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Commutative subloop-free loops

Martin Beaudry∗, Louis Marchand

Abstract. We describe, in a constructive way, a family of commutative loops of
odd order, n ≥ 7, which have no nontrivial subloops and whose multiplication
group is isomorphic to the alternating group An.

Keywords: loops, multiplication group, alternating group

Classification: 20N05, 20D06

1. Introduction

We say that a finite loop is subloop-free whenever it does not have proper
subloops, that is, other than itself and the trivial one-element loop. For example,
a reduced subsquare-free latin square (also called N∞ latin square) is the Cayley
table of a subloop-free loop. Subsquare-free latin squares are proved to exist for
every n not of the form 2i3j , with i, j ≥ 1 [13], and are conjectured to exist for
every n ≥ 5. It is also fairly easy to build a subloop-free loop of any order n ≥ 5
by an ad hoc method, such as specifying the top half of a Cayley table (a bottom
half always exists [11]) where the entries equal to the identity are located in such
a way that the table cannot be completed in any way that creates the table of
a subloop.

While it is well-known that the cyclic groups of prime order are the only finite
associative subloop-free loops, it turns out that finite, nonassociative subloop-
free loops are numerous and diverse. We substantiate this statement by proving
that, for every odd n ≥ 7, there exist subloop-free loops which simultaneously
satisfy the conditions of being commutative and having a multiplication group
isomorphic to the alternating group An.

Theorem 1.1. For every odd n ≥ 7, there exists a commutative subloop-free
loop of order n whose multiplication group is the alternating group An.

We leave aside the loops of even order. Indeed, it is a well-known fact, that in
a symmetric n×n latin square the number of occurrences of a given object on the
diagonal has the same parity as n; applying this to the identity element implies
that every commutative loop of even order has a subgroup isomorphic to Z2.

We refer the reader to [3], [6], [16] for detailed background on loops. In this
article, all loops are finite. Let G be a loop of order n; its operation is denoted
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by an asterisk, e.g. a ∗ b = c. To each loop element a we associate its right and
left translations , Ra and La respectively, defined by Ra(b) = b ∗ a and La(b) =
a ∗ b. Both mappings are permutations of G. The translations generate M(G) =
〈{ La, Ra | a ∈ G }〉, the multiplication group of G. Note that in a commutative
loop, we have La = Ra for every a; we then speak of the translation of a and use
the notation La.

Our descriptions and proofs use only basic notions and facts on groups and
permutations; they can be found in fundamental texts such as [12], [18] and we
assume that they are familiar to the reader.

We denote by G = {0, 1, . . . , n− 1} the underlying set of a loop G of order n.
To make our descriptions simpler, we write them as if G were a subset of N and
use relations and operations usually encountered in these contexts, such as “≤”
and “+”. We denote by Sn the symmetric group overG and by An the alternating
group, which is the set of all even permutations of G. In this article we identify
an even permutation by verifying that its cyclic representation contains an even
number of cycles of even length.

We regard the multiplication group M(G) as a subset of Sn; we therefore write
statements like “M(G) = Sn” instead of “M(G) is isomorphic to Sn”.

For a given loop, most of our work is done on its Cayley table, where rows and
columns are labelled with the loop’s elements, and where entry [a, b] contains the
value a ∗ b. It is well known that a finite groupoid is a loop iff its Cayley table is
a reduced latin square; it is commutative iff the table is symmetric.

The notion of multiplication group of a loop was introduced by Albert [1]. The
properties of this group have been the object of extensive study, in particular the
question of which groups can be the multiplicative group of a nonassociative loop.
The multiplication group of almost every quasigroup of order n is Sn [4], [10], and
it is conjectured that the same holds for loops [5]. Among those multiplication
groups other than Sn, the alternating group An can be found for almost every
order [8]; out result is thus an alternate proof of this statement for the loops of
odd order n ≥ 7. Conversely, it was proved that certain groups cannot be the
multiplication group of a loop, for example the linear groups PSL(2, q) [17].

2. Proof of the theorem

We prove the theorem by building a family of appropriate loops for n = 37 and
each n ≥ 43. The smaller values of n are dealt with in the Appendix, where we
give an example of a loop for every odd order n ≤ 41 not covered by our proof.

The rest of this section is structured as follows. First, we build a n×n symmet-
ric partially defined latin square, which we call the template, and we show that
it can be completed to yield the Cayley table of a commutative subloop-free loop
whose multiplication group has An as a subgroup, provided that an additional
constraint is respected. Next, we show how to fill the template in order to ensure
that M(G) = An.

From now on, let n = 2p + 1. We denote by [i, j] the cell located at the
intersection of row i and column j. We call an entry the content of this cell and
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19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

0 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
1 20 3 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 21
2 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 1 3
3 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 1 2 0
4 23 24 25 26 27 28 29 30 31 32 33 34 35 36 1 0 3 2
5 24 25 26 27 28 29 30 31 32 33 34 35 36 2 0 3 4 1
6 25 26 27 28 29 30 31 32 33 34 35 36 3 1 5 2 0 4
7 26 27 28 29 30 31 32 33 34 35 36 1 2 0 3 4 5 6
8 27 28 29 30 31 32 33 34 35 36 ? ? ? ? 4 5 6 7
9 28 29 30 31 32 33 34 35 36 ? ? ? ? ? 2 6 7 8
10 29 30 31 32 33 34 35 36 ? ? ? ? ? ? 6 7 8 9
11 30 31 32 33 34 35 36 ? ? ? ? ? ? 6 7 8 9 10
12 31 32 33 34 35 36 ? ? ? ? ? ? 6 7 8 9 10 11
13 32 33 34 35 36 ? ? ? ? ? ? 6 7 8 9 10 11 12
14 33 34 35 36 1 ? ? ? ? ? 6 7 8 9 10 11 12 13
15 34 35 36 2 0 ? ? ? ? 6 7 8 9 10 11 12 13 14
16 35 36 3 1 5 ? ? ? 6 7 8 9 10 11 12 13 14 15
17 36 1 2 0 3 4 5 6 7 8 9 10 11 12 13 14 15 16
18 1 2 0 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
19 3 0 5 4 2 6 7 8 9 10 11 12 13 14 15 16 17 18
20 . 5 4 21 6 7 8 9 10 11 12 13 14 15 16 17 18 19
21 . . 1 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
22 . . . 7 8 9 10 11 12 13 14 15 16 17 18 19 20 5
23 . . . . 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Figure 1. Template for n = 37

denote it also by [i, j]. Since the table we build is symmetric, we only specify [i, j]
for i ≤ j.

The template is obtained from a totally unspecified n×n table in several steps.
The first step consists in filling most of the cells as if we were building the Cayley
table of the cyclic group Zn.

• For all i, j such that i+j ≤ n−1 or i+j ≥ n+6, let [i, j] = i+j (mod n).
Next, three of these entries are modified, as follows:

• [1, 2] = 0; [1, p+ 2] = 3; [p+ 4, n− 1] = 5.
Still undefined is the width-6 region consisting of those cells [i, j] for which i ≤ j
and n ≤ i+ j ≤ n+5; we call it the corridor . Now we partially define the content
of the corridor by specifying, on and above the diagonal, a total of 57 entries
taken from the set {0, 1, 2, 3, 4, 5}, with two exceptions:

• [1, n− 1] = p+ 3; [p+ 2, p+ 4] = p+ 3.
For the 55 other entries, we refer the reader to Figure 1, where the top right part
of the template is displayed for n = 37. (With the sole exception of position
[1, 2], the top left part is identical to its counterpart in the Cayley table of Zn.)
In this figure, the entries below the main diagonal are not represented. The
entries in those cells where the template is identical to the table of Zn, i.e. those
where [i, j] ≡ i + j (mod n), are printed in standard font. Unspecified entries
are identified with a question mark “?”; they form a set of contiguous cells, the
undefined zone. The remaining 59 entries are printed in boldface; all of them



476 M. Beaudry, L. Marchand

except [1, 20] and [22, 36] are located in the corridor. Note that here, p+ 3 = 21
(see positions [1, 36] and [20, 22]).

Two regions within the corridor are highlighted by borders drawn around them;
they consist of 15 positions each, and their shape and content are identical. We
call them butterflies . Observe that both ends of the undefined zone are delimited
with a butterfly.

Loops defined by completing this template have two useful properties; we pro-
ceed with their statements and proofs.

Lemma 2.1. If a loop has a Cayley table consistent with the template and if it
also satisfies the constraint that [i, j] 6= 0 in every position where i+ j = n, then
it is subloop-free.

Proof: Let k ∈ G and let 〈k〉 denote the subloop it generates; we show that
〈k〉 = G for every k 6= 0. We first consider k = 2: it is readily seen from the above
specifications that [2, j] = j + 2 for every 2 ≤ j ≤ n − 3, which implies that 2
generates all even values between 2 and n− 1. Next, [2, n− 1] = 3, and from this
all odd values between 5 and n− 2 can be generated. Finally, [2, n− 2] = 1 and
[2, 1] = 0 yield 〈2〉 = G. Next, since [1, 1] = 2, it follows that 〈1〉 = G. Reasoning
as in the case k = 2, it is easily verified that 〈k〉 = G for 3 ≤ k ≤ 7.

In the center of the template we observe [p + 1, p+ 1] = 3, [p + 2, p+ 2] = 5,
[p+3, p+3] = 1, [p+4, p+4] = 7; therefore, 〈p+1〉 = 〈p+2〉 = 〈p+3〉 = 〈p+4〉 = G.

Next, 〈n − 1〉 = G follows from the observation that [n, j] = j − 1 for every
p + 5 ≤ j ≤ n− 1, therefore p + 4 ∈ 〈n − 1〉. Also, since [p, p] = n− 1, we have
〈p〉 = G.

We deal with the other k ∈ G by induction. Since [k, k] < k for every k ≥ p+4,
we only have to consider the case 8 ≤ k ≤ p − 1. For every such k and every
1 ≤ j ≤ n−k−1 we have [k, j] = k+ j, so that we know that every tk+ j ≤ n−1
belongs to 〈k〉 as soon as we have verified that j ∈ 〈k〉. If n is a multiple of k,
then we apply this to j = k and t = n/k − 1; the entry [k, n − k] is subject to
the condition of the lemma’s statement, which yields [k, n − k] ∈ {1, 2, 3, 4, 5}.
Otherwise k does not divide n, i.e. n = (s+1)k− t with 0 < t < k. We are done if
[k, sk] is nonzero. Otherwise the entry [k, sk] = 0 is in the corridor, which means
n ≤ k + sk ≤ n+ 5. Since the entries [k, n − k], . . . , [k, n− 1] are a permutation
of {0, . . . , k − 1}, it suffices to show that there is at least one ℓ ∈ 〈k〉 such that
n− k ≤ ℓ ≤ n− 1 and ℓ 6= sk. Since k ≤ p− 1 and n = 2p+1, we have s > 1 and
n < 2sk < 2n. Therefore [sk, sk] = 2sk (mod n) = tk+ j for some 0 < j < k. By
the above reasoning, we can take ℓ = rk + j for an appropriate r ≥ t. �

Lemma 2.2. If the Cayley table of an order-n loop G is consistent with the
template, then An is a subgroup of M(G).

Proof: By definition, M(G) is a transitive permutation group, and it is eas-
ily verified that the absence of a nontrivial subloop in G implies that M(G) is
primitive. By a theorem of Jordan (see [18, Theorem 13.9]), An is a subgroup
of any primitive group of degree n which contains a 3-cycle. Let G be a loop as



Commutative subloop-free loops 477

L2 =

(
0 1 2 3 4 · · · n− 4 n− 3 n− 2 n− 1
2 0 4 5 6 · · · n− 2 n− 1 1 3

)

L3 =

(
0 1 2 3 · · · n− 5 n− 4 n− 3 n− 2 n− 1
3 4 5 6 · · · n− 2 n− 1 1 2 0

)

Figure 2. Permutations L2 and L3

in the lemma’s statement. Consider the left translations L2 and L3 of 2 and 3,
respectively; they are totally defined by the template and are depicted, in matrix
notation, on Figure 2. The reader can verify that both permutations consist of a
unique cycle of length n, that L2(x) = x+2 for all x /∈ {1, n− 2, n− 1}, and that
L3(x) = x+3 for all x /∈ {n− 3, n− 2, n− 1}. The permutations α = L2 ◦L3 and
β = L3 ◦ L2 differ only on elements 2, 3 and 6, and α−1 ◦ β = (2 3 6). �

Finally, we give a criterion to decide whether the translation of a loop element
is an even permutation.

Lemma 2.3. For every i ∈ {6, . . . , n−2} other than p+2 and p+4, the translation
Li is an even permutation iff the table entries [i, n− i] to [i, n− i+ 5] constitute
an even permutation of {0, 1, 2, 3, 4, 5}.
Proof: Consider the translation Li, i ∈ {6, . . . , n−2} \ {p+2, p+4}. Taking its
composition with the mapping x 7→ x− i (mod n), which is an even permutation,
yields a permutation with fixed points everywhere except in the set {n − i, n −
i+ 1, . . . , n− i+ 5}. �

The translations not covered by this lemma are fully specified by the template.
Verifying that they have even parity is done for L4 and L5 by the above reasoning;
meanwhile, L2 and L3 consist of a unique cycle of odd length, and L1 consists of
a 3-cycle and two other cycles of equal parity. Reasoning as above shows that the
compositions (5 p + 3) ◦ Ln−1, (3 p + 3) ◦ Lp+2 and (5 p + 3) ◦ Lp+4 are odd
permutations.

To complete the proof of the theorem, it suffices to show how to fill each line
and column of the undefined zone with an even permutation of {0, 1, 2, 3, 4, 5},
while respecting the condition that [i, n − i] 6= 0 for all i 6= 0. For this we
define a special type of patterns which we call blocks . A block of index m is an
array of 6(m + 1) + 9 cells located on six consecutive antidiagonals; there are
m + 1 complete rows (six cells each) and 9 cells placed on 5 incomplete rows.
Every entry is defined, every complete row and column is an even permutation
of {0, 1, 2, 3, 4, 5}, and the ends of this array constitute two disjoint copies of the
butterfly. Two blocks can be combined to build a larger block, by making the top
right butterfly of one block overlap with the bottom left butterfly of the other,
as illustrated in Figure 3. Combining two blocks of orders m and q, respectively,
creates a block of order m+ q.

Thus, filling the template is simply done by inserting a block which fits the
undefined zone. Rows 7 to p− 1 in the table coincide with the m+1 fully defined
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B13 3 · · ·
ց 2 1 · · ·

3 1 0 · · ·
2 1 0 4 · · ·

1 0 2 3 5 · · ·
1 3 4 0 5 2

3 2 0 1 5 4
1 2 0 5 3 4

2 0 1 3 4 5
3 1 5 0 4 2

1 2 0 3 4 5
B10 1 2 0 3 4 5

ց 3 0 4 1 5 2
1 2 3 0 5 4

1 0 5 2 3 4
1 3 2 0 4 5

3 2 0 4 1 5
1 2 0 5 3 4

2 0 1 3 4 5
3 1 5 0 4 2

1 2 0 3 4 5
4 5
2

Figure 3. Concatenation of blocks B10 and B13

rows in the block, so that its order is m = p − 8, or conversely n = 2m + 17.
Experimentally, we found that the collection of blocks

B10, B13, B14, B15, B16, B17, B18, B19, B21, B22,

depicted on Figure 3 and in the Appendix, enables us to define a loop with
M(G) = An for n = 37 (built from B10) and for every odd n ≥ 43. Each full row
and column in these blocks is an even permutation of {0, 1, 2, 3, 4, 5}. Also, since
0 never occurs at a position [i, n− i], the loops built from these blocks satisfy the
condition of Lemma 2.1. In other words, a loop built from the template and our
list of blocks is subloop-free, commutative, and such that M(G) = An. �

Corollary 2.4. For every odd n ≥ 7, there exists a commutative subloop-free
loop G which satisfies M(G) = Sn.

Proof: For the smaller values of n, we generated by computer commutative
subloop-free loops consistent with the template and observed that the vast ma-
jority of them satisfy M(G) = Sn. For the larger orders, we leave it to the reader
to modify the blocks B10 to B22, in order to make each of them contain at least
one odd permutation of {0, 1, 2, 3, 4, 5}. �

3. Conclusion

As a preliminary step in this research, we computed M(G) for all loops of size
6 to 8 using data from [14] and [9], and identified those which were subloop-free.
Our results are summarized in Figure 4. Among them, we noticed a loop of size
8 for which M(G) is neither Sn nor An; this multiplication group has order 1344
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Order Number Multiplication group
n of loops Sn An Zn Other
5 2 1 0 1 0
6 28 28 0 0 0
7 9 906 9 904 1 1 0
8 43 803 136 43 799 370 3 765 0 1

Figure 4. Multiplication group of subloop-free loops, orders 5 to 8

0 1 2 3 4 5 6 7
0 0 1 2 3 4 5 6 7
1 1 2 3 0 5 6 7 4
2 2 4 7 6 1 3 0 5
3 3 6 1 5 2 7 4 0
4 4 0 5 7 6 2 3 1
5 5 7 0 4 3 1 2 6
6 6 5 4 2 7 0 1 3
7 7 3 6 1 0 4 5 2

Figure 5. Loop of order 8 with M(G) = AL(8).

and is denoted AL(8) in the compendium [7]. The Cayley table of this loop is
displayed in Figure 5.

The vast majority of nonassociative subloop-free loops of small order satisfy
M(G) = Sn, and it is likely to be the same for every order. In this article,
however, we proved that for every odd order n ≥ 7, there exist a commutative
subloop-free loop whose multiplication group is An. This result, alongside with
the identification of the order-8 loop mentioned above, suggests that subloop-free
loops of larger order deserve further investigation.
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Appendix

Appendix A. Small subloop-free loops

We display in full the Cayley tables of commutative subloop-free loops of orders
7 to 13 such that M(G) = An.

0 1 2 3 4 5 6 0 1 2 3 4 5 6 7 8
0 0 1 2 3 4 5 6 0 0 1 2 3 4 5 6 7 8
1 1 2 0 4 3 6 5 1 1 2 0 4 5 3 7 8 6
2 2 0 3 5 6 4 1 2 2 0 6 1 3 7 8 4 5
3 3 4 5 6 1 2 0 3 3 4 1 5 7 8 0 6 2
4 4 3 6 1 5 0 2 4 4 5 3 7 8 6 1 2 0
5 5 6 4 2 0 1 3 5 5 3 7 8 6 1 2 0 4
6 6 5 1 0 2 3 4 6 6 7 8 0 1 2 4 5 3

7 7 8 4 6 2 0 5 3 1
8 8 6 5 2 0 4 3 1 7

0 1 2 3 4 5 6 7 8 9 10
0 0 1 2 3 4 5 6 7 8 9 10
1 1 2 0 4 5 6 3 8 9 10 7
2 2 0 3 7 8 1 5 9 10 4 6
3 3 4 7 8 1 2 9 10 5 6 0
4 4 5 8 1 7 9 10 2 6 0 3
5 5 6 1 2 9 10 8 3 0 7 4
6 6 3 5 9 10 8 4 0 7 2 1
7 7 8 9 10 2 3 0 6 4 1 5
8 8 9 10 5 6 0 7 4 1 3 2
9 9 10 4 6 0 7 2 1 3 5 8

10 10 7 6 0 3 4 1 5 2 8 9

0 1 2 3 4 5 6 7 8 9 10 11 12
0 0 1 2 3 4 5 6 7 8 9 10 11 12
1 1 2 0 4 5 6 7 3 9 10 11 12 8
2 2 0 3 5 6 7 1 9 10 11 12 8 4
3 3 4 5 1 7 9 8 10 11 12 6 2 0
4 4 5 6 7 8 1 10 11 12 3 2 0 9
5 5 6 7 9 1 10 11 12 4 8 0 3 2
6 6 7 1 8 10 11 12 2 5 0 4 9 3
7 7 3 9 10 11 12 2 6 0 4 8 5 1
8 8 9 10 11 12 4 5 0 7 2 3 1 6
9 9 10 11 12 3 8 0 4 2 5 1 6 7

10 10 11 12 6 2 0 4 8 3 1 9 7 5
11 11 12 8 2 0 3 9 5 1 6 7 4 10
12 12 8 4 0 9 2 3 1 6 7 5 10 11

Appendix B. Blocks for loops of large order

In this section, we display the blocks B13 to B22 used in the proof of the
theorem; block B10 can be seen on Figure 3. Except for B13, we show only the
entries specific to the blocks, i.e. those located between the butterflies. Blocks are
represented as arrays where each row corresponds to an antidiagonal in the Cayley
table, and each column to a column in the Cayley table. Expressed otherwise: if
the entry located at [a, b] in the array is at position [i, j] in the Cayley table, then
position [a, b+ 1] corresponds to [i− 1, j + 1], and [a+ 1, b] to [i+ 1, j].
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1 3 2 1 3 1 1 2 3 2 3 1 2 1 3 2 1
2 1 0 2 2 3 0 1 1 1 0 0 0 2 1 0

0 5 1 0 0 4 2 0 0 5 1 3 1 0 5
B13 3 0 3 5 1 0 3 4 2 3 2 4 3 3

4 4 4 4 3 5 5 5 3 4 4 5 5 4 4
2 5 5 2 5 4 4 2 4 5 5 0 4 2 5 5

3 1 1 1 2 1 1 1 3 1
2 2 0 3 4 3 3 2 2 0 2
1 0 5 2 0 0 0 0 0 3 4 0

B14 0 3 3 0 3 2 2 5 4 5 0 1 3
4 4 4 1 5 5 3 1 2 3 5 5

2 5 5 4 4 4 5 4 5 4 4

1 3 2 3 2 2 3 2 3 1 2
0 2 1 1 1 1 1 1 1 0 0 0
3 4 0 0 0 0 0 0 0 5 1 3 1

B15 2 1 3 5 4 3 4 3 4 2 3 2 4 3
0 5 2 3 5 5 5 5 3 4 4 5 5

4 4 5 4 2 4 2 4 5 5 0 4

1 1 3 1 1 1 2 1 1 1 3 1
0 2 5 2 2 3 3 0 3 2 2 0 2
3 3 0 0 0 0 0 2 5 0 0 3 4 0

B16 2 4 2 3 3 4 5 4 0 3 4 5 0 1 3
0 1 4 4 2 1 3 2 4 1 2 3 5 5

4 5 5 5 4 5 4 5 5 4 5 4 4

1 1 2 1 3 2 2 3 4 1 1 3 1
0 2 3 3 0 1 1 1 1 0 2 2 0 2
3 3 0 0 1 4 0 0 0 2 3 0 3 4 0

B17 2 4 5 4 2 0 3 5 3 3 0 1 5 0 1 3
0 1 2 5 5 5 2 2 5 5 5 2 3 5 5

4 5 4 3 4 4 5 4 4 4 4 5 4 4

1 1 2 1 3 2 1 1 3 4 1 1 3 1
0 2 3 3 0 1 0 0 0 1 0 2 2 0 2
3 3 0 0 1 4 2 3 2 2 2 3 0 3 4 0

B18 2 4 5 4 2 0 3 5 1 3 3 0 1 5 1 0 3
0 1 2 5 5 5 2 4 5 5 5 5 2 3 5 5

4 5 4 3 4 4 5 0 4 4 4 4 5 4 4

1 1 2 1 1 1 1 3 1 5 2 3 3 1 2
0 2 3 3 3 2 3 0 2 0 1 1 1 0 0 0
3 3 0 0 0 0 0 2 3 1 3 0 0 2 1 3 1

B19 2 4 5 4 2 4 2 4 0 2 0 2 2 4 5 2 4 3
0 1 2 5 5 5 5 5 4 4 4 4 3 3 4 5 5

4 5 4 3 4 1 4 3 5 5 5 5 4 5 0 4

3 1 1 1 2 3 1 3 2 3 2 2 3 2 3 1 2
2 2 3 0 5 1 2 0 1 1 1 1 1 1 1 0 0 0
1 0 0 2 3 0 0 1 5 0 0 0 0 0 0 5 1 3 1

B21 0 3 5 4 0 2 3 4 0 2 4 3 4 3 4 2 3 2 4 3
4 4 3 1 4 4 2 3 4 3 5 5 5 5 3 4 4 5 5

2 5 4 5 5 5 4 5 5 4 2 4 2 4 5 5 0 4

3 1 1 1 2 1 1 1 3 1 1 1 2 1 1 1 3 1
2 2 0 3 4 3 3 2 2 0 2 3 3 0 3 2 2 0 2
1 0 5 2 0 0 0 0 0 3 4 0 0 2 5 0 0 3 4 0

B22 0 3 3 0 3 2 2 5 4 5 0 2 5 4 0 3 4 5 0 1 3
4 4 4 1 5 5 3 1 2 3 5 1 3 2 4 1 2 3 5 5

2 5 5 4 4 4 5 4 5 4 4 5 4 5 5 4 5 4 4
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Appendix C. Subloop-free loops of intermediate order

We give examples of commutative subloop-free loops of odd order n, 15 ≤
n ≤ 41 and n 6= 37, which satisfy M(G) = An. To obtain them, we made an
exhaustive search from a template where most of the corridor was left undefined,
the rest being identical to the description given in the article. For each order n,
we display the upper half of the corridor of one of our results; we represent all
entries from the main diagonal (entries printed in boldface) up to and including
row 3.

1 0 3 1 2 1 1 3 2 1 1
3 2 1 0 3 0 3 2 2 1 0 0 2

n = 15 5 0 2 1 2 1 n = 17 0 0 0 5 3 3 0
1 2 3 5 4 2 5 5 3 3 2 4 2

4 4 4 3 0 4 4 4 4 0 1
5 10 0 5 4 1 11 2 5 5 4

1 0 3 1 2 1 1
3 2 1 0 3 0 0 2

n = 19 5 0 2 1 2 3 3 0
1 2 3 5 4 5 4 2

4 4 4 3 2 0 1
5 12 0 5 4 5 4

3 1 0 3 1 2 1 1
1 2 2 1 0 3 0 0 2

n = 21 0 1 0 2 1 2 3 3 0
5 5 4 3 5 4 5 4 2

4 2 5 4 3 2 0 1
3 13 4 0 5 4 5 4

1 0 2 4 1 1 2 1 1
3 2 1 1 3 0 0 3 0 2

n = 23 5 3 3 0 2 3 2 4 0 0
1 0 0 2 3 1 5 3 3 2

4 2 5 5 5 0 2 5 1
5 14 4 4 4 4 5 4 4

1 1 3 2 5 1 1 2 1 1
3 2 2 1 1 0 3 3 0 0 2

n = 25 0 0 0 0 3 2 0 2 3 3 0
5 5 3 3 2 0 1 4 5 4 2

4 4 4 4 4 4 3 2 0 1
1 15 2 5 5 5 5 4 5 4

1 1 2 3 1 1 0 2 2 1 1
3 2 0 1 0 5 2 1 1 0 0 2

n = 27 0 3 2 3 2 3 3 3 3 3 3 0
5 5 0 4 0 1 0 0 4 5 4 2

4 4 5 3 4 4 4 5 2 0 1
1 16 2 4 5 5 5 2 4 5 4

1 0 2 4 1 1 2 3 3 2 1 1
3 2 1 1 3 0 0 1 1 1 0 0 2

n = 29 5 3 3 0 2 3 5 0 0 5 3 3 0
1 0 0 2 3 1 2 2 4 2 2 4 2

4 2 5 5 5 0 4 3 3 4 0 1
5 17 4 4 4 4 5 5 4 5 5 4

1 1 3 2 5 1 1 1 1 4 2 0 1
3 2 2 1 1 0 3 2 0 3 1 1 2 2

n = 31 0 0 0 0 3 2 0 3 2 0 3 3 3 0
5 5 3 3 2 0 3 2 0 3 2 0 0 2

4 4 4 4 4 4 4 5 5 5 5 5 1
1 18 2 5 5 5 5 1 4 4 4 4 4



484 M. Beaudry, L. Marchand

1 1 3 2 5 1 1 2 1 1 1 2 1 1
3 2 2 1 1 0 3 3 4 3 0 5 0 0 2

n = 33 0 0 0 0 3 2 0 0 0 2 3 3 3 3 0
5 5 3 3 2 0 1 2 2 3 0 2 2 4 2

4 4 4 4 4 4 3 5 5 1 4 4 0 1
1 19 2 5 5 5 5 4 4 4 5 5 5 4

1 1 2 3 1 2 3 3 0 1 1 3 2 1 1
3 2 0 1 0 0 1 1 1 4 2 2 1 0 0 2

n = 35 0 3 2 3 1 2 0 2 2 3 0 0 5 3 3 0
5 5 0 4 5 4 5 3 0 0 1 3 3 2 4 2

4 4 5 3 0 2 4 5 5 5 5 4 4 0 1
1 20 2 4 5 4 5 3 4 4 4 2 5 5 4

1 1 3 2 5 1 3 1 1 3 1 1 2 3 0 2 1
3 2 2 1 1 0 2 2 3 2 0 0 0 1 1 1 3 2

n = 39 0 0 0 0 3 1 0 0 0 4 2 3 2 3 5 2 0 0
5 5 3 3 2 0 3 4 1 2 3 1 5 4 0 0 3 1

4 4 4 4 4 4 2 5 5 5 5 4 2 3 4 4 4
1 22 2 5 5 5 5 4 3 4 4 0 5 4 5 5 2

1 1 3 2 1 1 1 0 1 1 3 0 1 1 3 2 1 1
3 2 2 1 0 0 2 3 2 2 0 1 4 2 2 1 0 0 2

n = 41 0 0 0 5 3 3 5 0 3 5 2 2 3 0 0 5 3 3 0
5 5 3 3 2 4 2 3 4 1 3 3 0 1 3 3 2 4 2

4 4 4 4 0 1 4 0 2 4 0 5 5 5 4 4 0 1
1 23 2 5 5 4 5 5 4 5 5 4 4 4 2 5 5 4
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