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Various Examples of Parasemifields
TOMAS KEPKA and MIROSLAV KORBELAR
Praha

Received 15. October 2008

We find an equivalent condition under which is the semiring Q*[a], a € C, contained in
a parasemifield of C. A classification for the case when « is algebraic of degree 2 is made.
Various examples of parasemifields are constructed.

1. Introduction

A (commutative) semiring is an algebraic structure with two commutative and
associative binary operations (an addition and a multiplication) such that the multi-
plication distributes over the addition. A (commutative) parasemifield is a semiring
where the multiplicative part is a group. There was proved in [1] that the problem of
showing that

(a) Every infinitely generated ideal-simple commutative semiring is additively
idempotent,

is equivalent to the question that

(b) Every (commutative) parasemifield that is finitely generated as a semiring is
additively idempotent.

By [2, 2.2]. a parasemifield that is not additively idempotent contains a copy of the
parasemifield Q*. Reformulating the conjecture from (b), we get that
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(¢) Every (commutative) parasemifield that contains a copy of Q is not finitely
generated as a semiring.

In context of (c) we can naturally ask about the structure of parasemifields that
contain a copy Q of Q* and are (as semirings) generated by Q U K where K is a finite
set. Of course, Q* is an easy example of such a parasemifield.

In this paper we find other examples of such parasemifields.

Another interesting problem is to describe all parasemifields that are contained in
the field C of complex numbers. As we know, they must contain a copy of Q*. In this
paper we characterize the case when Q*[a] € C is a parasemifield, where @ € C is
algebraic of degree 2 over Q.

2. Preliminaries
The following notation will be used in the sequel:

N. .. the semiring of positive integers;

Np ... the semiring of non-negative integers;
Z ... the ring of integers;

Q... the field of rationals;

Q" ... the parasemifield of positive rationals;
Qg - - - the semifield of non-negative rationals;
Q™ ... the set of negative rationals;

R... the field of reals;

R* ... the parasemifield of positive reals;

Ry ... the semifield of non-negative reals;
R~ ... the set of negative reals;

R ... the set of non-negative reals;

C. .. the field of complex numbers.

(=3

3. Auxiliary results (a)

Put s(a,n) = (2”)(1" forall @ € R and n € Nj.

n

Lemma 3.1 (i) s(a,0) = 1, s(a, 1) = 2a, s(a,2) = 642, s(a,3) = 20a°.
(i) If a = 0, then s(a, k) = O for every k > 1.
(iii) If a € R™, then s(a,n) € R* for every n.
(iv) If a € R™, then s(a,n) € R* for n even and s(a,n) € R~ for n odd.

Proof. 1t is obvious. o

In the rest of this section, assume that @ # 0 and put #(a,n) = s(a,n+ 1)/s(a, n) for
every n € Ny.
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Lemma 3.2 t(a,n) =4 -2/(n+ 1))a.
Proof. Easy to check. O

Lemma 3.3 lim #(a,n) = 4a.

n—00

Proof. The assertion follows easily from 3.2. O
Lemma 3.4 If|a| < 1/4, then lim s(a,n) = 0.

Proof. For a = 0 is the statement clear. Let 0 < |a| < 1/4. By 3.3, we have
lim|s(a,n + 1)|/|s(a,n)| = lim|t(a,n)| = 4]a] < 1, hence lim s(a,n) = 0.
Suppose now, |a| = 1/4. Then, using the Stirling’s formula, lima,/n! = 1, where

a, = (n/e)" V2rn, we get lim|s(a, n)| = lim ((2n)! /a2, )(a,/n")*(1/ \7n) = 0. o
Lemma 3.5 If|a|l > 1/4, then lim|s(a,n)| = co.

Proof. By 3.3, there are ny € Ny and r € R such that » > 1 and |t(a, k)| > r for
every k > ng. Now, |s(a, k)| = r*="0 - |s(a, ng)| for k > ngy and the rest is clear. O

Lemma 3.6 (i) If a > 1/4, then lim s(a,n) = +oo.
(ii) If a < —1/4, then lim s(a, n) does not exist.

Proof. Combine 3.5 and 3.1(iii),(iv). a

4. Auxiliary results (b)

Put h(n,a,b) = (x + 1) ﬁ (2 + b? + (ax)*) e R[x] forall a,b € R and n € N,.
i=0

Lemma 4.1 h(n,a,b) is a monic polynomial of degree 22,

Proof. It is obvious. O
Put g(n,a,b,c,d) = (x> + b — ax)h(n, c,d) € R[x] for all a,b,c,d € R and n € Nj,.
Lemma 4.2 g(n,a,b,c,d) is a monic polynomial of degree 2"** + 1.

Proof. 1s is obvious. a
Put f(n,a,b) = g(n,a,b,a,b).

Lemma 4.3 f(n,a,b) = (x + 1)((x* + py¥ — (ax)zm) is a monic polynomial of
degree 2"*? + 1.

Proof. Put f = x* + b and g = ax. Then f(n,a,b) = (x + 1)(f — 9)(f + &)(f* + &%)
(Freh . (7 +8%) = (e D =g+ Y . (7 4g7) = (e 1)(f =g
(fregh) . (T +g?) == (e DU =P+ = ek DU —g7). O

Let f(n,a,b) = Y ri(n,a, b)x* € R[x], where ri(n,a, b) € R.
k=0

63



Lemma 4.4 (i) ri(n,a,b) = 0 for every k > 2" + 2.

(1) re(n,a,b) = rp(n,a,b) = (i"/*z‘)bz"‘l_k/z for every even k, 0 < k < 2",
k # 21

(111) ryi(n,a,b) = ryniy(n,a,b) = (w])bT a.

Proof. Combine 4.3 and the binomial formula. o

Lemma 4.5 (i) If b > 0, then ri(n,a,b) > 0 for every k € Ny such that k # 2"*!
and k # 2" + 1.
(i) Ifb > 0, then ry(n,a,b) > 0 for every k € Ny such that k < 2"?% + 1, k # 2!
and k # 2" + 1.

Proof. The assertion follows immediately from 4.4. O

Lemma 4.6 Assume that b > 0 (b > 0, resp.). Then the following conditions are
equivalent:
(i) (2;,.|)b2" a" ((2;;})1)2" >a”", resp.).
(i1) re(n,a,b) > 0 (r(n,a,b) > 0, resp.) for every 0 < k < 22 4 .
Moreover, if a # 0, then these conditions are equivalent to
(iii) (2,, Jb/a® > 1 (2 1, resp.).
Proof. Combine 4.5 and 4.4(i1),(ii1). O

Lemma 4.7 If4b > a” > 0, then there is m € N such that ri(m, a, b) > 0 for every
0<k<2m2 4],

Proof. We have b/a* > 1/4, and hence lim s(b/a’,n) = +co by 3.6(i). Conse-
quently, there is k € Ny such that s(b/a?,1) > 1 for every [ > k. Now, it suffices to
find m € N with 2" > k and our result follows from 4.6. O

Lemma 4.8 Assume that 4b > a* > 0. Then there exist m € N and ¢,d € Q such
that g(m,a,b,c,d) € R*[x].

Proof. First, let g(n,a,b,u,v) = Z sp(n,a,b,u,v)x* € R[x], where si(n, a,b,

u,v) € R. Clearly, sg(n,a,b,-,-) : Rx R — R is a polynomial function and s(n, a, b,
a,b) = ry(n,a,b), s{(n,a,b,u,v) =0 forevery a,b,u,v e R,n € N, 0 < k < 2" + |
and [ > 2"2 + 2.

Now, by 4.7, there are m € Nand O < r € R such that s;(m, a, b, a, b) = r,(m,a,b) >
> rforevery 0 < k < 2"m+2 4 1. Since the functions si(m, a, b, -,-) are continuous,
there are ¢, d € Q such that sy(m,a, b, c,d) > 0 for every 0 < k < 2™*2 + 1. It follows
that g(m, a, b, ¢, d) € R*[x]. a
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5. Auxiliary results (c)

Lemma 5.1 Ler f € R[x] be a monic irreducible polynomial such that f has no
positive root in R. Then there exists h € Q[x] such that h # 0 and all the coefficients
of the product hf are non-negative.

Proof. We have deg(f) € {1,2}. If f = x+a, a € R, then a > 0 and we put
h=11If f = 2 +ax+b,ab e R, then f has no real roots at all, and it follows
that b > a®/4. In particular, b > 0 and we put &4 = 1 for a > 0. Anyway, if

a # 0, then g(m,a,b,c,d) € R*[x] for some m € N and ¢,d € Q, by 4.8, and we put
h =h(m,c,d) € Q[x] (see 4.1 and 4.2). m]

Lemma 5.2 Let f € R[x] be a polynomial such that f has no positive real root.
Then there exists h € Q[x] such that h # 0 and all the coefficients of the product hf
are non-negative.

Proof. We have f = af)--- f,, where a € R, n € Ny and fi, ..., f, are monic irre-
ducible polynomials from R[x]. By 5.1, there are non-zero polynomials hy,...,h, €
€ Q[x] such that all the products /;f; belong to Rj[x]. Now, it is enough to put
h=hy---h,fora>0and h=-h;---h, fora <0. O

Proposition 5.3 Let F be a subfield of R. The following conditions are equivalent
for a non-zero polynomial f € F[x]:
(1) The polynomial f has no positive real root.
(ii) There exists a (non-zero) polynomial h € Q[x] such that hf € F*[x].
(iii) There exists a (non-zero) polynomial g € F*[x] such that f divides g in F[x].

Proof. (i) implies (ii). By 5.2, there is & € Q[x] such that A # 0 and hf € Ry.
Clearly, hf # 0, hf € F[x], and therefore hf € F*[x].

(i) implies (iii). Put g = hf.
a, # 0. Now, if r € R is such that f(r) = 0, then deg(f) > 1, and hence n > | and
ap+ ayr+---+a,r =0. It follows easily that r < 0. O

Corollary 5.4 A non-zero polynomial f € Q[x] has no positive real root if and
only if f divides (in Q[x]) a polynomial from Q*[x].

Remark 5.5 Denote by U the set of algebraic complex numbers « such that f(a) #
0 forevery f € Q*[x] (N[x], resp.) Then @ € A if and only if the minimal polynomial
of @ over Q has a positive real root.

Remark 5.6 Let o € C be algebraic and let f = ming(a) € Q[x] (f is a monic
irreducible polynomial in Q[x]).

(i) If f has no positive real root then there is g € Q*[x] such that g(@) = 0 (see
5.4). We have ¢ = go + q1x + -+ + g,x", where n € N, ¢; € Q}, g, # 0 and
qo + g1 + -+ + g,@" = 0 (we can assume, without loss of generality, that g, = 1 or
that ¢; € Ny).
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(ii) If deg(f) = 1, then f = x — @ and f has no positive real root iff @ ¢ R*.
(iii) If deg(f) = 2, then f = (x — @)(x — B) and f has no positive real root iff
a,B¢R".

Remark 5.7 (cf. 5.6) Let « € C be algebraic of degree 2 and such that
the minimal polynomial f = ming(a) has a positive real root. Then f = (x—a)(x—p),
a,f € R, and either @ € R* or 8 € R*. Furthermore, there are ¢ € Q" and 7 € Q such
that just one of the following four cases takes place:

(D) a=+g+t>0,=~+g+1>0;
Q) a=g+t>0,=-g+1<0;
B) a==g+1t>0,=+g+1>0;
4) a==g+1<0,B=+g+1>0.

Lemma 5.8 Let a € C be algebraic of degree 2. Then the minimal polynomial
ming(a@) has a positive real root if and only if there exist ¢ € Q* and t € Q such that

VG > —1, \Jg & Qand either @ =t + \Jgora =1—- /q.
Proof. Easy (see 5.7). O

11

6. Auxiliary results (d)

In this section, let ¢ € Q* be such that /g ¢ Q (/g € R"). Furthermore, lett € Q,
g1 = Nqg+1t,q2=—+g+1,A=Q"[q] (= {f(q)] f € Q"[x]}) and B = Q"[q].

Lemma 6.1 Both A and B are subsemirings of the field R.

Proof. Easy to see. O

Proposition 6.2 The following conditions are equivalent:
(i) g > -t
(i) 0 ¢ A.
(iii) 0 ¢ B.
Proof. Put f = ming(q) (= x*~2tx+1*—g). Then 0 € Aiff f divides a polynomial
g € Q*[x] and the rest follows from 5.4 and 5.8. u]

Lemma 6.3 (i) Q"[q] = {a+b+fgla,b € Qj,a+b # 0} is a subsemiring of R".
(i) Q*[q]" = {a,a~/ql a € Q"} (the group of invertible elements of the semiring
Q[ vaD.

Proof. (1) Easy to see.
(i) Let a + bJg € Q*[/q]", a,b € Q*, a+ b # 0. Of course, (a + b+jg)™" =

=ajc+(=b/c)\Jq,c = a’ - b*q. Consequently, if a/c # 0 then ¢ > 0 and b = 0, and
if =b/c # 0 then ¢ <0 and a = 0. The rest is clear. o

Lemma 6.4 The mapping f(q1) — f(q2), f € Q*[x], is an isomorphism of the
semiring A onto the semiring B.
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Proof. If fi(q1) = f2(q1), then ming(g,) divides the difference f; — f>. But then
(fi = f2)(q2) = 0, and hence f1(q2) = f2(g2). The rest is clear. O

Lemma 6.5 Assume thatt > 0. Then:
(i) AcQ'[vql.
(i) Ift =0, then A = Q*[/q].
(iii) Ift # 0, then A # Q"[ /gl and A* = Q™.

Proof. We have g; € Q[ 4/g] and the rest follows from 6.3. O
Lemma 6.6 Ift >0, then 1 +1t+ \Jge A\A" and 1 +t— \Jg€ B\ B".
Proof. Use 6.5 and 6.4. O

Corollary 6.7 Ift > 0, then O ¢ A, O ¢ B, but neither A nor B is a parasemifield.

Lemma 6.8 (1) Q[ \/q] is a subfield of R.
(i) Q[ vg1" is a subparasemifield of R*.
(i) If /g > =1, then A € Q[q;]* € Q[ /q]".

Proof. Easy to see. O
Lemma 6.9 Ift <0, then /g + Q(‘; C A.
Proof. Wehave \Jg+a=(yJg+t)+(a-1)=q +a-teAforeveryaeQj. O

Lemma 6.10 Let a,b € Q be such thata + b € Q" and —\[g + a,—\Jq + b € A.
Then —+fq + (q + ab)/(a + b) € A. Moreover, if \J[q < a and \[q < b, then g <
<(g+ab)/(a+b)<a,b.

Proof. We have —+/g + (q + ab)/(a + b) = (—=+\Jqg + a)(—+Jq + b)/(a + b) € A.
Moreover, if \/g <aand /g < b,then ab+q—a+fg—b+Jqg = (a— \Jq)(b—- /q) >0,
and so /g < (g+ab)/(a+Db). Finally, g < a’, g+ab < a*+ab and (qg+ab)/(a+b) < a.
Similarly, (¢ + ab)/(a + b) < b. O

Lemma 6.11 Ift <0, then — /g + a € A for every a € Q* such that \[q < a.

Proof. Putt, = (g+1*)/(=21). We have 1; € Q* and — \/g+1; = ¢}/(-21) € A. Since
g+1*+21+g = q; > 0, we have /g < ;. Now, by induction, put ,,1 = (2 +¢)/2t, €
€ Q". According t0 6.10, 1} > 1, > 13> -+ > /g, and — /g + 1, € A. If 1y = lim1,,
then 7y = (té +q)/2ty, and hence 19 = +/g. Finally, if \/g < a, a € Q", then 1, < a for
some m € Nand we havea~1t,, € Q" and —\fg+a = (—=+g+t,)+(a—t,) €A. O

Lemma 6.12 Leta,b € Q be such thata+b € Q" and \Jg—a,—~Jg+b € A. Then
Va4 - (g+ab)/(a+b) € A. Moreover, if 0 < a < /g <b, thena < (q+ab)/(a+b) <
< g <b.

Proof. We have /g — (q + ab)/(a + b) = (3Jg — a)(—+/q + b)/(a + b) € A.
If0 <a< Jg<b,thena’> < g, a*> +ab < g+ aband a < (q + ab)/(a + b).
Moreover, (/g — a)(b — /q) > 0 and it follows that g + ab < a~/g + b+/g. a
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Lemma 6.13 Ift < 0 and \Jq > —t, then g — a € A for every a € Q" such that
Vg > a.

Proof. Put s; = (q —t1))/(t) — 1), where 1, = (q +1*)/(=21), /g < t; (see the proof
of 6.11). Since 0 < —t < Jg <ty and /g~ (-1),—+/g+1, € A, we have, by 6.12, that
Vg = s1 € Aand -t < 51 < \/g. Now, by induction, put s, = (g + $,11)/(s, + 11).
According to 6.12, s < 55 < 53 < --- < yfgand \Jg— 5, € A. If 50 = lims,,
then so = (g + sot1)/(so + 1), and hence 5o = +/g. Finally, if @ € Q7 is such that
Vg > a, then a < s, for some m € N and we have 5, —a € Q" and \Jg —a =
= (g = sp) + (s, —a) € A. O

Lemma 6.14 Let 0 < —t < +/q. Then:

(i) a+ +fq € A forevery a € Q.
(i) b — /g € A for every b € Q" with \Jg < b.
(iii) —c + /g € A for every c € Q" with g > c.
Proof. Combine 6.9, 6.11 and 6.13. o

Lemma 6.15 If0 < —t < /g, then A = Q[q;]" = Q[/g]".

Proof. Due to 6.8(iii), it is enough to show that Q[ 1/g]* € A. Hence, leta,b € Q
be such thata + b+/g > 0. If b = 0, then a € Q" C A, so that we assume b # 0 and
we put ¢ = a/lbl. If b > 0, then ¢ + /g > 0 and ¢ + /g € A by 6.14(i),(iii); then
a+bJqge A too. If b <0,thenc— g >0,ce Q" and c — /g € A by 6.14(ii);
thena + b+fg € A, too. a

Proposition 6.16 (i) If \/g < —t, then A = Q[ +/q] and A* = Q[ 1/g] \ {O}.
(i) Ift =0, then A = Q[ gl & Q[ gl and A* = {a,a~/q] a € Q*}.

(iii) Ift > 0, then A G Q*[ \/g] and A* = Q™.

(V) IfO < =t < fq, then A = A" = Q[q]" = Q[ q]".

Proof. (i)Put C = ANQ. ThenQ* C Cand g-1* = (Vg+0(\g=1) = qi(q1=21) €
€ CNQ". Now, C is a subsemiring of Q containing all positive rational numbers and
at least one negative rational number. Then C = Q, Q € A, /g € A and, finally,
A = QI vql.

(ii) Clearly, if 0 < r < /g, r € Q", then g —r € Q[ /g]" and /g —r ¢ Q*[/g].
The rest follows from 6.3(i1).

(iii) See 6.5(iii).

(iv) See 6.15. m]

Proposition 6.17 (i) If \/g < —t, then B = Q[ +fq] and B* = Q[ +/g] \ {0}.

(ii) Ift = O, then B = Q*[~+/q] and B* = {a,—a+[q| a € Q"}.

(iii) If t > 0, then B G {a - b+Jql a,b € Qg,a+b # 0} and B* = Q™.

(iv) If0 < =t < \fq, then B= B" ={a—b+/gla,b € Q,a> -b+[g}.

Proof. The map ¢ : Qlq1] — Qlq:], ¢(f(g1)) = f(q2), f € Q[x], is an isomor-
phism of fields. Leta, b € Q. We have p(a+b +fq) = ¢((a=bt)+bq,) = (a=bt)+bg, =

=a-b+fg.
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(i) Let /g < —. Then, by 6.14, A = Q[ yg]. Hence B = ¢(A) = ¢(Q[ v4))

= Q[ vql.
(1) Use 6.4 and 6.16.

(111),(iv) Similar to (1). o

Corollary 6.18 (cf. 6.2) The following conditions are equivalent:
(i) vg>-t>0.

(ii) A is a parasemifield.

(iii) B is a parasemifield.

Proof. Use 6.17. a

Corollary 6.19 The following conditions are equivalent:
(i) Vg < -t

(i1) A (B, resp.) is a field.

(111) A (B, resp.) is a semifield.

(iv) 0 € A (0 € B, resp.).

7. The subsemirings Qf[a],aeC

Proposition 7.1 Let a € C be algebraic of degree 2. The following conditions are

equivalent:
(i) 0¢ Q[
(i) ap + aya + - + a,@" # 0 whenever n € Ny, a; € Qg and 3’ a; # 0.
(iii) There exist ¢ € QF and t € Q such that \J[g ¢ Q, \fg > —t and either
@ =1+ Jgora=1-/q.

Proof. Clearly, (1) is equivalent to (ii).

(i1) implies (iii). Put f = ming(«), deg(f) = 2. It follows from (ii) and 5.4 that f
has a positive real root and it remains to apply 5.8.

(1i1) implies (1). See 6.2. O

Proposition 7.2 Let a € C be algebraic of degree 2. Then Q*[a] is a parasemifield
if and only if there exist g € Q" and t € Q™ such that \Jq ¢ Q, \Jg > —t and either
a =1+ \Jqgora=1-— g Moreover, if @ =t + \[g, then Q*[a] = Q[ /g]" and, if
@ =1t— /g, then Q" [a] = {a—b+/gla,b e Q,a>-bA[g}.

Proof. Combine 7.1, 6.16(i1),(ii1),(iv) and 6.17(i1),(ii1),(iv). 0

Lemma 7.3 Let a € C be an algebraic number such that Q*[a] N Q™ # 0. Then
Q"] = Qla] (a subfield of C).

Proof. Put A = Q*[a]NQ. Then A is a subsemiring of Q, Q* CAand ANQ™ # 0.
Consequently, A = Q and Q*[«a] = Q[«]. O

Proposition 7.4 Let @ € C be an algebraic number. The following conditions are
equivalent:
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(i) 0¢Q'[a]
(1) ap+ aja + -+ a,a" # 0 whenever n € Ny, a; € Qg and 3, a; # 0.
(iii) The minimal polynomial ming(a) has a positive real root.

Proof. See 5.5. o

Proposition 7.5 Let a € C, a # 0, be an algebraic number. The following condi-
tions are equivalent:
(1) Q*[a] = Qla] (a subfield of C).
(i) 0 € Q*[a].

(iii) The minimal polynomial ming(a@) has no positive real roots.

Proof. First, (ii) is equivalent to (iii) by 7.4 and (i) implies (ii) trivially. It remains
to show that (ii) implies (i). If 0 € Q*[a], then there are n € N and ay, ...,a, € Q;
such that 0 = ap+aja+---+a,a" and a, # 0. Assume that n is the smallest possible.
Thenap > 0and —ap = aja+ -+ a,@" € Q*[a] N Q™. By 7.3, Q*[e] = Q[a]. O

Proposition 7.6 Let « € C be an algebraic number such that " = 1 for some
peQflal, B#1,andm > 2. Then Q*[a] = Qla].

Proof. We have By =y, where y = | + 8+ -+ "' € Q*[a]. Since g # 1, it
follows that y = 0, and hence 0 € Q*[«]. It remains to use 7.5. o

Remark 7.7 (i) If @ € Cis transcendental, then A = Q*[a] = Q*[x]. In particular,
0 ¢ Aand AA™! = {ab™'| a,b € A} is a subparasemifield of C. Clearly, AA™! is a free
parasemifield freely generated by {a}.

(ii) If @ € C is algebraic number satisfying the equivalent conditions of 7.4, then
0 ¢ Aand AA™! = {ab™!| a,b € A} is a subparasemifield of C.

Proposition 7.8 Let « € C and A = Q*[a]. The following conditions are equiva-
lent:
(1) A is contained in a subparasemifield of C.
(ii) 0 ¢ A.
(i) Either « is transcendental or « is algebraic and the minimal polynomial
ming(«) has a positive real root.

Proof. Combine 7.4 and 7.7. O

8. Free parasemifields

Let X be a set and P(X) = {f/gl f.g € No[X], f # O # g}. Then P(X) is a free
parasemifield over X. (Notice that P(9) = Q*.)

In the remaining part of this section, assume that X = {x} is a one-element set and
put P = P(x). That is, P is a free parasemifield of rank 1.

For every f € Ny[x], f # 0, there exist uniquely determined v(f) € Ny and
fi € No[x] such that f = x*V) . f; and x doesn’t divide f;. If f, g € Ny[x] \ {0}, then
v(fg) = v(f)+v(g). Consequently, for f/g € P, we can put v(f/g) = v(f)—v(g) € Z.
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Lemma 8.1 v(FG) = v(F)+Vv(G) and v(F +G) = min(v(F), v(G)) forall F,G € P.

Proof. Let F = X"fi/g, and G = X" f,/g>, where x doesn’t divide f;, g; fori = 1,2.
We can consider n > m. Then x" f1 /g1 + X" f2/g2 = X" (X" fig2 + f81)/81&2- Since
x doesn’t divide X" f1g2 + f>g1, we have v(F + G) = m = min(v(F), v(G)). The rest
1s obvious. a

Remark 8.2 Define a relation & on P by (F,G) € & iff v(F) = v(G). It follows
easily from 8.1 that ¢ is a congruence of the parasemifield P. Since (1,2) € &, the
factor P/& is an additively idempotent parasemifield. In fact, ¢ : P — Z(®,+),
@(F/&) = v(F) is an isomorphism of parasemifields where m @ n = min(n, m).

Remark 8.3 Let @ € A (see 5.5). The mapping k, : P — C, f/g — f(@)/g(@),
is a homomorphism and «,(P) is a subparasemifield of C (see 7.7). The equivalence
ker(x,) is a congruence of P.

Remark 8.4 Consider the parasemifield Q* X Z(&®, +) (see 8.2). Then (1, 0), is unit
element and we have (1,1) + (1,0) = (2,0) = (1,0) + (1,0) (cf. [2,4.13])

Remark 8.5 Put 7 = & N ker(k,), where @ = 1 € Q* (see 8.2 and 8.3). Then 7 is
a congruence of the parasemifield P. It is easy to see that ¢ : P/t — QF X Z(&, +),
Y(F/t) = (F(1),v(F)) is an isomorphism of parasemifields (see 8.4).

Remark 8.6 Define an operation 8 on Q* X Z by (r,m) 8 (s,n) = (r,m) if m < n,
(r,m)y@(s,n) = (r+ s,m)if m = nand (r,m) 8 (s,n) = (s,n) if n < m. One checks
easily that P = (Q* x Z)(&, *) is parasemifield, where (r,m) * (s,n) = (rs,m + n)
(cf. 8.4). Notice that (r,m) 8 (r,m) = (2r,m) # (r,m) and pp = P X P (see [2, 1.10])
(cf. [2, 1.1231))).

Remark 8.7 Define a relation y on P by (F,G) € x iff v(F) = v(G) (i.e., (F,G) €
€ &) and (x Y F)0) = (x M 9G)(0). It follows easily from 8.1 that y is a congruence
of P. Moreover, 7 : P/y — (QF x Z)(®, %), n(F/yx) = (x™PF)(0), v(F)) is an
isomorphism of parasemifields (see 8.6).

9. Free additively idempotent parasemifields

Define operations @ and © on {0, 1} (€ N) by u®v = max{u, v} and u©v = min{u, v}
for u,v € {0, 1}. It is easy to see that S = ({0, 1},®,0) is an additively idempotent
semiring. Let X be a set and S[X] a semiring of non-zero polynomials over S and X.

For (a, b), (c,d) € S[X]x S[X] put (a, b) + (¢, d) = (ad + bc, bd) and (a, b) - (¢,d) =
= (ac, bd). Define relation = on S[X] x S[X] as follows: (a,b) = (c,d) iff there is
e € S[X] such that ade = bce.

Remark 9.1 S[X] is a free unitary additively idempotent semiring with basis X.
Further, it is easy to verify that S[X] x S[X] is a semiring and = a congruence on
S[X] x S[X].
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Put G(X) = S[X] x S[X]/ = and denote a/b the congruence class of = containg
(a,b) € S[X] x S[X].

Remark 9.2 Obviously, G(X) is an additively idempotent parasemifield.

Lemma 9.3 G(X) is a free additively idempotent parasemifield with basis X =
= {x/1lx € X}.

Proof. Clearly, x/1 # x’/1 for x,x" € X, x # x" and G(X) is generated by X.

Let P be an additively idempotent parasemifield and ¢ : X — P a map. By 9.1,
there is a homomorphism ¢ : S[X] — P such that ¢(x) = ¢(x/1) for every x € X.

Let be now a/b = c¢/d € G(X). Then there is e € S[X] such that ade = bce, hence
pla)p(d)p(e) = @(b)p(c)p(e) and g(a)e(d) = @(b)p(c), since P is a parasemifield.
Now, @ : G(X) — P, ®(a/b) = @(a)p(b)™" for a/b € G(X) is a (well defined)
homomorphism such that ®(x/1) = ¢(x/1) for every x/1 € X. a

Remark 9.4 S[X] is not multiplicatively cancellative; e.g., (1 + x)(1 + x*) =

=1l4+x+2+ =1+ 01 +x+x%), thus (1 + x2)/1 = (1 + x + x2)/1 in G(X), but
1 +x2# 1 +x+x*inS[X].
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