cu- yjq + h £ A. Then 
yjq - (<y + ab)/(a + /;) G /I. Moreover ifiO < a < yjq < /?, then a < (q + ab)/(a + b) < 
< yjq<b. 

Pwofi We have yjq - (q + ab)/(a + b) = (yjq - a)(- yjq + b)/(a + b) e A. 
If 0 < a < yjq < />, then a2 < q% a2 + ab < q + ab and a < (q + ah)/(a + b). 
Moreover, ( yjq - a){b - yjq) > 0 and it follows that q + ab < ayjq + b yjq. D 
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Lemma 6.13 I/7 < 0 unci \fq > -t, then yfq - a c- A for every a e Of such that 
Vf > a. 

Proof Put s\ = (q - tt\ )/(t\ - /). where t\ = (<:/ + /•')/(-2l), \fq < t\ (see the proof 
of 6.11). Since 0 < - / < Vf < 'i a l lc l yjq-("t),-yjq + t\ c A, we have, by 6.12. that 
V? ~ si e -4 and -1 < si < V/- Now, by induction, put s„t \ = (q + snt\ )/(sn T t\). 
According to 6. .2, si < sj < s* < ••• < Vf a n ^ Vf ""* sn e -4- If -vo = Jims,,, 
then so = (q + ^/li/U'ci + li), and hence s(, = -\[q. Finally, if a e 0 / is such that 
Vf > £i, then a < sm for some /// € IT and we have s,„ - a e 0/' and \Jq - a = 

= (Vf-"- v ». ) + (••». - « ) c A D 

Lemma 6.14 Let 0 < --/ < V/« -/'//^/ '̂ 
(i) a + y]q c Ajbrcrry a ( 0 / 

(ii) /; - Vf (: Ajbrcrry I) c Q f uvVh 1// < /;>. 
(iii) —c + V? € Afar every c e Of with Vf > c. 

Proof Combine 6.9, 6.1 1 and 6.13. a 

Lemma 6.15 If 0 < - / < VI '/"'" -4 = Ql7i V = Ql Vf l+-

Proof Due to 6.8(iii), it is enough to show that Q| V7T £ -4- Hence, let a J) e 3 
be such that a + byjq > i). If /> -• 0, then d 6 Q+ c /l, so that we assume b £ 0 and 
we put c = a/\b\. If /? > 0. then r + Vf *̂ ^ a n c i c; + Vf e ^ by 6.14(i).(iii): then 
a + b^fq € A3 too. If/; <" 0. then c - Vf > ^ r G Q*' anc*c;"~ Vf € ^ ^ 6J4(ii); 
then a + byjqe A, too. a 

Proposition 6.16 (i) If Vf <r " ' » //l£,/l A = Ql Vf I < " " ' / r = Ql Vfl \ (°}-
(ii) If t = 0 //.«'//jl = Q ' | V/J £ Ql V7T andh* - • \a.a Vf! a e Of }. 
(iii) Ift > 0, ///<'// ,4 £ Q* [ V/] and A* = Of. 
Civ) //() < - / < Vf* ^ -4 - A* = QN/i ] ; = Of V7lf • 

Prrw/: (i)Pitt C = /tnQOI1ienQ f cCand<y-/ 2 --• ( >fq + t)(^/-t) = c/\(c/\-2t) £ 
e C fl Q~. Now, C is a subsemiring of 0 containing all positive rational numbers and 
at least one negative rational number. Then C = C, Z C /\, \Jq e A and, finallv. 

-4 = Ql Vfl* 
(ii) Clearly, if 0 < r < Vf r • Q* • l^iei1 Vf "~ '" c Ql V/l+ anc* Vf"" r ^ Q* 1 Vfl-

The rest follows from 6.3(ii). 
(iii) See 6.5(i.i). 
(iv) See 6.15. D 

Proposition 6.17 (i) //' Vf < -/, then B = 0] Vfl and Ii' = 0 | Vf] \ (0). 
(ii) I/7 = 0, then B = 0 / | - Vf l ""^ #* = \(l* "~a Vf i r l ( Q* )• 
(iii) I/f > 0, ihen B Q \a - /; yfl ^/^ ^ 'Q[ra + /; # 0| anil If = 0 + . 
(iv) If o < - / < vf. ^^'^ / ^ r /^ = f r | ~"'; Vf ICL ^(' Q -{l > ^^; Vf I* 

Proof The map ^ : Z[q\ I -••> Qk/2h $(f(q\)) -"• f^/:)» / G QI-̂ ]» is a n isomor­
phism of fields. LeW/,/; c Q. Wehave<^(^ + /; Vf) = ^(a- bt) + bc/\) = (a-bi)+bq2 = 
= a- b Vf • 
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(!) Let sfq < -t. Then, by 6.14, A = Q| yfq\. Hence B = <p(A) = (p(Q[yfq]) = 
Qi sfc/l 
(ii) Use 6.4 and 6.16. 
(iii).(iv) Si-nilar to (i). D 

Corollary 6.18 (cf 6.2) The following conditions are equivalent: 
(i) \fq> -t > 0. 

(ii) /I is u parusemiJieUL 

(Hi) B /,v u parusemiJieUL 

Proof Use 6.17. D 

Corollary 6.19 The following conditions are equivalent: 

(i) Vtf < -'• 
(ii) /t (7f, rev/;f isujieUL 

(iii) A (B, resp.) is a semijield. 
Ov) ( )€ / ! (0 € Ii, mv/OJ. 

7, T h e s u b s e ni i r J ii g s Qł \a], a є C 

Proposition 7.1 Lei (Ï є € /w algebraic <Jчdegree 2. The JЫlowing conditions are 
equivulent: 

(i) OÿQMíľJ. 
(iì) Й> + ÍІ нr + • • • + a„a" Ф 0 whenever n є lï0, л, є Q.* ťwd X #/ ź -̂

(iii) F/к7r ť.шt <y є Q* шi£ł / є Q smU that \fq $ 0, \Jq > -t and either 
a = / + yfqora = t - yjq. 

Proof Clearly, (i) is cquivalent to (ii). 
(ii) implies (iii). Put f = min-.((r), deg(f) = 2. It íollows from (ii) and 5.4 that f 

has a positive rcal root and it rcmains to appjy 5.8, 
íiii) implics (î). Sec 6.2. П 

Proposiťюn 7.2 Let a є € be algebraic ofdegree 2. Then Q4 \a\ is aparasemijield 
if und only if there exist q є Q* and l є Q"" such thut лfq í Q, ^fcj > -î and either 
a -- t + yfq or a ~ t - yfq. Moreover, ifa ••- î + ҳfq, then Q4 \a\ = Q[ ^ ] 1 atuL if 
a -- t - \fľf, tben Q ł [rr] = {a - b \fq\ u, b Є O, a > —b лfq}. 

ľroof Conbine 7.1, 6.16(ii),(iii),(iv) and 6.l7(ii).(iii),(iv). D 

Lenima 7.3 Let a є '2 be an algebraic number such that Q+(cr] П Q" Ф 0. Then 
Qf\a\ = Q|(ľ] (a subfìeld ofC). 

ľroof. Put Л = Q ł \a\ ПO. Then A is n subscmiring of Q, Q ł ç Л and Л ПQ" Ф 0. 
Conscqucntly. Л = Q and Q4 |cr] = Q|ЃKJ, D 

Proposition 7.4 Let a є 'C be an ulgebraic mimber. Tlie JЫlowing conditions are 
equivalent: 
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(i) Oř QҶ</|. 
(ii) ao + aцì + • - • + ana" ź 0 whenevern є lï(), a( г Z^ and X a, Ф 0, 

(iii) The minhnal polynomial minç((ľ) has a positive rcal root. 

Proof See 5.5. D 

Proposition 7.5 Let a є C, o* # 0, /;e an algebraic number. Thefołlowing condi-
tions are eqнivalent: 

(i) G+la\ = q>\a\(asubßeldofC). 
(ii) 0 e Q + M . 

(iii) 77/e miшmal polynomial m\x\^(a) has no positive real roots. 

Proof First, :ii) îs equivalenl to (iii) by 7.4 and (í) implies (ii) trivially. It remains 
to show that (ii) implies íi). IťO є Q+ '[ÍГ|, then there are // є iï and a<>, an є Zf() 

such that 0 = CІQ +a\a + • - - + a„<ŕ and an Ф 0. Assume that n is the smallest possible. 
Then fl(, > 0 anc -a() = ÍÍИГ + • • • + ̂ ÍГ 1 1 є Q+[řť| П Q . By 7.3, Q+[oi = C\a\. o 

Proposition 7,6 Let a є C be an algebraic number such that ßm = 1 Jor some 
ß є OЦalß jfc 1, andm > 2, T/ten Q+\a] = Q И , 

PraO/ We haveßy = y, where y = 1 + / І + ••• +/ff ! є Q+[>ľ|. Sinee/i Ф 1, ít 
ťollows that y = 0, and hence 0 є Q f \a\. It remains to use 7.5. a 

Remark7,7 (î) Ifa є C is transcendental, then A -~ Q ł \a\ = Q+'[.v[. In particular, 
0 g A and ЛЛ"1 = {a/Г11 ЃI, b c A\ ís a subparasemiíield oť C Clearly, ЛЛ~' ís a ťree 
parasemiíìeld freely generated by {íľf. 

(ii) II* a є C is algebrдic number satisfying the equivalent conditions of 7.4, then 
0 i A and AA^1 = {ab"l | n, b e Л} is a subparasemífield of C. 

Proposition 7.8 Let <r ( C and A = Q+[ar]. The following conditions are equiva-
lent: 

(í) Л /.У c ontained in a subparasemijield ofC. 
(ii) 0 č Л. 

(iii) Either a is transcendental or a is algebraic and the minimal polynomial 
iшnqícY) has a positive real root. 

Proof Combine 7.4 and 7.7. • o 

8. F r e e p a r a s e m i f î e I d s 

Let X Ы a set and P(K) = \f/g\ J\g є 1T0[K|,/ ï 0 Ф g\. Then P(K) ís a free 
parasemifìeld over X. (Notice that P(0) = Q+.) 

In the remaiпing part of this section, assume that A* = (x | is a one-elcment set and 
put P = P(.v). That is, P is a ľrec parasemiřìeld oťrank I. 

For every / є lïolxj, / t û, there exist uniquely cietermined v(/) є îïп and 
/ є lï0[.v| sueг that / = лUfl • j \ and .v doesn't divide j \ . I ť / g € iï0[л-| \ {()}. then 
v(fg) = v(f) + v(g). Corisequently, forf/g є P, wecan put v(//g) = \'(f)-\'(g) G Z. 

70 



LemmaS.l v(FG) = v(F) + v(G) and v(F+G) = min(v(F), v(G))forall ľ,G є I\ 

Pmof Let F = jŕf\ /g\ and G = \mfi/gъ where x doesiťt divide f , # ; íbr / = 1,2. 
We can coesider n > m. Then \Jìf\/g\ + \mfi/gi = x"'(\J,~mf\g2 + figiì/gigi- Since 
x doesnЧ divide ď~mf\gг + f.#ь w ^ have vi F + G) = /// = min(v(F), v(G)). The rest 
ís obvíous. D 

Kemark 8.2 Deíine a relation £ on Р by (F,(7) є £ iíГ v(F) = v(G). It ibllows 
easiîy from 8.1 that £ is a congruenee of tlie parasemifield P. Since (1,2) є Ç, the 
factor P / í is an additively idempotent parasemifìeld. In ľact, <p : P —» Z( , +), 
kf(ľ/t) = v(F) is an isomorphism of parasemifields where /// /? = min(/?,///). 

Remark 8.3 Let <r є ЧЛ (see 5.5). The mapping кa : P —> C, f/# н* f (<*)/#((*)* 
ìs a homomorphism and /c<r(P) is a subparasemifield of C (see 7.7). The equivalence 
kcr(кa) is a congruence of P. 

Remark 8,4 Consider the parasemifield 0 + xZ( , +) (see 8.2). Then (1,0), is unit 
element and we have (1, 1) + (1,0) = (2,0) = (1,0) + (1,0) (cf. [2, 4.13]) 

Rcmark 8,5 Put т = ę П kcr(кir), where <ү = 1 є Q+ (sec 8.2 and 83). Then r is 
a congruence of the parasemifield I\ it is easy to see that ф : P/r —» 0 + x Z( , +), 
ф{ľ/т) = (F( 1), v(F)) ís an isomorphism of parasemifìelds (see 8.4). 

Remark 8.6 Defìne an operation ffl on Q ł x Z by (r,m) ffl (s,n) = (r,m) if/// < n, 
(ì\m) ш (s,n) = (r + s,m) ìïm = // and (t\m) ffl (s,n) = (л',и) if// < ///. üne checks 
easily that P = (0+ x 2)(ш, *) is parasemiheld, where (r,///) * (л,//) = (rл,/// + //) 
(cf. 8.4), Notice that (t\m) ffl (j\m) = (2r,///i * (r,///) and//p = PxP (see [2, 1.101) 
(cf.[2,L12(ii)]). 

Remark 8.7 Deíìne a relation x on Ғ by (F, G) є ^ ifľ v(F) = v(G) (i.e., ЃF, G) є 
є f) and (.v"vlУ F)(0) = (.v"v(í;)C;)(0). It ťollows easily from 8.1 Űrлíx is a congnience 
oľ P. Moreover, n : P/> -> (Q xZ)(ш,^),я( f/ ľ ) = ((.v~v(//,F)(0), v(F)) is an 
isomorphism oľparasemiłìelds (see 8.6). 

9. F r e e a d d 11 i v e 1 y i d e in p o t e n t p a r a s e m i fi e 1 d s 

Define operations © and O on {0, 1} (c II) ny nBv = max{u, \>} and uQv = ininfw, v} 
for ii. i? c {(), I}. It is easy to see that 5 = ('[(), 1 },®,G>) is an additively idempotent 
semiring. Let X be a set and SIX] a semiring of non-zero polynomials over S andX. 

For (aJ))A/\d) e S[X] x S | X | put (a,h) + (c.d) = (ad + hc\hd) and (aJ))A/\d) = 
= (acJnl). Define relation = on S(X| x S[X| as follows: (aji) = (c,d) iff there is 
e e S[X] sech that ade = bee. 

Remark 9.1 S[X] is a free unitary additively idempotent semiring with basis X. 
Further, it is easy to verify that S[X] x S[X] is a semiring and = a congruence on 
S[X]xS[X]. 
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Put G(X) = S[X] x S X)/ = and denote a/b the congruence class of = containg 

(aђb) єS\X}xEiXl 

Reniark 9.2 Obviously, G(X) is an addittvely idempotent parasemifield. 

Lemma 9.3 G(X) is a free additiveíy idempotent parasemifield with basis X = 
= {x/ì\xeXl 

Proofi Clearly, x/ì Ф xŕ/1 for JC, x' є X, x Ф x' mà G(X) ís generated hy X. 
Let P be ш additively ídeiтipotent parasemífield and ф : X —> P a map. By 9. V 

there ís a homomorphism ҷ>: S[X] —> P such that ę(x) = ф(xfl) for every .v є X. 
Let be now a/b = c/d є G(X). Then there ís e є S[X] such that ade = /яr, hence 

(p(a)(p(d)(p(e) = (p(b)(p(c)(p(e) aiid (p(a)(p(d) = (p(b)(p(c), since P is a parasemitield. 
Now, Ф : G(X) -> P, Ф(я/ŕ) = (p(a)(pфүx for л/fe є G(X) ìs a (well delìned) 
homomorphism such that Ф(x/1) = ф(x/1) for every лr/1 є X. з 

Rcmark 9.4 S[X] ís not multiplicatively cancellative; c.g., (1 + x)(\ + л2) = 
= 1 + JC + JГ + .Ï* = (1 +x)(l + x + x2% thus (i +.v2)/l = (I +.ү + .v2)/l inG(X),but 
1 + x2 Ф 1 + x 4 x2 ín S[X]. 

R e f e r e n c e s 
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