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Abstract. Let m be a positive integer, 0 < a < mn, b= (b1,...,bm) € BMO™. We
give sufficient conditions on weights for the commutators of multilinear fractional integral

operators IZ to satisfy a weighted endpoint inequality which extends the result in D. Cruz-
Uribe, A. Fiorenza: Weighted endpoint estimates for commutators of fractional integrals,
Czech. Math. J. 57 (2007), 153-160. We also give a weighted strong type inequality which
improves the result in X. Chen, Q. Xue: Weighted estimates for a class of multilinear
fractional type operators, J. Math. Anal. Appl., 362, (2010), 355—-373.
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1. INTRODUCTION AND MAIN RESULTS

Let m be a positive integer, 0 < o < mn, and let f: (f1,-.-, fm) be a collection
of m locally integrable functions on R™. We define the multilinear fractional integral
operator as

PN Jiyr) - fm(Ym)
W) D= [ e s A v,

and the multilinear fractional maximal operator M, by

7 _ a/n 5 i e )
Mo(F ) = sup Q jHl|Q|/Q|fj<yj>|dy],
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where the supremum is taken over all cubes @ containing x in R™ with the sides
parallel to the axes.

Multilinear fractional integral operators were studied by Grafakos [7], Kenig and
Stein [11], Grafakos and Kalton [8]. Recently, Chen and Xue [2], Moen [13] and
Pradolini [14] studied the weighted norm inequalities for the multilinear fractional
integral operators and the multilinear maximal operator.

Assuming that b= (b1,...,bm) is a collection of locally integrable functions, mul-
tilinear commutators of Z, with b are defined as

(12) o) =37 (D),

where Z09 () = 0;Za(f1y- s fiseoos fn) = Za(f1y oy 035 oo fim)- ) )

Chen and Xue [2] also studied the weighted norm inequalities for Z8 with b €
BMO™. For linear operators, Cruz-Uribe and Fiorenza [5] obtained weighted end-
point estimates for commutators of fractional integrals, Pérez and Pradolini [15] gave
the sharp weighted endpoint estimates for commutators of singular integral opera-
tors. In this paper, we give weighted endpoint estimates and strong type weighted
inequalities for the commutators IE.

Here we must point out that the multilinear operators have been studied by many
authors, including Christ and Journé [3], Kenig and Stein [11], and Grafakos and
Torres [9], [10]. In [12], Lerner, Ombrosi, Pérez and Torres Trujillo-Gonzélez devel-
oped the multilinear weighted theory. For historical details and more information on
multilinear theory see these papers and the related references.

To state our results, we need some notation. For b = (b1,...,bm) € BMO™, denote
HE‘”BMOM = sup ||b;llBMo. For m exponents 1 < p1,...,pm < 0o, we will write p for

i

the number given by 1/p =1/p1 + ...+ 1/ppm, and the vector = (p1,...,Pm)-

Let U(t): [0,00) — [0,00) be a Young function. That is a continuous, convex, in-
creasing function with ¥(0) = 0 and such that ¥(¢) — oo ast — oco. The Luxemburg
norm of a function f over a cube Q is defined by

1
|f|\1/,Q—inf{>\>0; @/Qq,(v&x)gdx@}.

In particular, for the Young function ®(¢) = ¢(1 +log™ ¢), the Luxemburg norm will

be denoted by || f||£aog 1.),0-
For i =1,...,m, 0 < a < mn, multilinear fractional Orlicz maximal operators
associated with ® are defined as

Q g a/n 1
a,L(mgL)(f)(x) = sup |Q| / ”fi”L(logL),QH 10| / | fi ;)| dy;.,
Q3x j#i' | Q
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and

Ma,L(logL)(f)( ) Sup |Q|a/n H ||f]||L (log L),

j=1

Let 1 < p1,...,pm < oo and ¢ be such that 1/m < p < ¢ < co. Given W =

(wi,...,wn), where w; are nonnegative locally integrable functions on R", j =
m

1,...,m, set vg = 'H1 w;. We say that o satisfies the Az, condition, or that it is in
]:

the class Az 4, if

. 1 . 1/g m (L ) >1/p;.
o1a., = (g7 [, %) 11 @ e ae) <o

If some p; =1, then (IQI fQ 7 dz) Y%} is understood to be (%fw]) 1

The following theorems are our main results.

Theorem 1.1. Given0 < a < mn, b € BMO™, let I'(t) = [t(1+log™ t)]"/ (mn—a),
O(t) = t(1 +1log" t=1), ¢ = n/(mn — a). Then for each weight & € A(1,...1),q there
exists a constant C' > 0 such that for any t > 0,

vi({z € R |Z(f)(@)] > ™)
7 m m o f y
<cr@iligiomr(IT [ #(E2)ewwa).
j=17%"
Theorem 1.2. Let 0 < a < mn, 1 < p1,...,pm < 00, 1/m < p < n/a, and

1/¢=1/p— «o/n. Then for each weight & € Ay, there exists a constant C > 0 such
that

(13) (/n(ﬂg(f)(xﬂvw(x))qdx)l/ cH( [ 1@kt ))“dx)l/pj

for all f of bounded measurable functions with compact support.

Remark. Chen and Xue [2] have obtained (1.3) under the following assumption
on weights oJ: there exists 7 > 1 such that &" € Az, q/r. Hence Theorem 1.2
improves the result in [2].
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2. SOME LEMMAS

For ¢ > 0, let M;s be the maximal function and M g the sharp maximal function

B i s 1/6
M;f(x) = i‘ég<|@| /Q @) dy)

Mf(z) = Supinf(i/ 1)l ~ |C|5|dy>1/5~
’ QI Jg

zeQ °©

We will use the following form of the classical result of Fefferman and Stein [6]:
Let 0 < p,d < 0o and w be a weight in As. If ¢: (0,00) — (0,00) is doubling, then
there exists a constant C' > 0 such that

[ st @)yata)de <C [ (@)l

n

and

(2.1) supp(Nw(fy € R™: Msf(y) > A}) < Csupp(Nw({y € R": MEf(y) > A})

for every function f such that the left-hand side is finite.
We need the following lemmas in the proofs of our main results.

Lemma 2.1 ([11]). Let 0 < a < mn, 1 < p1,...,pm < 00, p < n/a, 1/q =

1/p—a/n.
(a) If 1 <pj <00, j=1,...,m, then

|Za(F)le < CH 1f5ll e -
Jj=1
(b) If 1 <pj <o0,j=1,...,m, and at least one of the p; equals 1, then
|Za(F)pae < CH 1f5ll e -
Jj=1
Lemma 2.2 ([13]). Let 0 < a < mn, 1 < p1,...,pm < o0 and 1/g=1/p — a/n.

Suppose & € Ap,. Then

’
—p
vl € Amq7 w; e Amp;.

w

When some p; equals 1, w, € Amp/ is understood as wn/("m ) ¢ Ay,
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Lemma 2.3 ([2]). Let 0 < o < mn and 0 < § < 1/m. Then there exists
a constant C > 0 such that

MY(Za(F))(@) < CMa(F)(@)
for all f of bounded measurable functions with compact support.

Lemma 2.4 ([2]). Let 0 < o < mn, b € BMO™, 0 < § < 1/m, § < . Then there
exists a constant C' > 0 such that

(22)  MYZL())(@) < ClBlmpon (Ma piog ) (f)(@) + Me(Za(f))(@))

for all f of bounded measurable functions with compact support. We remark that
the proof of Lemma 2.4 actually shows that we can replace /\/lmL(logL)(f) on the

right-hand side of (2.2) by the slightly smaller operator 21 MQL(lOgL) (f)
1=

Lemma 2.5 ([13]). Let 0 < o < mn, 1 < p1,...,pm < 00, 1/m < p < n/a, and
1/¢g=1/p—«a/n. Then

</n (Ma(f)(@)vs(2))? dx)l/q Cf{(/ (1 (@) o3 () dx>1/pj

if and only if & € Az,

3. PROOF OF THEOREM 1.1

By linearity of the multilinear commutators and Lemma 2.4, it is enough to con-
sider 70 (f)(2) = b(2)Za(f1, - - - fm) (@) — Zo(bf1, . . ., fn)(z) with b € BMO.

We will need the following notation and facts, for further information see [4].
Given an increasing function ¢: [0,00) — [0,00), define the function h, by

he(s) = sup 0<s<oo.
If ¢ is submultiplicative, then h, ~ ¢. Also, for all s,t > 0, ¢(st) < hy(s)e(t).

Since ® is submultiplicative, hg ~ ®. Denote
0, t=0,

U(t) = tm
—, t>0.
(I)(ta/n) ’
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So
() ~ t"™ (1 +logt t) 1.

The function ¥ is invertible with
TH(t) = D(t) = [t(1 + log™ ¢)]™/ (mn=a),

We need the following inequality in the proof of the weighted endpoint estimate
of the maximal operator ./\/li%LlogL.

Lemma 3.1 ([4]). If (t)/t is decreasing, then for any positive sequence {t;},
w(ztj) < ().
J J
The proof of Theorem 1.1 will be based on the following results.
Theorem 3.1. Let 0 < o < mn, I'(t) = [t(1 4 logT t)]*/ (M=) " Q(t) = t(1 +

log"t=1) and ¢ = n/(mn — ). Then for each weight & € A(,...1),q there exists
a constant C' > 0 such that for any t > 0,7 =1,...,m, we have

vi({z € R™: |M£,LlogL(f)($)| >t"})

<or(T1 [ o(Z2)etma)

Proof. Without loss of generality we may assume ¢ = 1 and f > 0. By
homogeneity, we may assume that ¢ = 1. Define the set

Q= {.1? €R™: Mtljz,L(logL)(f)(x) > 1}

It is easy to see that €2 is open and we may assume that it is not empty. To estimate
the size of €2, it is enough to estimate the size of every compact set F' contained in 2.
We can cover F' by a finite family of cubes {Q;} for which

m

Q1™ 1 11l Los .o, [T1@51% ™ (fi)ay > 1.

Jj=2

Using Vitali’s covering lemma, we can extract a subfamily of disjoint cubes {Q}
such that

(3.1) FclJoor.
k
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For each k, by homogeneity and the properties of the norm || - ||¢,o we have

e |/ ( 'QH"/”JﬁQ( e )dy
/)
‘ lgzlm H/ 2
G 1L, 2w
Notice that for sq,..., s, > 0 we have
ha((s1 ... 5m)7) = ?L‘EW
Gl

St ) S (Gor s 0

< C(s1--8m)™1R((s1. .. 5m) 1) < C T ©(s5)-
=1
Since & € A(1,...1),q, for each k we have

q (L@ T |
vg(@0) < OGRS T [ ety

|Qk| j=17 Q%
m - q m
< Chy (H (infe) )H | ety

It is easy to see that W/ (t)/t is decreasing and by Lemma 3.1 and Holder’s in-
equality at discrete level we have

V(L(F)) = U™ L (F)]™ < {\Izl/m (Z vg(Qk)ﬂm

k

< [Cwimes@n] < [Sees@on )

k k

m
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O

Theorem 3.2. Let 0 < a < mn, w € Aeo, ¢(t) =T(P(¢t)™) and b € BMO. Then
there exists a constant C > 0 such that

(3:2) sup ——=w({r c R": IIZ(f)(x)I > t"})

t>0 90(1/73)
< Collbllho) sup —7s (m) w(fo € R™: Mg pog ) (F)(@) > 7))

for all f of bounded measurable functions with compact support.

Proof. We can assume that the right-hand side of (3.2) is finite. It is easy to
see that 1/¢(1/t) is doubling. By Lebesgue differentiation theorem, Fefferman-Stein
inequality (2.1), Lemma 2.3 and Lemma 2.4 with exponents 0 < § < & < 1/m, we

have

1 n. b7 z m
g @ € B (@) > 7))

1 wlz n. b [ z m
< SUp ({z € R™: Ms(Zo(f))(x) >t™})
1 n. i g T m
Ci>0 07D w({z € R™: MJ(ZL(f))(x) > t™})

< Csa<||b||]é/$o>sup w({z € R ML og ) (F)(@) > t7})

a7
+ Gl i) sup (11 el € R M(Ta(F)@) > 7))

< C@(lleBMo)S N meyn w(fr € R": My, pog 1) (F)(@) > ™))

(1/15)
+ CsO(IIbIIBMo)Sup (1/t> w({z € R": MAZa(f)(2)) > t™})
(||b||BMo) mw({fc € R™: MY, p1og 1y (F)(@) > 7))

+ cwnm@ﬁo)sup w({z e R": Mo(f)(z) > t™})

<1/t>
< Colbliio) sup —rs w(le € B ML p10gy (F)(@) > 7)),
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We need to verify now that

—1 w({x " YNz m 0
(33 sup — i € R M(ZL()a) > 7)) <
and
1 " ) (z m 00
(3.4) iggmw({xe R™: M (Zo(f)(z)) > t™}) < 0.

We will only show (3.3) because the proof of (3.4) is very similar but easier. We
may assume that w is bounded. Note that w; = min{w, j} — w as j — oo a.e. on R,
wj € L™ and [wj]a,, < 2[w]a., . The result for general w will follow then by applying
the Monotone Convergence Theorem.

Notice that due to t™/ (M=) x(1/t) > 1, mé < 1 and the fact

M, L(mn/(mnfa)),oo([Rn) N L(mn/(mnfa)),oo(an)
we have

1 n. b m
iggmw({we R™: Ms(Zo(f))(z) >t™})
< Csupt™™/ (M=) {5 € R™: Myns (IZ5(F)[V/™) () > t}]
t>0
< Csupt™™/ (M=) {g e R™: T8 ()™ (2) > t}].
t>0

If we assume that b is bounded, then

o 7 () = bl ) )]
IR O e e
< ClaZallfils- - i )

Thus, by Lemma 2.1 (b), we have

sup ™"/ (M=) | f € R™: [T/ (2) > 1}
t>0

< Csuptm"/(m"_o‘)|{m e R™: Zo(Ifal,- -, [ fml)(x) > t™}]
t>0

m
<CILIAHIET < ,
j=1

since the family f is bounded with compact support.
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This proves (3.2) provided b is bounded. To obtain the result for a general b
in BMO, we consider the sequence of functions {b;} given by

g b(&) >,
bj(x) = 4 b(x), [b(z)| <,
_ja b(.l?) < _j'

Note that the sequence converges pointwise to b and ||b;||smo < ¢||b||Bmo. Thus

#w T n. b (£ z m
sup — L w(fe € R (ZE(7) ()] > 7))

< Csup ———=w({z € R": M, L(1ogL)(f)($) >t"}),

1
>0 ¢(1/t)
where the constant C' depends on the BMO norm of b. Since the family f is
bounded with compact support and Z,: L' x ... x L' — L®/(mn=0)),00 " e haye
1Za(bjfi, fo, - fm) = Za(bf1, fo, .o\ fm)ll Lo/ tmn—an.eo — 0, j — oco. Thus for each
compact set, an appropriate subsequence of {Igj ( f )} converges to Z? ( f ) in measure.
Hence for any K > 0,

w({z € B(0,K): |Z5(f)(@)] > t™})

1
sup
t>0 80(1/t)

1
< Csu
t>g 80(1/t)

where the constant C is independent of K. Finally, taking the supremum in K

w({z € R™: M}X,L(logL)(f)(x) >t"}),

completes the proof of the theorem. O

Proof of Theorem 1.1. By homogeneity it is enough to assume ¢t = 1. Since I'
and ® are submultiplicative, by Lemma 2.2, Theorem 3.1 and Theorem 3.2 we have

vi({w € R": |Z0(f)(2)] > 1})

<T@ S

< Cr(q)(HbHBI\TO) )Sup

vi({e € R™: |Z0(f)(@)| > t™})

—_

W vi({z e R": Mi,LUOgL)(f)(x) >

S (H e o ma)
< CT(@(|[bll o) ™) (E[/ (1t (j(y))dy)

< CT(D(]|b]| Haro)™ ) SO T
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4. PROOF OF THEOREM 1.2

The proof of Theorem 1.2 will use the following Coifman type inequalities for the
commutators of the multilinear fractional operators.

Lemma 4.1 ([1]). Let 0 < a < mn, 0 < p < 00, b € BMO™ and w € Au,. Then
there exists a constant C > 0 such that

@y [ EOE@Pe@ <0 [ Mo (@) el@) da

for all f of bounded measurable functions with compact support.

Lemma 4.2. Let 1 < p1,...,pm < 00, 1/¢ =1/p — a/n. Assume that & € Ag,,.

Then there exists a finite constant ro > 1 such that for any r: 1 < r < 19, J" =

srrarr < ClEl%

(Wi, .. wn,) € Ap/rg/r, and [G7] 4

P,q

Proof. By Lemma 2.2, w;pj € Ampfj C Ay for j =1,2,...,m, hence there are
constants c;, t; > 1, such that for any cube @

1/t
1 —plit; ’ Cj —p’;
(4.2) (—/w ) <= [ w., .
@l g™ @l Jo™

Let rj = t;p;/(p; +1; —1) > 1, j = 1,
max{ci,...,¢m}. Then for any r: 1 < r < ro, by Holder’s inequality and (4.2), we

<|7;|/Q(WT)Q/T))TMﬁ<ﬁ/¢2(w;)—(f’f/r)/)lr/pj

m 1—r/p;
H( 1 / —(T(Pj—l)/(ivj—r))p_;) /»
1Ql Jq

ceoymy 7o = min{ry,...,ryn} and ¢ =

have
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Proof of Theorem 1.2. By Lemma 4.1 and since vZ is in An,

[ (B @lea@) 4 <C [ Moz (D@oa(@)? ao

Rn

For r > 1, define the maximal operator
. m 1 1/r
Mo (P = s TT1QI™ (135 [ 1 aw)
Q3w |Q| Q

Since ®(t) = t(1 4 log™ t) <t", t > 1, we have

Ma,£00g 1) () (@) € CMar(F)(@) = C(Mar(f7) ()"

Thus

/n(|Ig(JF)(x)|”“7(x))q drsc Rn (Mo (F) (@) (2))? daz
Proving

(/ (Mar(f)va)? da;>1/q <C lin[l (/Rn(mle)pj dx)l/pj

is equivalent to proving

r/pj
([ 15 pmian)

For 0 < a < mn, by Lemma 3.1, there exists 7 > 1 such that 0 < ra < mn and
J" € Ag/pq/r- Noticing that 1/(q/r) = 1/(p/r) — ar/n, we conclude that (4.3) is
true by Lemma 2.5. This completes the proof. O

r/ m
43 ([ Mutf ey an) <]
Rn i

1
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