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THE EXISTENCE OF LIMIT CYCLE FOR PERTURBED
BILINEAR SYSTEMS

Hanen Damak, Mohamed Ali Hammami and Yeong-Jeu Sun

In this paper, the feedback control for a class of bilinear control systems with a small
parameter is proposed to guarantee the existence of limit cycle. We use the perturbation
method of seeking in approximate solution as a finite Taylor expansion of the exact solution.
This perturbation method is to exploit the “smallness” of the perturbation parameter ε to
construct an approximate periodic solution. Furthermore, some simulation results are given to
illustrate the existence of a limit cycle for this class of nonlinear control systems.
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Classification: 70K05, 37G15

1. INTRODUCTION

Modern applications need to solve power conversion problems to achieve more efficiency
in the control design and constitute a wide and useful applications classes of perturbed
systems. The use of dither signals for stabilization of nonlinear control systems is a well-
known and frequently used technique. The idea is that by injecting a suitably chosen
high-frequency signal in the control loop, the nonlinear sector is effectively narrowed
and the system can thereby be stabilized (see [2]). In these applications, the steady
state is generally depicted by a periodic motion ([3],[4],[5],[6],[8]). So it is of importance
to study this limit cycle, this is due to theoretical interests as well as to powerful tool
for oscillator designs, using the classical method which consists the use of the Poincare–
Bendixson map technique. In [7], the limit cycle phenomenon for a class of nonlinear
discrete-time systems was investigated using analytic method. In general, we have to
resort to approximate solutions. The goal of the perturbation method is to exploit
the “smallness” of the perturbation parameter ε to construct an approximate solutions
that are valid for sufficiently small ε. In this paper, a feedback control is proposed to
guarantee the existence of a limit cycle for a class of perturbed bilinear systems. In
addition, we use the perturbation method as in [3] to approximate the periodic solution.
The effectiveness of these approximation is verified in numerical example.
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2. PROBLEM FORMULATION AND MAIN RESULTS

In this paper, we consider the following bilinear control system:

ẋ(t) = Ax(t) + u(t)B(ε)x(t), ∀ t ≥ t0 ≥ 0, (1)

x(t0) =
(

x01

x02

)
where x =

(
x1

x2

)
∈ R2, u ∈ R,

A =
(

a −b
b a

)
, B(ε) =

(
−1 + ε 0

0 −1 + ε

)
with a > 0, ε 6= 1 and x(t0) 6= 0. Specially, the feedback control law is selected as follows:

u(t) = (1− ε)r̄(x2
1(t) + x2

2(t)), with r̄ > 0. (2)

Thus, the closed-loop system is given by:
ẋ1(t) = −bx2(t)− (−1 + ε)2r̄x1(t)

[
x2

1(t) + x2
2(t)−

a

(−1 + ε)2r̄

]

ẋ2(t) = bx1(t)− (−1 + ε)2r̄x2(t)
[
x2

1(t) + x2
2(t)−

a

(−1 + ε)2r̄

]
, ∀ t ≥ t0.

(3)

Obviously, x = (0, 0) is an equilibrium point of system (3), it means that the solution
of system (3) is given by x(t) = 0 if x(t0) = 0. To avoid the trivial case of x(t0) = 0, in
the following, we only consider the system (3) under the case of x(t0) 6= 0.

Definition 2.1. Consider the system (3). The closed and bounded manifold s(x) = 0,
in the x1 − x2 plane, is said to be an exponentially stable limit cycle if there exists a
positive number α such that the manifold of s(x) = 0 along the trajectories of system
(3) satisfies the following inequality:

|s(x(t))| ≤ |s(x(t0))| exp[−α(t− t0)], ∀ t ≥ t0 ≥ 0.

In this case, the positive number α is called the guaranteed convergence rate.

Now, we present the main result for the existence of the exponentially stable limit cycle
of system (1) as follows.

Theorem 2.2. For the feedback bilinear systems (1), all of phase trajectories tend to
the exponentially stable limit cycle

s(x) = x2
1 + x2

2 −
a

(−1 + ε)2r̄

in the x1 − x2 plane, with the guaranteed convergence rate

α =


+∞ if x2

01 + x2
02 =

a

(−1 + ε)2r̄
2a if x2

01 + x2
02 >

a

(−1 + ε)2r̄
2a(−1 + ε)2(x2

01 + x2
02) if x2

01 + x2
02 <

a

(−1 + ε)2r̄
.
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Furthermore, the states x1(t) and x2(t) exponentially track, respectively, the trajectories√
a

(−1 + ε)2r̄
cos

[
b(t− t0) + tan−1

(
x02

x01

)]
and √

a

(−1 + ε)2r̄
sin

[
b(t− t0) + tan−1

(
x02

x01

)]
in the time domain, with the guaranteed convergence rate α

2 .

P r o o f . Define a smooth manifold s(x) = 0 and a continuous function

θ(x) = tan−1

[
x2

x1

]
with

s(x) = xT x− a

(−1 + ε)2r̄
.

Then, the time derivatives of s2(x) and θ(x) along the trajectories of system (3) is given
by:

ds2(x(t))
dt

= 2s(x(t))(2x1ẋ1 + 2x2ẋ2) = −4(−1 + ε)2r̄(x2
1 + x2

2)s
2(x(t)), (4)

dθ(x(t))
dt

=
ẋ2x1 − ẋ1x2

x2
1 + x2

2

= b, (5)

which implies that

θ(x(t)) = b(t− t0) + tan−1

(
x02

x01

)
. (6)

In the following, there are three cases to discuss the trajectories of the feedback control
system of (3).

Case 1: x2
1(t0) + x2

2(t0) =
a

(−1 + ε)2r̄
(or equivalently s(x(t0)) = 0).

In this case, from (4) it follows that

ds2(x(t))
dt

= 0,

which implies that
x2

1(t) + x2
2(t) =

a

(−1 + ε)2r̄
. (7)

Hence, we obtain:

x1(t) =
√

a

(−1 + ε)2r̄
cos

[
b(t− t0) + tan−1

(
x02

x01

)]
, ∀ t ≥ t0, (8)
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and

x2(t) =
√

a

(−1 + ε)2r̄
sin

[
b(t− t0) + tan−1

(
x02

x01

)]
, ∀ t ≥ t0, (9)

and
s(x(t)) = 0. (10)

Case 2: x2
1(t0) + x2

2(t0) >
a

(−1 + ε)2r̄
(or equivalently s(x(t0)) > 0).

In this case, from (4), we obtain:

ds2(x(t))
dt

≤ −4as2(x(t)).

Let
U(t) = s2(x(t)),

we have
d
dt

U(t) ≤ −4aU(t).

Hence ∫ t

t0

dU(t)
U(t)

≤
∫ t

t0

−4adt.

It follows that
U(t) ≤ U(t0) exp[(−4a(t− t0))], ∀ t ≥ t0.

This implies that

s2(x(t)) ≤ |s2(x(t0))| exp[(−4a(t− t0))], ∀ t ≥ t0.

Then
s(x(t)) ≤ |s(x(t0))| exp[(−2a(t− t0))], ∀ t ≥ t0.

So, we have∣∣∣∣√x2
1(t) + x2

2(t)−
√

a

(−1 + ε)2r̄

∣∣∣∣2 ≤ ∣∣s(x(t0))
∣∣ exp[(−2a(t− t0))], ∀ t ≥ t0.

It yields,

∣∣∣∣√x2
1(t) + x2

2(t)−
√

a

(−1 + ε)2r̄

∣∣∣∣ ≤ √
|s(x(t0))| exp[(−a(t− t0))], ∀ t ≥ t0. (11)

Consequently, by (6) and (11), we obtain the following exponential estimations∣∣∣∣x1(t)−
√

a

(−1 + ε)2r̄
cos

[
b(t− t0) + tan−1

(
x02

x01

)]∣∣∣∣
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≤
√

s(x(t0)) exp[(−a(t− t0))], ∀ t ≥ t0,

and∣∣∣∣x2(t)−
√

a

(−1 + ε)2r̄
sin

[
b(t− t0) + tan−1

(
x02

x01

)]∣∣∣∣
≤

√
s(x(t0)) exp[(−a(t− t0))], ∀ t ≥ t0.

Case 3: x2
1(t0) + x2

2(t0) <
a

(−1 + ε)2r̄
(or equivalently s(x(t0)) < 0).

In this case, from (4), we obtain:

ds2(x(t))
dt

≤ −4(−1 + ε)2r̄(x2
01 + x2

02)s
2(x(t)).

Let
U(t) = s2(x(t)).

We have
d
dt

U(t) ≤ −4(−1 + ε)2r̄(x2
01 + x2

02)U(t).

Hence ∫ t

t0

dU(t)
U(t)

≤
∫ t

t0

−4(−1 + ε)2r̄(x2
01 + x2

02) dt.

It follows that

U(t) ≤ U(t0) exp[(−4(−1 + ε)2r̄(x2
01 + x2

02)(t− t0))], ∀ t ≥ t0.

This implies that

s2(x(t)) ≤ |s2(x(t0))| exp[(−4(−1 + ε)2r̄(x2
01 + x2

02)(t− t0))], ∀ t ≥ t0.

Then

|s(x(t))| ≤ |s(x(t0))| exp[(−2(−1 + ε)2r̄(x2
01 + x2

02)(t− t0))], ∀ t ≥ t0.

So ∣∣∣∣√x2
1(t) + x2

2(t)−
√

a

(−1 + ε)2r̄

∣∣∣∣2
≤

∣∣s(x(t0))| exp[(−2(−1 + ε)2r̄(x2
01 + x2

02)(t− t0))], ∀ t ≥ t0.

It yields
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∣∣∣∣√x2
1(t) + x2

2(t)−
√

a

(−1 + ε)2r̄

∣∣∣∣
≤

√∣∣s(x(t0))
∣∣ exp[(−(−1 + ε)2r̄(x2

01 + x2
02)(t− t0))], ∀ t ≥ t0. (12)

Consequently, by (6) and (12), we obtain the following exponential estimations∣∣∣∣x1(t)−
√

a

(−1 + ε)2r̄
cos

[
b(t− t0) + tan−1

(
x02

x01

)]∣∣∣∣
≤

√
|s(x(t0))| exp[(−(−1 + ε)2r̄(x2

01 + x2
02)((t− t0))], ∀ t ≥ t0,

and∣∣∣∣x2(t)−
√

a

(−1 + ε)2r̄
sin

[
b(t− t0) + tan−1

(
x02

x01

)]∣∣∣∣
≤

√
|s(x(t0))| exp[(−(−1 + ε)2r̄(x2

01 + x2
02)((t− t0))], ∀ t ≥ t0.

This completes the proof. �

Remark 2.3. Obviously, by theorem 2.2, such bilinear feedback system of (1) can be
represented as nonlinear oscillators with

the amplitude
√

a

(−1 + ε)2r̄
and the frequency b.

Such oscillations are generally independent of the initial condition and limit cycles of
such oscillation are not influenced by a small parameter variation.

3. THE PERTURBATION METHOD

Consider the system (3). Suppose we want to solve the state equation (3) for a given
initial state {

x1(t0) = η1(ε)
x2(t0) = η2(ε)

(13)

where, for more generality, we allow the initial state to depend “smoothly” on ε. The
solution of (3) – (13) will depend on the parameter ε, a point that we shall emphasize
by writing the solution as (x1(t, ε), x2(t, ε)).
The goal of the perturbation method is to exploit the “smallness” of the perturbation
parameter ε to construct approximate solution that will be valid for sufficiently small |ε|.
The simplest approximation results by setting ε = 0 in (3) – (13) to obtain the nominal
or unperturbed problem: ẋ1(t) = −bx2(t)− r̄x1(t)

[
x2

1(t) + x2
2(t)−

a

r̄

]
ẋ2(t) = bx1(t)− r̄x2(t)

[
x2

1(t) + x2
2(t)−

a

r̄

]
, ∀ t ≥ t0,

(14)
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with initial state {
x1(t0) = η1(0)
x2(t0) = η2(0).

Suppose the problem has an unique solution (x10(t), x20(t)) defined on [t0, t1] and

(x10(t), x20(t)) ∈ R2, ∀ t ∈ [t0, t1].

Suppose further that
(t, x, ε) −→ Ax(t) + u(t)B(ε)x(t)

and η are twice continuously differentiable in their arguments for (t, x, ε) in

[t0, t1]× R2 × [−ε0, ε0].

From continuity of solutions with respect to initial states and parameters (see theorem 2
in [3] pp. 97) we know that, for sufficiently small |ε|, the problem (3) – (13) has an unique
solution (x1(t, ε), x2(t, ε)) defined on [t0, t1].

Approximating (x1(t, ε), x2(t, ε)) by (x10(t), x20(t)) can be justified by using Taylor’s
theorem (see [1]) for (x1(t, ε), x2(t, ε)) to show that

‖(x1(t, ε), x2(t, ε))− (x10(t), x20(t))‖ ≤ k|ε|, ∀ |ε| < ε1, ∀ t ∈ [t0, t1],

for some k > 0 and ε1 ≤ ε0.

If we succeed the showing this bound on the approximation error, we then say that the
error is of order O(ε) and write

(x1(t, ε), x2(t, ε))− (x10(t), x20(t)) = O(ε).

This order of magnitude will be used frequently in this section, it is defined as follows.

Definition 3.1. δ1(ε) = O(δ2(ε)) if there exist positive constants k and c such that

|δ1(ε)| ≤ k|δ2(ε)|, ∀ |ε| < c.

Consider the following bilinear control systems (1). Suppose we want to construct a
finite Taylor series with N = 3. Let

xi = xi0 + εxi1 + ε2xi2 + ε3xiR, i = 1, 2, (15)

and
ηi = ηi0 + εηi1 + ε2ηi2 + ε3ηiR, i = 1, 2.

Substitution of (15) in (3), yields

ẋ10 + εẋ11 + ε2ẋ12 + ε3ẋ1R = −b[x20 + εx21 + ε2x22 + ε3x2R]

−(−1 + ε)2r̄(x10 + εx11 + ε2x12 + ε3x1R)
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×
[
(x10 + εx11 + ε2x12 + ε3x1R)2 + (x20 + εx21 + ε2x22 + ε3x2R)2 − a

(−1 + ε)2r̄

]
and

ẋ20 + εẋ21 + ε2ẋ22 + ε3ẋ2R = b[x10 + εx11 + ε2x12 + ε3x1R]

−(−1 + ε)2r̄(x20 + εx21 + ε2x22 + ε3x2R)

×
[
(x10 + εx11 + ε2x12 + ε3x1R)2 + (x20 + εx21 + ε2x22 + ε3x2R)2 − a

(−1 + ε)2r̄

]
.

Matching coefficients of ε0, we obtain

ẋ10 = −bx20 − r̄x10

[
x2

10 + x2
20 −

a

r̄

]
, x10(0) = η10,

ẋ20 = bx10 − r̄x20

[
x2

10 + x2
20 −

a

r̄

]
, x20(0) = η20,

which is the unperturbed problem at ε = 0.

Matching coefficients of ε, we obtain

ẋ11 = −bx21 − 2r̄x2
10x11 − 2r̄x10x20x21 − r̄x11x

2
10 − r̄x11x

2
20 + 2r̄x3

10 + 2r̄x10x
2
20

+ax11, x11(0) = η11,

ẋ21 = bx11 − 2r̄x20x10x11 − 2r̄x2
20x21 − r̄x21x

2
10 − r̄x21x

2
20 + 2r̄x20x

2
10 + 2r̄x3

20

+ax21, x21(0) = η21,

while matching coefficients ε2, we have

ẋ12 = −bx22 − r̄x10x
2
11 − 2r̄x2

10x12 − r̄x10x
2
21 − 2r̄x10x20x22

−2r̄x10x
2
11 − 2r̄x11x20x21 − r̄x12x

2
10 − r̄x12x

2
20 − r̄x3

10 − r̄x10x
2
20 + 4r̄x2

10x11

+4r̄x10x20x21 + 2r̄x11x
2
10 + 2r̄x11x

2
20 + ax12, x12(0) = η12,

ẋ22 = bx12 − r̄x20x
2
11 − 2r̄x20x10x12 − r̄x20x21 − 2r̄x2

20x22 − 2r̄x21x10x11

−2r̄x2
21x20 − r̄x22x

2
10 − r̄x22x

2
20 + 4r̄x20x10x11 + 4r̄x20x10x11 + 4r̄x2

20x21

+2r̄x21x
2
10 + 2r̄x21x

2
20 + ax22, x22(0) = η22.

Having calculated the terms (x10, x20), (x11, x21) and (x12, x22), our task now is to show
that (x10, x20) + (x11, x21)ε + (x12, x22)ε2 is indeed O(ε3).

Note that, in [3], the author gave a result of existence and uniqueness for a class of
perturbed systems. Now, using the theorem in ([3] pp. 388), we have the following
proposition to approximate the solution.

Proposition 3.2. Suppose that

• The functions (t, x, ε) −→ Ax(t) + u(t)B(ε)x(t) and η have continuous derivatives
up to order 3 with respect to their arguments for

(t, x, ε) ∈ [t0, t1]× R2 × [−ε0, ε0].
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• The nominal problem (14) has an unique solution (x10(t), x20(t)) defined on [t0, t1]
and (x10(t), x20(t)) ∈ R2 for all t ∈ [t0, t1].

Then there exists ε∗ > 0 such that ∀ |ε| < ε∗, the problem (3) – (13) has an unique
solution

(x1(t, ε), x2(t, ε)) defined on [t0, t1]

which satisfies

(x1(t, ε), x2(t, ε))− [(x10, x20) + (x11, x21)ε + (x12, x22)ε2] = O(ε3).

We give now an example to illustrate the applicability of the main result.

Example 3.3. Consider the following bilinear control system:

ẋ(t) =
(

ẋ1

ẋ2

)
=

(
3 −2
2 3

)
x(t) + u(t)

(
−1 + ε 0

0 −1 + ε

)
x(t), ∀ t ≥ 0 (16)

with initial state  x1(t0) = −2 + ε

x2(t0) = 2− 2ε.

• If we let ε = 0 can be obtained as in [7], then (16) becomes

ẋ(t) =
(

ẋ1

ẋ2

)
=

(
3 −2
2 3

)
x(t) + u(t)

(
−1 0
0 −1

)
x(t), ∀ t ≥ 0. (17)

By theorem 2.2, with the control law

u(t) = 5x2
1(t) + 5x2

2(t)

and x(0) = [−2 2]T , we conclude that the phase trajectories of system (17) tend
to the exponentially stable limit cycle

s(x) = x2
1 + x2

2 −
3
5

in the x1 − x2 plane, with the guaranteed convergence rate α = 6. Furthermore,
the states x1(t) and x2(t) exponentially track, respectively, the trajectories√

3
5

cos
[
2t +

3π

4

]
and √

3
5

sin
[
2t +

3π

4

]
,

in the time domain, with the guaranteed convergence rate α
2 = 3. Some state

trajectories of the feedback-controlled system are depicted in Figures 1 and 2.
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0 5 10 15
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

t

x 1(t
);

 x
2(t

)

Fig. 1. x1(t) and x2(t) of the feedback-controlled system.

−2 −1.5 −1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

1.5

2

x
1
(t)

x 2(t
)

Fig. 2. Typical phase trajectories of the feedback-controlled system.

• If we let ε = 1
2 , then (16) becomes

ẋ(t) =
(

ẋ1

ẋ2

)
=

(
3 −2
2 3

)
x(t) + u(t)

 −1
2

0

0 −1
2

 x(t), ∀ t ≥ 0. (18)

By theorem 2.2 with the control law

u(t) =
5
2
x2

1(t) +
5
2
x2

2(t)



The existence of limit cycle for perturbed bilinear systems 187

and x(0) = [1 1]T , we conclude that the phase trajectories of system (18) tend to
the exponentially stable limit cycle

s(x) = x2
1 + x2

2 −
12
5

in the x1 − x2 plane, with the guaranteed convergence rate α = 3. Furthermore,
the states x1(t) and x2(t) exponentially track, respectively, the trajectories

2
√

3√
5

cos
[
2t +

π

4

]
and

2
√

3√
5

sin
[
2t +

π

4

]
,

in the time domain, with the guaranteed convergence rate α
2 = 3

2 .

Some state trajectories of the feedback-controlled system are depicted in Figures 3 and 4.

0 5 10 15
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

t

x 1(t
);

 x
2(t

)

Fig. 3. x1(t) and x2(t) of the feedback-controlled system.

Now, we approximate (x1(t), x2(t)) by [(x10, x20) + 1
2 (x11, x21) + 1

4 (x12, x22)] because

(x1(t), x2(t))−
[
(x10, x20) +

1
2
(x11, x21) +

1
4
(x12, x22)

]
= O

(
1
8

)
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−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
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x
1
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Fig. 4. Typical phase trajectories of the feedback-controlled system.

with (x10, x20) is the solution of (17), (x11, x21) is the solution of system

ẋ11 = −2x21 − 10x2
10x11 − 10x10x20x21 − 5x11x

2
10 − 5x11x

2
20 + 10x3

10 + 10x10x
2
20

+3x11, x11(0) = 6,

ẋ21 = 2x11 − 10x20x10x11 − 10x2
20x21 − 5x21x

2
10 − 5x21x

2
20 + 10x20x

2
10 + 10x3

20

+3x21, x21(0) = −2,

and (x12, x22) is the solution of system:

ẋ12 = −2x22 − 5x10x
2
11 − 10x2

10x12 − 5x10x
2
21 − 10x10x20x22 − 10x10x

2
11

−10x11x20x21 − 5x12x
2
10 − 5x12x

2
20 − 5x3

10 − 5x10x
2
20 + 20x2

10x11 + 20x10x20x21

+10x11x
2
10 + 10x11x

2
20 + 3x12, x12(0) = 0,

ẋ22 = 2x12 − 5x20x
2
11 − 10x20x10x12 − 5x20x21 − 10x2

20x22 − 10x21x10x11

−10x2
21x20 − 5x22x

2
10 − 5x22x

2
20 + 20x20x10x11 + 20x20x10x11 + 20x2

20x21

+10x21x
2
10 + 10x21x

2
20 + 3x22, x22(0) = 0.

4. CONCLUSION

In this paper, a feedback control is constructed to guarantee the existence of limit
cycle for a class of bilinear systems. Furthermore, we gave a numerical value of the
approximation error

(x1(t, ε), x2(t, ε))− (x10(t), x20(t)) = O(ε)

for a given numerical value of ε when the error is O(ε). Knowing that the error is O(ε)
means that its norm is less than k|ε| for some positive constant k which is independent
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of ε and this means that the bound decreases monotonically as ε decreases. The per-
turbation method of seeking in approximate solution as a finite Taylor expansion of the
exact solution where it is shown that an approximate periodic solution can be detected.
The effectiveness of these approximation is verified in numerical examples. Also, Some
simulation results are given to illustrate the existence of a limit cycle for this class of
nonlinear control systems.
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