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Abstract. Let K be a field, A = K[X1, . . . , Xn] and M the set of monomials of A. It is
well known that the set of monomial ideals of A is in a bijective correspondence with the
set of all subsemiflows of the M-semiflow M. We generalize this to the case of term ideals
of A = R[X1, . . . , Xn], where R is a commutative Noetherian ring. A term ideal of A is an
ideal of A generated by a family of terms cX

µ1

1
. . . X

µn

n , where c ∈ R and µ1, . . . , µn are
integers > 0.
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1. Notation and preliminaries

In our notation N = {0, 1, 2, . . .}. Inclusion is denoted by ⊂ and strict inclusion

by (.

We always assume that R is a commutative Noetherian ring and A = R[X1, . . . ,

Xn] the ring of polynomials in n > 1 variables X = (X1, . . . , Xn) over R. All the

notions or facts from Commutative Algebra that we use but not define or state in

this paper can be found in [1]. An ideal generated by a subset S of R is denoted by

〈S〉. All terminology with respect to the semiflows will be given in the paper. (The

reader can also consult [2].)

The elements of Nn (n > 1) will be denoted by µ, ν, σ, etc. We will assume that on

Nn we have the partial order6. It is defined by (x1, . . . , xn) 6 (y1, . . . , yn) if for every

i = 1, 2, . . . , n, xi 6 yi in the standard total order on N. For µ(1), . . . , µ(m) ∈ Nn

we denote by sup(µ(1), . . . , µ(m)) the smallest element of Nn which is > than any of

the elements µ(i), i = 1, 2, . . . , n.

Two elements of a partially ordered set, that are in relation, are said to be com-

parable, otherwise they are incomparable.
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Let µ = (µ1, . . . , µn) ∈ Nn. We denote Xµ = Xµ1

1 Xµ2

2 . . .Xµn

n the monomials in

the variables X1, . . . , Xn over K (a field) or R. With the standard multiplication

the monomials form a unital semigroup. (In the literature the unital semigroups are

more often called monoids.) The identity element is the monomial X0 = 1, where

0 = (0, . . . , 0) ∈ Nn.

The following proposition (called Dickson’s lemma) is well-known:

Proposition 1.1 ([1, page 71]). Let K be a field and let I = 〈Xν |ν ∈ N ⊂ Nn〉 ⊂

K[X1, . . . , Xn] be a monomial ideal. Then I is generated by finitely many monomials

Xν(1), . . . , Xν(s), where ν(1), . . . , ν(s) ∈ N .

The next proposition is an equivalent form of Dickson’s lemma.

Proposition 1.2 ([1, page 74]). Given a subset N ⊂ Nn, there are finitely

many elements ν(1), . . . , ν(s) ∈ N such that for every ν ∈ N there exists some

i ∈ {1, 2, . . . , s} such that ν > ν(i).

A semiflow (or an S-semiflow) is a triple (X,S, π), where X is a set, S is a unital

semigroup and π is a unital semigroup action of S on X . This means that for all

s1, s2 ∈ S, x ∈ X we have

π(s1, π(s2, x)) = π(s1s2, x),

π(e, x) = x.

Here e is the unital element of S. The element π(s, x) is usually denoted by s.x or

sx. If x ∈ X , the set Sx = {s.x : s ∈ S} is called the orbit of x. A subset Y ⊂ X is

invariant if for every s ∈ S and y ∈ Y , s.y ∈ Y . If Y is invariant, then (Y, S, π|S×Y )

is called a subsemiflow of (X,S, π).

The set M of monomials of K[X1, . . . , Xn] is partially ordered by the relation

Xµ 6 Xν if Xµ|Xν (which, in turn, means that Xµ.Xσ = Xν for some σ ∈ Nn,

or, equivalently, µ 6 ν). The set M can be considered as an M-semiflow under the

action defined by Xµ.Xν = Xµ+ν . Let M be a subsemiflow of the M-semiflow M.

A subset N of M generates M if M is the union of orbits of elements of N . In other

words, for every element Xµ of M there is an element Xν of N such that Xµ > Xν .

We write M = 〈N〉.

Proposition 1.2 can now be reformulated (and made more precise) in the following

way:
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Proposition 1.3. Every subsemiflow M of the M-semiflow M is generated by

a unique finite minimal (for inclusion) set of generators. This minimal set can be

obtained by taking the minimal elements of any set of generators for M .

The relation between the monomial ideals of K[X1, . . . , Xn] and the subsemiflows

of the M-semiflow M is further emphasized by the following

Proposition 1.4. There is a bijective correspondence between the set of mono-

mial ideals of K[X1, . . . , Xn] and the set of subsemiflows of the M-semiflow M.

This follows either as a corollary of our Theorem 1, or as a consequence of the

next

Proposition 1.5 ([1, page 74]). Every monomial ideal of K[X1, . . . , Xn] has a

unique finite minimal (for inclusion) generating set.

Our goal is to find an analogue of Proposition 1.4 when, more generally, we replace

K[X1, . . . , Xn] by A = R[X1, . . . , Xn], where R is a commutative Noetherian ring,

and monomials by terms. A term in A is any expression cµX
µ, where cµ ∈ R. It turns

out that we have to replace monomials as objects on which semiflows are considered

by some more general objects. We obtain a bijective correspondence between the

finitely generated term ideals of A and certain semiflows on those new objects. A

possible use of that correspondence could be in exploiting the dynamical properties

of semiflows in order to obtain some useful algebraic properties of term ideals of A.

That will be the topic of our next article.

A reader interested in Constructive Mathematics can find the article [3] very inter-

esting. It discusses some of the above ideas (for monomials of K[X1, . . . , Xn]) in the

context of Constructive Mathematics. Sections 1.1 and 1.2 are especially interesting

in relation to this paper.

2. The set of “terms” and the function σ

Let I(R) be the set of the ideals of R, partially ordered by the relation I 6 J if

I ⊃ J . Consider the set

Mn(R) = {IXµ : I ∈ I(R), µ ∈ Nn}.

We call its elements “terms” over I(R). The quotation marks are used to make a

distinction between the terms from A and the “terms” from Mn(R), even though it
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is always clear from the context which terms are used. We define multiplication on

Mn(R) by

(1) IXµ . JXν = (I ∩ J)Xµ+ν .

This multiplication is associative and has an identity element, namely the element

R . 1 = RX0. So Mn(R) is a commutative unital semigroup. We say that IXµ|JXν

if there is KXσ such that IXµ . KXσ = JXν. We define a partial order on Mn(R)

in the following way: IXµ 6 JXν if I 6 J and Xµ 6 Xν .

Lemma 2.1. IXµ 6 JXν if and only if IXµ|JXν .

P r o o f. Easy, left to the reader. �

We consider Mn(R) also as an Mn(R)-semiflow with the action defined by (1).

LetMn(R) denote the set of all subsemiflows of Mn(R).

For every nonempty finite subset T = {t1, . . . , ts} of Mn(R), where n > 1 and

ti = IiX
µ(i) for i = 1, 2, . . . , s, we define σ(T ) as

σ(T ) = (I1 + . . .+ Is)X
sup(µ(1),...,µ(s)).

Thus σ is a function from the set of nonempty finite subsets of Mn(R) to Mn(R).

Lemma 2.2. Let T ′, T ′′ be two finite subsets ofMn(R). Then σ(σ(T ′), σ(T ′′)) =

σ(T ′ ∪ T ′′).

P r o o f. Let T ′ = {t′1, . . . , t
′

r} and T
′′ = {t′′1 , . . . , t

′′

s}, where t
′

i = IiX
µ(i),

i = 1, 2, . . . , r and t′′j = JjX
ν(j), j = 1, 2, . . . , s. Then

σ(σ(T ′), σ(T ′′)) = σ(I1 + . . .+ IrX
sup(µ(1),...,µ(r)), J1 + . . .+ JsX

sup(ν(1),...,ν(s)))

= (I1 + . . .+ Ir + J1 + . . .+ Js)X
sup(sup(...), sup(...))

= (I1 + . . .+ Ir + J1 + . . .+ Js)X
sup(µ(1),...,µ(r),ν(1),...,ν(s))

= σ(T ′ ∪ T ′′).

�

Lemma 2.3. Let T ′, T ′′ be two finite subsets of Mn(R). Let s = σ(T ′) and

t′ = σ(T ′′) for some t′ ∈ T ′. Then s = σ((T ′ \ {t′}) ∪ T ′′).

P r o o f. Let T ′ = {t′1, . . . , t
′

r} and T
′′ = {t′′1 , . . . , t

′′

s}, where t
′

i = IiX
µ(i),

i = 1, 2, . . . , r and t′′j = JjX
ν(j), j = 1, 2, . . . , s. We may assume that t′ = t′r. Denote

s = I0X
µ(0). Then Ir = J1 + . . .+Js and I0 = I1 + . . .+ Ir−1 + Ir = I1 + . . .+ Ir−1 +

J1 + . . .+ Js. Also X
µ(r) = Xsup(ν(1),...,ν(s)) and Xµ(0) = Xsup(µ(1),...,µ(r−1),µ(r)) =

Xsup(µ(1),...,µ(r−1),sup(ν(1),...,ν(s))) = Xsup(µ(1),...,µ(r−1),ν(1),...,ν(s)). �
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Lemma 2.4. Let t1, . . . , tk and s1, . . . , sk be elements ofMn(R) such that si > ti

for i = 1, 2, . . . , k. Then σ(t1, . . . , tk) > σ(s1, . . . , sk).

P r o o f. Let ti = IiX
µ(i), si = JiX

ν(i), i = 1, 2, . . . , k. Then Ji ⊂ Ii and µ(i) 6

ν(i) for i = 1, 2, . . . , k. Hence J1 + . . .+ Jk ⊂ I1 + . . .+ Ik and sup(µ(1), . . . , µ(k)) 6

sup(ν(1), . . . , ν(k)). Hence σ(t1, . . . , tk) > σ(s1, . . . , sk). �

Definition 2.5. If T is a nonempty subset of Mn(R), the smallest subsemiflow

of the Mn(R)-semiflow Mn(R), containing T , is said to be generated by T and is

denoted by 〈T 〉.

Definition 2.6. A nonempty subset T of Mn(R) is said to be acceptable if it is

finite and for any nonempty subset T ′ ⊂ T there is a t ∈ T such that σ(T ′) > t. A

subsemiflow M of Mn(R) is said to be acceptable if it is generated by an acceptable

subset of Mn(R). The set of all acceptable subsemiflows of Mn(R) is denoted by

M′

n(R).

E x am p l e 2.7. Here is an example of an acceptable set:

T = {t1 = 30ZX2Y, t2 = 5ZX2Y 2, t3 = 20ZXY 2} ⊂M2(Z).

Here σ(t1, t2) = σ(t2, t3) = t2, σ(t1, t3) = 10ZX2Y 2 > t2, σ(t1, t2, t3) = σ(σ(t1, t2),

σ(t2, t3)) = σ(t2) = t2.

E x am p l e 2.8. Here is an example of a nonacceptable subset T of Mn(R) : T =

{t1 = I1X
µ(1), t2 = I2X

µ(2)}, where I1 and I2 are incomparable and µ(1), µ(2) are

incomparable. Then σ(t1, t2) is incomparable with t1 and t2 and so T is nonaccept-

able. The set {t1, t2, t3 = σ(t1, t2)} is then an acceptable set (see the next remark).

R em a r k 2.9. Let T be any finite subset of Mn(R) and let T̂ be the set of all

σ(T ′), where T ′ is a nonempty subset of T . Then the set T̂ is acceptable.

Indeed, each element of T̂ is of the form σ(T ′) for some nonempty subset of T . This

includes the elements t ∈ T as σ({t}) = t. Now for any elements σ(T ′

1), σ(T ′

2), . . . ,

σ(T ′

l ) of T̂ we have (by Lemma 2.2) σ(σ(T ′

1), σ(T ′

2), . . . , σ(T ′

l )) = σ(T ′

1∪T
′

2∪. . .∪T
′

l ) ∈

T̂ as T ′

1 ∪ T
′

2 ∪ . . . ∪ T
′

l is also a subset of T .

Lemma 2.10. Let M be a subsemiflow of Mn(R) which is generated by an

acceptable subset of Mn(R). Then every finite generating set of M is acceptable.

P r o o f. Let T = {t1, . . . , tp} be an acceptable set which generates M and

let S = {s1, . . . , sq} be another finite generating set. Let S
′ = {sj1 , . . . , sjk

} be a

nonempty subset of S. Then sj1 > ti1 , . . . , sjk
> tik

for some elements ti1 , . . . , tik

of T . Hence σ(sj1 , . . . , sjk
) > σ(ti1 , . . . , tik

) > tl > sm. The first inequality holds by

Lemma 2.4, the second one since T is acceptable, the third one since S is a generating

set. Thus S is acceptable. �
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Lemma 2.11. If a subsemiflow M of Mn(R) has a finite generating set, then

every generating set of M contains a finite generating set.

P r o o f. Suppose to the contrary. Let S be an infinite generating set ofM which

does not contain a finite generating set. Since M is the union of finitely many orbits

(of the elements of T ), at least one of the orbits contains an infinite generating set

of that orbit, a subset of S, which does not contain a finite generating set of that

orbit. So it is enough to assume that T consists of a single element, say T = {t}.

Now t must be in the orbit of some element s ∈ S. Hence t > s (if t = s we have a

contradiction). But now s is not in the orbit of t, a contradiction. �

Lemma 2.12. Let M be a finitely generated subsemiflow of Mn(R). Then:

(i) M has a unique minimal (for inclusion) finite generating set.

(ii) Every generating set of M contains the unique (finite) minimal generating set.

P r o o f. (i) Let T be a finite generating set forM with the partial order induced

from Mn(R). Let T ′ be the set of minimal elements of T . Then T ′ still generates M

and is a minimal set with that property.

Let now T = {t1, . . . , tp} and S = {s1, . . . , sq} be two minimal finite generating

sets of M . Then for every i ∈ {1, 2, . . . , p} there are a j ∈ {1, 2, . . . , q} and a

k ∈ {1, 2, . . . , p} such that ti > sj > tk. Since T is minimal, we get ti = sj = tk.

Hence T ⊂ S. By symmetry S ⊂ T . Thus S = T .

(ii) Let S be a generating set ofM . By Lemma 2.11, S contains a finite generating

set T . The set of minimal elements of T is the unique (by (i)) minimal generating

set of M . �

In the next example we give a subsemiflow of Mn(R) which does not have a finite

generating set.

E x am p l e 2.13. Let R = Z and n = 1. Denote the only variable by X . Then

consider the subsemiflow M of M1(Z) generated by the set {2ZX, 3ZX, 5ZX, . . .}.

Any two elements of this set are incomparable. M is the union of orbits of these

elements. The orbits start at their minimal elements, which are 2ZX , 3ZX , 5ZX . . ..

Hence M does not have a finite generating set.

Definition 2.14. Let

G = {c1,1X
µ(1), . . . , c1,k1

Xµ(1), . . . , cs,1X
µ(s), . . . , cs,ks

Xµ(s)}

be a (finite) generating set of a term ideal I of A. Then we say that the set

T = {I1X
µ(1), . . . , IsX

µ(s)},
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where, for i = 1, 2, . . . , s,

Ii = 〈ci,1, ci,2, . . . , ci,ki
〉,

of “terms” from Mn(R) is associated to G.

Lemma 2.15. Let I be a finitely generated term ideal of A. There is a finite

generating set G of I such that the set T of “terms” associated to G satisfies the

following conditions:

(a) all “terms” in T have distinct monomials;

(b) if two “terms” ti = IiX
µ(i) and tj = IjX

µ(j) of T satisfy Xµ(i) < Xµ(j), then

Ij < Ii.

(c) for t ∈ T and T ′ ⊂ T a nonempty subset not containing t, it is never true that

t > σ(T ′).

P r o o f. We will start with an arbitrary finite generating set G of I and the

set T of “terms” associated to G. We will then modify G in a finitely many steps

and to each new (modified) G we will associate (a new, modified) T . We end up

with a finite generating set G whose associated set T satisfies the conditions (a), (b)

and (c).

So let G be a finite generating set of I and let T be the set of “terms” associated

to G. The condition (a) is satisfied by T because we form each “term” by forming

the ideal generated by the coefficients by the same monomial and then use that ideal

as the coefficient by that monomial.

Let us explain how we can adjust the generating set G so that the set T associated

to it satisfies (b). Among the monomials Xµ(i) for which there is a monomial Xµ(j)

with Xµ(i) < Xµ(j) select a minimal one, say ti = IiX
µ(i). Let tj = IjX

µ(j) be such

that Xµ(i) < Xµ(j). If ti < tj , then we delete from G all the terms corresponding to

tj and replace T by T \ {tj}. The new set G still generates I. If Ij < Ii, we do not

change anything and we are done with the pair ti < tj . If Ii and Ij are incomparable,

we delete from G the terms with Xµ(j) and replace them by the new terms, also with

Xµ(j), but now with the coefficients generating Ii + Ij . We also replace the “term”

tj from T by the “term” (Ii + Ij)X
µ(j). Then G still generates I and we are done

with the pair ti < tj . Next we consider a new pair ti < tj , with a minimal X
µ(i) and

do the same change for it, and so on. After finitely many steps we finish adjustment

of G and T and the condition (b) holds.

Let us now explain how we can adjust the generating set G so that the set T

associated to it satisfies (c). We do that by induction. Suppose that tj1 > σ(S1,1)

for two disjoint subsets {tj1} and S1,1 of T . Then we delete all the terms from G

that correspond to tj1 . The new generating set G1 still generates the same ideal I

and corresponding to it is the new set T1 = T \ {tj1}.
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Suppose now that we have a generating set Gk, which generates the same ideal I.

Corresponding to it is the set Tk = T \ {tj1 , . . . , tjk
}. Each of tji

is > σ(Sk,i) for

some subset Sk,i of Gk (i = 1, 2, . . . , k). If now we have some tjk+1
> σ(Sk+1,k+1),

then we delete all the terms from Gk that correspond to tjk+1
. We get the new set

of generating terms, Gk+1, and corresponding to it a new set of “terms”, Tk+1 =

Tk \ {tjk+1
}. The set Gk+1 still generates I. Indeed, if, for i = 1, 2, . . . , k, tjk+1

∈

Sk,i, then we put Sk+1,i = (Sk,i \ {tjk+1
}) ∪ Sk+1,k+1 and if tjk+1

/∈ Sk,i, we keep

Sk+1,i = Sk,i. Then we have tji
> σ(Sk+1,i), i = 1, 2, . . . , k.

This inductive procedure stops after finitely many steps since we cannot delete all

the generators of I. The resulting set T will still satisfy the conditions (a) and (b)

since they are not affected by the changes needed for (c). Thus we end up with a

set G, generating I, such that all three conditions (a), (b) and (c) hold for the set T

associated to it. �

Lemma 2.16. Let M ∈ M′

n(R). Then the unique minimal finite generating set

of M is acceptable.

P r o o f. Let T = {t1, . . . , tp} be a finite acceptable generating set. Let T
′ ⊂ T be

the unique finite minimal generating set ofM . We can assume that T ′ = {t1, . . . , tq},

where q 6 p. Consider σ(ti1 , . . . , tim
), where {i1, . . . , im} ⊂ {t1, . . . , tq}. If we

consider {i1, . . . , im} as a subset of T , then there is a k ∈ {1, 2, . . . , p} such that

σ(ti1 , . . . , tim
) > tk. But there is also an element tj ∈ T ′ such that tk > tj . Hence

σ(ti1 , . . . , tim
) > tj . Hence T

′ is acceptable. �

Lemma 2.17. Let M ∈ M′

n(R) and let T = {t1, . . . , ts} be the unique finite

minimal generating set of M . (It is acceptable by Lemma 2.16.) Then T satisfies

the following conditions:

(a′) all monomials appearing in T are distinct;

(b′) if two monomials appearing in T satisfy Xµ(i) < Xµ(j), then their “coefficients”

satisfy Ij < Ii;

(c′) for tj ∈ T and T ′ ⊂ T a nonempty subset not containing tj , it is never true that

tj > σ(T ′).

P r o o f. The condition (a′): Suppose ti = IiX
µ, tj = IjX

µ, i 6= j. Then Ii and

Ij are incomparable. We have σ(ti, tj) = (Ii + Ij)X
µ, which is < IiX

µ and < IjX
µ.

Since T is acceptable (by Lemma 2.10) there is a tk such that tk 6 (Ii + Ij)X
µ < ti.

So tk < ti, contradicting the minimality of T .

The condition (b′): Suppose that ti and tj satisfy X
µ(i) < Xµ(j). Then σ(ti, tj) =

(Ii + Ij)X
µ(j). Since ti and tj are incomparable, we must have either Ii > Ij or Ii, Ij

incomparable. If they are incomparable, Ii + Ij < Ij , hence σ(ti, tj) < tj , hence,
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since T is acceptable, tk 6 σ(ti, tj) < tj for some k, hence tj > tk, contradicting the

minimality of T . Thus Ii > Ij .

The condition (c′): If (c′) is not satisfied, we would have (since T is acceptable)

tj > σ(T ′) > tk for some k, hence tj > tk, contradicting the minimality of T . �

3. Order preserving bijections between M′

n(R) and T ′

n(R)

Recall thatM′

n(R) denotes the set of all acceptable subsemiflows of Mn(R). Let

T ′

n(R) denote the set of all term ideals of A which are generated by finitely many

terms. On both of these sets we assume partial order by inclusion.

Theorem 3.1. There are two bijections ϕ : M′

n(R) → T ′

n(R) and ψ : T ′

n(R) →

M′

n(R), inverse to each other, that preserve the partial orders.

P r o o f. D e f i n i t i o n of ϕ: Let M ∈ M′

n(R) and let

T = {t1, . . . , ts},

where ti = IiX
µ(i), i = 1, 2, . . . , s, be the unique finite minimal generating set of M .

It is acceptable by Lemma 2.16. For i = 1, 2, . . . , s, let

{ci,1, ci,2, . . . , ci,ki
}

be a generating set of Ii. Then we define I = ϕ(M) in the following way:

I = 〈G〉,

where

G = {c1,1X
µ(1), . . . , c1,k1

Xµ(1), . . . , cs,1X
µ(s), . . . , cs,ks

Xµ(s)}.

ϕ is w e l l - d e f i n e d: Suppose that for i = 1, 2, . . . , r the ideal Ii is generated by

the set

{c′i,1, c
′

i,2, . . . , c
′

i,li
}.

Let

I ′ = 〈G′〉,

where

G′ = {c′1,1X
µ(1), . . . , c′1,l1

Xµ(1), . . . , c′s,1X
µ(s), . . . , c′s,ls

Xµ(s)}.
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We need to show that I = I ′. It is enough to show that an arbitrary term ci,jX
µ(i)

from G belongs to I ′. (Then I ⊂ I ′, and, by symmetry, I ′ ⊂ I, so I = I ′.) Since

ci,j = ri,1c
′

i,1 + . . .+ ri,lic
′

i,li

for some elements ri,1, . . . , ri,li ∈ R, we have

ci,jX
µ(i) = ri,1c

′

i,1X
µ(i) + . . .+ ri,lic

′

i,li
Xµ(i).

Hence ci,jX
µ(i) ∈ I ′. Thus ϕ is well-defined.

D e f i n i t i o n of ψ: Let I ∈ T ′

n(R) and let

G = {c1,1X
µ(1), . . . , c1,k1

Xµ(1), . . . , cs,1X
µ(s), . . . , cs,ks

Xµ(s)}

be a generating set of I. For i = 1, 2, . . . , s let

Ii = 〈ci,1, ci,2, . . . , ci,ki
〉.

The set

T = {I1X
µ(1), . . . , IsX

µ(s)}

is said to be associated to G. According to Lemma 2.15 we can adjust the set G

(and hence the set T associated to it) so that we get the set Ga and the associated

set Ta with Ga still generating I and Ta satisfying the conditions (a), (b), (c) from

that lemma. Let T̂a be the set of all σ(T ′) with T ′ a nonempty subset of Ta. Then

T̂a is acceptable by Remark 2.9. We define M = ψ(I) = 〈T̂a〉.

ψ is w e l l - d e f i n e d: Let H be another generating set of terms of I and

S = {s1, . . . , sr},

where si = JiX
ν(i), i = 1, 2, . . . , r, its associated set of “terms”. Suppose that S

satisfies the conditions (a), (b) and (c) from Lemma 2.15. Let Ŝ be the set of all

σ(S′), where S′ is a nonempty subset of S, and let N = 〈Ŝ〉. We need to show that

M = N .

All the terms in I are described by the elements of Ŝ, namely every σ(sj1 , . . . , sjl
) =

(Jj1 + . . .+Jjl
)Xsup(ν(j1),...,ν(jl)) describes all the terms cνX

ν with cν ∈ Jj1 + . . .+Jjl

and ν > sup(ν(j1), . . . , ν(jl)). Hence, since Ta and S generate the same term ideal,

the sets of terms described by T̂a and Ŝ are the same. Hence for every S
′ ⊂ S there

is some T ′ ⊂ Ta such that σ(S′) > σ(T ′). Hence 〈Ŝ〉 ⊂ 〈T̂ 〉. By symmetry 〈T̂ 〉 ⊂ 〈Ŝ〉

and so 〈Ŝ〉 = 〈T̂ 〉. Hence M = N and thus ψ is well-defined.
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ψ ◦ ϕ is the i d e n t i t y on M′

n(R): Let M ∈ M′

n(R) and let T ∗ = {t1, . . . , ts}

be the unique finite minimal generating set of M , where ti = IiX
µ(i), i = 1, 2, . . . , s.

(T ∗ is acceptable by Lemma 2.16.) Then T ∗ satisfies the conditions (a′), (b′) and

(c′) from Lemma 2.17. For i = 1, 2, . . . , s let {ci,1, ci,2, . . . , ci,ki
} be a generating set

of Ii. Then

I = ϕ(M) = 〈G〉,

where

G = {c1,1X
µ(1), . . . , c1,k1

Xµ(1), . . . , cs,1X
µ(s), . . . , cs,ks

Xµ(s)}.

Now we want to calculate ψ(I). First we adjust the generating set G so that the set

T , associated to G, satisfies (a), (b), (c). Initially T = T ∗ and the conditions (a)

and (b) hold for T since (a′) and (b′) hold for T ∗. The condition (c) is not implied

by the condition (c′) since we can have some cases where tj = σ(T ′). So we make

adjustments to G (and T ) as described in Lemma 2.15 for the condition (c). Each

inequality of the type tj > σ(T ′) from that description will here be equality since

initially (because of (c′)) we can have only equalities for T = T ∗ and in each step

of the inductive procedure we will be keeping equality. After finitely many steps G

(and T ) will be appropriately adjusted. Denote those adjusted sets by Ga and Ta.

Then we form T̂a and put ψ(I) = 〈T̂a〉. Note that in T̂a we have some of the ti’s , say

ti1 , . . . , tim
, and some σ’s of these ti’s. Some of those σ’s are equal to the remaining

ti’s from the original T = T ∗ (i.e., all of the elements from T ∗ \ {ti1 , . . . , tim
}). Thus

T̂a ⊃ T ∗. Since T ∗ is acceptable, any other of the σ’s of the elements ti1 , . . . , tim
,

say σ(T ′′) where T ′′ ⊂ {ti1 , . . . , tim
}, is > tl for some l. If tl ∈ {ti1 , . . . , tim

}, then

σ(T ′′) is not among minimal elements of T̂a. If tl /∈ {ti1 , . . . , tim
}, then tl = σ(T ′′′)

for some T ′′′ ⊂ tl ∈ {ti1 , . . . , tim
} (this follows from the construction of Ta), hence

σ(T ′′) > σ(T ′′′) and so again σ(T ′′) is not among minimal elements of T̂a. This holds

for any T ′′ ⊂ {ti1 , . . . , tim
}. Thus the set of minimal elements of T̂a is precisely T

∗.

Hence ψ(ϕ(M)) = M .

ϕ ◦ ψ is the i d e n t i t y on T ′

n(R): Let I = 〈G〉 be a term ideal of A, where

G = {c1,1X
µ(1), . . . , c1,k1

Xµ(1), . . . , cs,1X
µ(s), . . . , cs,ks

Xµ(s)}

is a generating set of I satisfying the conditions (a), (b), (c) from Lemma 2.15. (We

can assume that G satisfies these conditions because of Lemma 2.15.) We associate

to G the set

T = {t1, . . . , ts},

where, for i = 1, 2, . . . , s,

Ii = 〈ci,1, ci,2, . . . , ci,ki
〉
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and ti = IiX
µ(i). Let T̂ be the set of all σ(T ′), where T ′ is a nonempty subset of T .

Then

M = ψ(I) = 〈T̂ 〉.

Since T̂ is acceptable, the unique finite minimal generating set T ∗ ofM is acceptable.

It is obtained by selecting minimal elements of T̂ . Because of the condition (c), which

holds for T , the set T ∗ contains all t1, . . . , ts. It may contain some σ(T ′), T ′ ⊂ T , in

addition to the ti’s. Suppose

T ∗ = {t1, . . . , ts, σ(T ′

1), . . . , σ(T ′

r)},

where T ′

1, . . . , T
′

r are subsets of T . Now ϕ(ψ(I)) = ϕ(M) = 〈G∗〉, where G∗ is the

set of terms associated to T ∗. Note that G is a set of terms associated to T ⊂ T ∗

and that 〈G∗〉 = 〈G〉 since the difference of these sets consists of the terms that

correspond to σ’s. Hence ϕ(ψ(I)) = I. �

In the next example we follow the steps from the proof that ψ ◦ ϕ is the identity

onM′

n(R).

E x am p l e 3.2. Let M be an acceptable semiflow, generated by the acceptable

set T ∗ = {t1 = 30ZX2Y, t2 = 5ZX2Y 2, t3 = 20ZXY 2} from Example 2.7. The

set T ∗ is the unique finite minimal generating set of M by Lemma 2.12. Let G =

{30X2Y, 5X2Y 2, 20XY 2} and ϕ(M) = I = 〈G〉. The set T = T ∗ is associated to

G and it satisfies the conditions (a), (b), (c). Hence Ga = G, Ta = T = T ∗. Then

T̂a = {t1, t2, t3, σ(t1, t3) = 10ZX2Y 2} and ψ(I) = 〈T̂a〉. Since σ(t1, t3) > t2, we have

ψ(ϕ(M)) = M .

E x am p l e 3.3. LetM be an acceptable semiflow generated by the acceptable set

T ∗ = {t1 = 10ZX2Y, t2 = 5ZX2Y 2, t3 = 15ZXY 2}. The set T ∗ is the unique finite

minimal generating set ofM by Lemma 2.12. Let G = {10X2Y, 5X2Y 2, 15XY 2} and

let T = T ∗. Let I = 〈G〉. Since σ(t1, t3) = t2, we adjust G to Ga = {10X2Y, 15XY 2}

and so Ta = {10ZX2Y, 15ZXY 2}. Then T̂a = {10ZX2Y, 15ZXY 2, 5ZX2Y 2} and so

ψ(ϕ(M)) = 〈T̂a〉 = M .

We now give an example where we start with a nonacceptable semiflow M and

get ψ(ϕ(M)) )M when we follow the steps from the proof that ψ ◦ϕ is the identity

onM′

n(R).

E x am p l e 3.4. Let M be the semiflow generated by the set T ∗ = {t1 =

4ZX, t2 = 6ZY } ⊂ M2(Z). Here T ∗ is not acceptable since σ(t1, t2) = 2ZXY is

not comparable with neither t1 nor t2. Let G = {4X, 6Y } and I = ϕ(M) = 〈G〉.

Then Ga = G and Ta = T ∗. But T̂a = {t1, t2, σ(t1, t2)} and so ψ(ϕ(M)) =

〈t1, t2, σ(t1, t2)〉 )M .
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