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STRUCTURE OF CUBIC MAPPING GRAPHS FOR THE RING

OF GAUSSIAN INTEGERS MODULO n

Yangjiang Wei, Dalian, Jizhu Nan, Dalian,

Gaohua Tang, Nanning

(Received March 3, 2011)

Abstract. Let Zn[i] be the ring of Gaussian integers modulo n. We construct for Zn[i]
a cubic mapping graph Γ(n) whose vertex set is all the elements of Zn[i] and for which
there is a directed edge from a ∈ Zn[i] to b ∈ Zn[i] if b = a3. This article investigates in
detail the structure of Γ(n). We give suffcient and necessary conditions for the existence
of cycles with length t. The number of t-cycles in Γ1(n) is obtained and we also examine
when a vertex lies on a t-cycle of Γ2(n), where Γ1(n) is induced by all the units of Zn[i]
while Γ2(n) is induced by all the zero-divisors of Zn[i]. In addition, formulas on the heights
of components and vertices in Γ(n) are presented.
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MSC 2010 : 05C05, 11A07, 13M05

1. Preliminaries

This work is motivated by [3] and [4], and extends some results given in the

paper [9], which investigated properties of the cubic mapping graphs for the ring Zn[i]

of Gaussian integers modulo n. The set of all complex number a + bi, where a and

b are integers, forms a Euclidean domain which is denoted by Z[i], with the usual

complex number operations. Let n > 1 be an integer and 〈n〉 the principal idea

generated by n in Z[i], and Zn = {0, 1, . . . , n − 1} the ring of integers modulo n.

Then the factor ring Z[i]/〈n〉 is isomorphic to Zn[i] = {a + bi : a, b ∈ Zn} which

is called the ring of Gaussian integers modulo n. The digraph Γ(n), whose vertex

This research was supported by the National Natural Science Foundation of China
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and the Guangxi New Century 1000 Talents Project.
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set consists of all the elements of Zn[i], and for which there is a directed edge from

α ∈ Zn[i] to β ∈ Zn[i] if and only if α3 = β, is called the cubic mapping graph of Zn[i].

Let R be a commutative ring, let U(R) denote the unit group of R and D(R) the

zero-divisor set of R. For α ∈ U(R), o(α) denotes the multiplicative order of α

in R. If R = Zn, then we write ordn α instead of o(α). We specify two particular

subdigraphs Γ1(n) and Γ2(n) of Γ(n), i.e., Γ1(n) is induced by all the vertices of

U(Zn[i]), and Γ2(n) is induced by all the vertices of D(Zn[i]).

In Γ(n), a cycle with precisely t vertices is called a t-cycle. It is obvious that

α is a vertex of a t-cycle if and only if t is the least positive integer such that

α3t

= α. A component of Γ(n) is a subdigraph which is a maximal connected

subgraph of the associated nondirected graph of Γ(n). The vertex set of Γ(n) is

denoted by V (Γ(n)).

If p is a prime number and t is a nonnegative integer, then we use the notation

pt ‖ a to mean that pt | a and pt+1 ∤ a. If a = 0, pt ‖ a implies that t = ∞. If

p ∤ a, then pt ‖ a if and only if t = 0. Let α = a + bi ∈ Zn[i], the norm N(α) of α

is defined by 1 6 N(α) 6 n and N(α) ≡ a2 + b2 (mod n). It is easy to check that

N(αβ) ≡ N(α)N(β) (mod n). For α = a + bi, we denote Re(α) = a.

Similarly, we can assign to a finite abelian group G a cubic mapping graph Γg(G)

whose vertex set consists of all the elements in G and for which there is a directed

edge from f ∈ G to h ∈ G if and only if f3 = h. The following lemma concern-

ing the structure of Γg(Cn) of the cyclic group Cn with order n was shown in [8,

Theorem 2.1].

Lemma 1.1.

(1) Suppose n = 3k, k > 1. Then Γg(Cn) is a ternary tree of height k with the root

in the identity e of Cn.

(2) Suppose 3 ∤ n. Then each component of Γg(Cn) is precisely a cycle.

(3) Suppose n = 3km, k > 1, m > 1, 3 ∤ m. Then each vertex of each cycle

in Γg(Cn) is attached to a ternary tree of height k.

Lemma 1.2 ([1], [6]). Let n > 1.

(1) The element α is a unit of Zn[i] if and only if gcd(N(α), n) = 1.

(2) If n =
s
∏

j=1

p
kj

j is the prime power decomposition of n, then the function

θ : Zn[i] →

s
⊕

j=1

Z
p

kj

j

[i]

such that θ(a + bi) = ((a mod p
kj

j ) + (b mod p
kj

j )i)s
j=1 is an isomorphism.
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(3) Zn[i] is a local ring if and only if n = pt, where p = 2 or p is a prime congruent

to 3 modulo 4, t > 1.

(4) Zn[i] is a field if and only if n is a prime congruent to 3 modulo 4.

By Lemma 1.2 (2), we can write α = (α1, . . . , αs) for α ∈ Zn[i], where αj ∈ Z
p

kj

j

[i]

for j = 1, . . . , s.

Lemma 1.3 ([2], [7]). Let Zn denote the additive group of integers modulo n.

(1) U(Z2[i]) ∼= Z2, U(Z22 [i]) ∼= Z2 × Z22 , U(Z2t [i]) ∼= Z22 × Z2t−2 × Z2t−1 for t > 3.

(2) Let q be a prime congruent to 3 modulo 4. Then U(Zqt [i]) ∼= Zqt−1 × Zqt−1 ×

Zq2−1 for t > 1.

(3) Let p be a prime congruent to 1 modulo 4. Then U(Zpt [i]) ∼= Zpt−1 × Zpt−1 ×

Zp−1 × Zp−1 for t > 1.

For α ∈ V (Γ(n)), the in-degree indeg(α) of α denotes the number of directed

edges coming into α. By Lemma 1.2 (2), we have the following lemma concerning

the in-degree of an arbitrary vertex in Γ(n).

Lemma 1.4. Suppose α = a + bi ∈ Zn[i], and let n =
s
∏

j=1

p
kj

j be the prime

power decomposition of n. Then indeg(α) = indeg(α1) × . . . × indeg(αs), where

αj = (a mod p
kj

j ) + (b mod p
kj

j )i and indeg(αj) is the in-degree of αj in Γ(p
kj

j ),

j = 1, . . . , s.

2. Cycles

The exponent exp(G) of a finite group G is the least positive integer n such that

gn = e for all g ∈ G, where e is the identity of G. It is easy to show that if

G is abelian, then there exists an element g in G such that o(g) = exp(G). In this

paper, we denote the λ-function by λ(n) = exp(U(Zn[i])). Let p and q be as given

in Lemma 1.3. Then clearly λ(1) = 1, λ(2j) = 2j for j = 1 or 2, λ(2j) = 2j−1

for j > 3, λ(qj) = qj−1(q2 − 1) for j > 1, λ(pj) = pj−1(p − 1) for j > 1, and

λ(rs) = lcm[λ(r), λ(s)] when gcd(r, s) = 1. In this section, we study the properties

of cycles in Γ(n) via the λ-function λ(n) and the norm N(α).

Theorem 2.1. Let n > 1.

(1) There exists a t-cycle (t > 2) in Γ(n) if and only if there exists β ∈ U(Zn[i])

such that o(β) | 3t − 1 but o(β) ∤ 3k − 1 whenever 1 6 k < t.
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(2) There exists a t-cycle (t > 1) in Γ(n) if and only if t = ordd 3 for some positive

divisor d of λ(n), where 3 ∤ d.

(3) Let n =
s
∏

j=1

p
kj

j be the prime power decomposition of n. If α is a vertex of

a t-cycle, then p
kj

j | N(α) whenever pj | N(α). Furthermore, if α and β lie on

the same cycle, then pj | N(α) if and only if pj | N(β).

P r o o f. In the following, let R = Zn[i].

(1) Suppose that t is the least positive integer such that o(β) | 3t−1. Then β3t

= β

and β3k

6= β for 1 6 k < t. Therefore, β is a vertex of a t-cycle.

Conversely, suppose that α is a vertex of a t-cycle (t > 2). Clearly α 6= 0 and t is

the least positive integer such that α3t

= α, so

(2.1) α(α3t−1 − 1) = 0.

If α ∈ U(R), by (2.1) we obtain α3t−1 − 1 = 0, thus t is the least positive integer

such that α3t−1 = 1. In this case, let β = α. Then t is the least positive integer such

that o(β) | 3t − 1, and the result holds. Now we assume α /∈ U(R). Let A = 〈α〉,

the principal ideal of R generated by α. Let B = Ann(α), the annihilator of α in R.

Then AB = {0}. By the above hypothesis,

(2.2) α3t−1 − 1 ∈ B, α3k−1 − 1 /∈ B for 1 6 k < t.

It follows from α3t−1 ∈ A, α3t−1 − (α3t−1 − 1) = 1 and (2.2) that A + B = R,

hence A ∩ B = AB = {0}. By the Chinese Remainder Theorem, we have a ring

isomorphism

F : R → R � A ⊕ R � B

such that F(γ) = (γ + A, γ + B) for each γ ∈ R. Let β = 1 + α − α3t−1. Clearly,

β 6= 1 and F(β) = (β + A, β + B) = (1 + A, α + B). So we have F(β3t−1) =

(1 + A, α3t−1 + B) = (1 + A, 1 + B). Since F is a ring isomorphism, β3t−1 = 1.

Moreover, by (2.2), t is the least positive integer for which β3t−1 = 1. This completes

the proof.

(2) Clearly, 1 is a vertex of a 1-cycle. By Lemma 1.3, 2 is a divisor of |U(R)| for

n > 1. So 2 | λ(n) and ord2 3 = 1. Next, let t > 1 and assume that there exists

a t-cycle in Γ(n). By part (1) above, there exists β ∈ U(R) for which t is the least

positive integer such that o(β) | 3t − 1. Now, let d = o(β). It is obvious that 3 ∤ d,

d | λ(n) and t = ordd 3. Conversely, suppose that there exists a positive divisor d

of λ(n), where 3 ∤ d and t = ordd 3. By the property of the exponent of a finite

group, there exists an element g of U(R) such that o(g) = λ(n). Let h = gλ(n)/d.
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Then o(h) = d. Moreover, since d | 3t − 1 but d ∤ 3k − 1 for 1 6 k < t, t is the least

positive integer such that h3t−1 = 1. Therefore, h is a vertex of a t-cycle.

(3) Since α is a vertex of a t-cycle, t is the least positive integer such that α3t

=

α. By the definition of the norm, we have N(α)3
t

≡ N(α3t

) ≡ N(α) (mod n).

Therefore,

(2.3) N(α)(N(α)3
t−1

− 1) ≡ 0 (mod n).

Since gcd(N(α), N(α)3
t−1

− 1) = 1, it follows from the congruence (2.3) that if

pj | N(α) then p
kj

j | N(α).

Now suppose α and β are on the same t-cycle of Γ(n). Then β = α3t−k

and

α = β3k

for some k ∈ {1, 2, . . . , t − 1}. Hence we have

(2.4) N(β) ≡ N(α)3
t−k

(mod n) and N(α) ≡ N(β)3
k

(mod n).

We see from (2.4) that pj | N(α) if and only if pj | N(β). �

Corollary 2.2. For α ∈ V (Γ1(n)), α is a vertex of a k-cycle if and only if 3 ∤ o(α)

and k = ordo(α) 3.

Let At(Γ1(n)) and At(Γ2(n)) denote the number of t-cycles in Γ1(n) and Γ2(n),

respectively. By the proof of [9, Theorem 3.1], we can derive A1(Γ1(n)) and A1(Γ2(n))

for n > 1. The following theorem computes At(Γ1(n)) for t > 1.

Theorem 2.3. Let t > 1 and let the prime power factorization of n be given by

n = 2s
∏

qj |n

q
αj

j ·
∏

pk|n

pβk

k ,

where qj ≡ 3 (mod 4), pk ≡ 1 (mod 4), s > 0, αj > 1 and βk > 1.

(1) Let λ(n) = uv, where u is the largest factor of λ(n) relatively prime to 3. Then

At(Γ1(n)) > 0 if and only if t = ordd 3 for some positive divisor d of u. In

particular, At(Γ1(n)) > 0 if t = ordu 3.

(2) Let C(t, 2s, n) be defined as follows:

C(t, 2s, n) =























1, s = 0,

gcd(2, 3t − 1) = 2, s = 1,

gcd(2, 3t − 1) · gcd(22, 3t − 1) = 2 gcd(22, 3t − 1), s = 2,

gcd(22, 3t − 1) · gcd(2s−2, 3t − 1) · gcd(2s−1, 3t − 1), s > 3.
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Let

B(t, n) = C(t, 2s, n)
∏

qj |n

([gcd(q
αj−1
j , 3t − 1)]2 · gcd(q2

j − 1, 3t − 1))

×
∏

pk|n

([gcd(pβk−1
k , 3t − 1)]2 · [gcd(p

k
− 1, 3t − 1)]2).

Then

At(Γ1(n)) =
1

t

[

B(t, n) −
∑

d|t
d 6=t

dAd(Γ1(n))

]

.

P r o o f. Part (1) follows from Theorem 2.1. The proof of part (2) is similar to

the proof of [5, Theorem 5.6] upon making use of Lemma 1.3 in this paper. �

As immediate applications of Theorem 2.3, we will compute At(Γ1(n)) for n = 2m,

3m and 5m, respectively, where m > 1, in Theorems 2.4, 2.5 and 2.6.

Theorem 2.4.

(1) Each component of Γ1(2
m) is precisely a cycle with 1 or 2 vertices form = 1, 2, 3.

Each component of Γ1(2
m) is precisely a cycle with 2k vertices for m > 4, where

k = 0, 1, . . . , m − 3.

(2) A1(Γ1(2)) = 2; A1(Γ1(2
2)) = 4, A2(Γ1(2

2)) = 2; A1(Γ1(2
3)) = 8, A2(Γ1(2

3)) =

12; A1(Γ1(2
4)) = 8, A2(Γ1(2

4)) = 60.

(3) Let m > 5. Then A1(Γ1(2
m)) = 8, A2(Γ1(2

m)) = 124, . . . , A2k(Γ1(2
m)) =

3 × 2k+4 (2 6 k 6 m − 4), A2m−3(Γ1(2
m)) = 2m+1.

Theorem 2.5. For m > 1, A1(Γ1(3
m)) = 2, A2(Γ1(3

m)) = 3, At(Γ1(3
m)) = 0 for

t > 3.

Theorem 2.6.

(1) The lengths of the cycles in Γ1(5) are precisely 1 and 2. For m > 2, the lengths

of the cycles in Γ1(5
m) are precisely 1, 2 and 4 × 5s−1, where s = 1, . . . , m − 1.

(2) A1(Γ1(5)) = 4 and A2(Γ1(5)) = 6.

(3) For m > 2 we have A1(Γ1(5
m)) = 4, A2(Γ1(5

m)) = 6, A4×5s−1(Γ1(5
m)) =

96 × 5s−1, where s = 1, . . . , m − 1.
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Next, we turn to the study of the properties of Γ2(n). First, it is easy to show that

if Zn[i] is a local ring, then Γ2(n) has a unique component containing the 1-cycle

with 0 as its only vertex. By Lemma 1.2 (2), (3), Corollary 2.2 and the following

Theorem 2.7, it suffices to consider the case of n being a power of a prime congruent

to 1 modulo 4.

Theorem 2.7. Let n =
s
∏

j=1

p
kj

j be the prime power decomposition of n, and

α = (α1, . . . , αs) ∈ Zn[i], where αj ∈ Z
p

kj

j

[i] for j = 1, . . . , s. Then

(1) α lies on a t-cycle of Γ(n) if and only if αj lies on a tj-cycle of Γ(p
kj

j ), where

lcm[t1, . . . , ts] = t;

(2) α lies on a t-cycle of Γ2(n) if and only if αj lies on a tj-cycle of Γ(p
kj

j ), where

lcm[t1, . . . , ts] = t and α
d
∈ D(Z

p
kd
d

[i]) for some d ∈ {1, . . . , s}.

P r o o f. (1) Suppose that α lies on a t-cycle of Γ(n). Then t is the least positive

integer such that α3t

= α. Hence, for j = 1, . . . , s, we have α3t

j = αj . Therefore,

αj lies on a tj-cycle of Γ(p
kj

j ), and tj is the least positive integer such that α
3tj

j = αj ,

thus tj 6 t. Moreover, by α3t

j = αj = α3tj

j we derive tj | t. Finally, it is easy to see

that lcm[t1, . . . , ts] = t.

Conversely, suppose that αj lies on a tj-cycle of Γ(p
kj

j ), j = 1, . . . , s. Since

lcm[t1, . . . , ts] = t, let t = tj × mj . Then

α3t

= (α3t

1 , . . . , α3t

s ) = (α3t1×m1

1 , . . . , α3ts×ms

s ) = (α1, . . . , αs) = α.

(2) Since α = (α1, . . . , αs) ∈ D(Zn[i]) if and only if α
d
∈ D(Z

p
kd
d

[i]) for some

d ∈ {1, . . . , s}, by part (1) above the result follows. �

Theorem 2.8. Let α = a+bi ∈ D(Zpm [i]), where α 6= 0 and p is a prime congruent

to 1 modulo 4, m > 1. Then

(1) α lies on a t-cycle of Γ2(p
m) if and only if pm | N(α), p ∤ gcd(a, b) and t is the

least positive integer such that (2a)3
t−1 ≡ 1 (mod pm);

(2) α lies on a t-cycle of Γ2(p
m) if and only if pm | N(α), p ∤ gcd(a, b) and t =

ordo(2a) 3.

P r o o f. (1) Suppose that α lies on a t-cycle of Γ2(p
m). Then α ∈ D(Zpm [i]),

which implies that p | N(α) and hence pm | N(α) due to Theorem 2.1 (3). If

p | gcd(a, b), then there exists a positive integer j such that α3j

= 0, hence α = 0,

which is a contradiction. So we have p ∤ gcd(a, b) and clearly p ∤ a, p ∤ b. Furthermore,
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by α3 = (a3 − 3ab2) + (3a2b − b3)i we have α3 = 4(a3 − b3i) because pm | N(α). We

observe that α3d

lies on the t-cycle for d > 0, hence

(2.5) α3t

= 4

t−1∑

s=0

3s

(a3t + (−1)tb3t i) = 23t−1(a3t + (−1)tb3t i).

Since α3t

= α, by (2.5) we derive that 23t−1a3t

≡ a (mod pm) and (−1)t23t−1b3t

≡ b

(mod pm). Therefore,

(2.6) (2a)3
t−1 ≡ 1 (mod pm), (2b)3

t−1 ≡ (−1)t (mod pm).

Let λ be the least positive integer which satisfies

(2.7) (2a)3
λ−1 ≡ 1 (mod pm).

By (2.6), λ | t. Moreover, note that (2a)3
g−1 ≡ (−1)g(2b)3

g−1 (mod pm) for any pos-

itive integer g because a2 ≡ −b2 (mod pm). Therefore, by (2.7), we have (2b)3
λ−1 ≡

(−1)λ (mod pm) and hence α3λ

= α. Since t is the least positive integer such that

α3t

= α, thus t | λ and therefore λ = t.

Conversely, suppose that pm | N(α), p ∤ gcd(a, b) and t is the least positive inte-

ger such that (2a)3
t−1 ≡ 1 (mod pm). We immediately see that (2b)3

t−1 ≡ (−1)t

(mod pm). So we have α3t

= α and therefore α lies on a λ-cycle of Γ2(p
m), where

λ | t. Then by the above proof of necessity we have that λ is the least positive integer

which satisfies (2.7), and hence λ = t. Thus α lies on a t-cycle of Γ2(p
m).

(2) If pm | N(α) and p ∤ gcd(a, b), then clearly p ∤ a. So 2a ∈ U(Zpm [i]). By

Corollary 2.2 and part (1) above, the result follows. �

Corollary 2.9. Let p be a prime congruent to 1 modulo 4, m > 1.

(1) There exists a t-cycle in Γ2(p
m) if and only if the following two conditions hold:

(a) t = ordd 3 for some positive divisor d of λ(pm), where 3 ∤ d.

(b) There exists b ∈ U(Zpm) such that pm | (2−1a)2 + b2, where a ∈ U(Zpm )

and o(a) = d, while 2−1 is the inverse of 2 in Zpm .

(2) Let α = a+ bi ∈ D(Zpm [i]), p ∤ gcd(a, b) and pm | N(α). Then α lies on a t-cycle

of Γ2(p
m) if and only if β = 2a lies on a t-cycle of Γ1(p

m).

(3) α = a + bi (α 6= 0) lies on a 1-cycle of Γ2(p
m) if and only if β = b + ai lies on

a 2-cycle of Γ2(p
m).

(4) A1(Γ2(p
m)) = 5, A2(Γ2(p

m)) = 2 for m > 1.

(5) If p ≡ 5 (mod 12), then α = a + bi (6= 0) lies on a cycle of Γ2(p
m) if and only if

p ∤ gcd(a, b) and pm | N(α).
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P r o o f. Parts (1) and (2) follow easily from Theorem 2.8.

(3) It follows from the proof of Theorem 2.8 that if α3 = α, then β3 = −β and

β9 = (−β)3 = β. Part (3) now follows.

(4) Note that 0 is a vertex in a 1-cycle. Suppose that α 6= 0 and α = a + bi ∈

D(Zpm [i]). Then by Theorem 2.8 (2), α is a vertex in a 1-cycle if and only if pm |

N(α), p ∤ gcd(a, b) and ordo(2a) 3 = 1. Clearly, ordo(2a) 3 = 1 if and only if o(2a) = 1

or 2. Thus, 2a ≡ 1 or −1 (mod pm). Moreover, N(α) ≡ a2 + b2 ≡ 0 (mod pm)

if and only if b ≡ ra (mod pm), where r2 ≡ −1 (mod pm). Since p ≡ 1 (mod 4),

there exist exactly two values for r modulo pm. Thus, there exist exactly 4 nonzero

vertices α ∈ D(Zpm [i]) such that α is a vertex in a 1-cycle. Hence, A1(Γ2(p
m)) = 5.

Now note that ordo(2a) 3 = 2 if and only if o(2a) = 4 or 8. By an argument similar

to that given above, we see that there are exactly 4 vertices in D(Zpm [i]) that are

parts of 2-cycles. Hence, A2(Γ2(p
m)) = 2.

(5) Note that if p ≡ 5 (mod 12), then 3 ∤ λ(pm). The rest of part (5) follows from

Theorem 2.8. �

3. Height

For m > 0, we say a vertex α in Γ(n) or Γg(G) (G is a finite abelian group) is of

height m if m is the least nonnegative integer such that α3m

is a vertex of a cycle,

and we denote hα = m. Clearly, hα = 0 if and only if α is a vertex of a cycle. The

height of a component is the largest height of all vertices lying in this component.

In this section, we will study the heights of components and vertices of Γ(n). First,

we have the following lemma which is proved similarly to [8, Theorem 3.2].

Lemma 3.1. Let G = Cn1
× . . . × Cns

, where s > 1 and Cn1
, . . . , Cns

are cyclic

groups of order n1, . . . , ns, respectively. Then the height of each component of Γg(G)

is equal to max{h1, . . . , hs}, where 3hj ‖ nj for j = 1, . . . , s.

Theorem 3.2. Let n = 2t3mqk1

1 . . . qks
s pj1

1 . . . pjr
r , where t, m > 0, k1, . . . , ks,

j1, . . . , jr > 1, q1, . . . , qs are distinct primes congruent to 3 modulo 4 (qa 6= 3 for

a = 1, . . . , s), while p1, . . . , pr are distinct primes congruent to 1 modulo 4. Suppose

3λa ‖ q2
a − 1 for a = 1, . . . , s, and 3lc ‖ pc − 1 for c = 1, . . . , r. Then the height of

each component of Γ1(n) is equal to max{m − 1, λ1, . . . , λs, l1, . . . , lr}.

P r o o f. By Lemmas 1.1, 1.3 and 3.1, the result follows. �
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Theorem 3.3. Let n =
s
∏

j=1

p
kj

j be the prime power decomposition of n, α =

(α1, . . . , αs) ∈ Zn[i], where αj ∈ Z
p

kj

j

[i] for j = 1, . . . , s. Then the height hα of α is

equal to max{hα1
, . . . , hαs

}, where hαj
is the height of αj in Γ(p

kj

j ), j ∈ {1, . . . , s}.

P r o o f. If hα1
= . . . = hαs

= 0, i.e., αj lies on a cycle of Γ(p
kj

j ) for j = 1, . . . , s,

then by Theorem 2.7 (1), α lies also on a cycle of Γ(n). Hence, hα = 0.

Now suppose that at least one of hα1
, . . . , hαs

is not equal to 0. Let m =

max{hα1
, . . . , hαs

} > 0, where m = hαx
for some x ∈ {1, . . . , s}. Since the height

of αj in Γ(p
kj

j ) is hαj
, clearly α3dj

j lies on a cycle of Γ(p
kj

j ) for dj > hαj
. Note that

α3m

= (α3m

1 , . . . , α3m

s ) and m > hαj
for j ∈ {1, . . . , s}, we derive that α3m

lies on

a cycle of Γ(n) due to Theorem 2.7 (1). If the height of α is h with h < m, then

α3h

lies on a cycle of Γ(n), which implies that α3h

x lies on a cycle of Γ(pkx
x ). This

is impossible, because hαx
= m is the least nonnegative integer such that α3m

x lies

on a cycle of Γ(pkx
x ). Therefore, we can conclude that the height of α is m. The

theorem follows. �

By Lemma 1.1, we see that any vertex in Γg(Cn) of in-degree 0 has the same height.

So we are interested in the similar problem which is proved in the next theorem.

Theorem 3.4. Let qj (qj 6= 3) be primes congruent to 3 modulo 4 for j > 1, let

ps be primes congruent to 1 modulo 12 for s > 1, and let gλ be primes congruent

to 5 modulo 12 for λ > 1. Then the height of any vertex in Γ1(n) of in-degree 0 is

equal to a fixed positive integer w if and only if n is of the form

(3.1) n = 2k3t
e

∏

j=1

q
aj

j

m
∏

s=1

pbs

s

l
∏

λ=1

g
r

λ

λ

where t ∈ {0, 1, w + 1}, k, e, m, l > 0, e + m > 1 if t ∈ {0, 1}, aj , bs, rλ
> 1, while

3w ‖ q2
j − 1 for j ∈ {1, . . . , e} and 3w ‖ ps − 1 for s ∈ {1, . . . , m}.

P r o o f. By [9, Theorem 3.7], each component in Γ1(n) is exactly a cycle if and

only if n = 2k3t
l

∏

λ=1

g
r

λ

λ , where k, l > 0, t ∈ {0, 1}, rλ > 1. Hence, by Lemma 1.4, it

suffices to consider the vertex of in-degree 0 in Γ1(3
t) (t > 2), Γ1(q

aj

j ) and Γ1(p
bs
s ).

By Lemma 1.3 (2), U(Z3t [i]) ∼= Z3t−1 × Z3t−1 × Z8. It follows from Lemma 1.1

that for a ∈ Z3t−1 , indeg(a) = 0 in Γg(Z3t−1) (t > 2) if and only if ha = t − 1, while

there exist no vertices in Γg(Z8) with in-degree 0. Therefore, by Theorem 3.3, for

α ∈ U(Z3t [i]), indeg(α) = 0 if and only if hα = t − 1. Similarly, we derive that

for βj ∈ U(Z
q

aj

j

[i]), indeg(βj) = 0 if and only if hβj
= uj , where 3uj ‖ q2

j − 1. For

γs ∈ U(Zpbs
s

[i]), indeg(γs) = 0 if and only if hγs
= vs, where 3vs ‖ ps − 1. Hence, the

theorem follows from Theorem 3.3. �
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Next, we will investigate the height of vertices in Γ2(n), where n is a power of

a prime.

Theorem 3.5. Let α = a + bi ∈ D(Z2t [i]), t > 1. Then the height hα of α is

hα =

{

⌈log3 t/k⌉, 2x ‖ a, 2y ‖ b, x, y > 1, x 6= y, k = min{x, y},

⌈log3 (2t + 1)/(2k + 1)⌉, 2k ‖ a, 2k ‖ b, k > 0.

P r o o f. First of all, we observe that Γ2(2
t) has a unique component because

Z2t [i] is a local ring. It follows from Lemma 1.2 (1) that α = a+ bi ∈ D(Z2t [i]) if and

only if 2 | a2 + b2, if and only if a and b have the same parity.

Let 2x ‖ a and 2y ‖ b, where x, y > 0. Set k = min{x, y} > 0. Then α =

2k(a0 + b0i) for some integers a0 and b0, and clearly 2 ∤ gcd(a0, b0).

First, suppose x 6= y. Then clearly (a0 + b0i)
3j

∈ U(Z2t [i]) for j > 0. Therefore,

α3j

= (2k)3
j

(a0 + b0i)
3j

= 0 if and only if 3jk > t, if and only if j > log3 t/k. So we

have hα = ⌈log3 t/k⌉.

Secondly, suppose x = y. Then α = 2kα0, where α0 = a0 + b0i ∈ D(Z2t [i]), 2 ∤ a0

and 2 ∤ b0. Since α3
0 = a0(a2

0−3b2
0)+b0(3a2

0−b2
0)i, we derive that α

3
0 = 2(a1+b1i) where

2 ∤ a1 and 2 ∤ b1 because 2 ‖ a2
0−3b2

0 and 2 ‖ 3a2
0−b2

0. Similarly, (a1+b1i)
3 = 2(a2+b2i)

where 2 ∤ a2 and 2 ∤ b2. Therefore, we have

α3j

0 = 2

j−1∑

m=0

3m

(aj + bj i) = 2(3j−1)/2(aj + bj i),

where 2 ∤ aj and 2 ∤ bj, j > 1. Hence, α3j

= (2k)3
j

α3j

0 = 23jk+(3j−1)/2(aj + bj i),

which implies that α3j

= 0 if and only if 3jk + 1
2 (3j − 1) > t, if and only if j >

log3(2t + 1)/(2k + 1). So we have hα = ⌈log3(2t + 1)/(2k + 1)⌉. �

Theorem 3.6. Let α = a + bi ∈ D(Zqt [i]), where q is a prime congruent to 3

modulo 4, t > 2. Then the height of α is hα = ⌈log3 t/k⌉, where qx ‖ a and qy ‖ b,

x, y > 1 and k = min{x, y}.

P r o o f. First, we observe that Γ2(q
t) has a unique component because Zqt [i]

is a local ring for t > 1. It follows from Lemma 1.2 (1) and q ≡ 3 (mod 4) that

α = a + bi ∈ D(Zqt [i]) if and only if q | gcd(a, b). Let qx ‖ a and qy ‖ b, where

x, y > 1. Set k = min{x, y}. Then α = qk(a0 + b0i) for some integers a0 and b0, and

clearly q ∤ gcd(a0, b0). Hence, (a0 + b0i)
3j

∈ U(Zqt [i]) for j > 0. Therefore, α3j

= 0

if and only if 3jk > t, if and only if j > log3 t/k. So we have hα = ⌈log3 t/k⌉. �
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Theorem 3.7. Let α = a + bi ∈ D(Zpt [i]), where p is a prime congruent to 1

modulo 4, t > 1. Then the height hα of α is

hα =











⌈log3 t/k⌉, px ‖ a, py ‖ b, x, y > 1, k = min{x, y},

j, p ∤ a, p ∤ b, and j is the least nonnegative integer

such that both pt | (N(α))3
j

and 3 ∤ o(2 Re(α3j

)).

P r o o f. Since p ≡ 1 (mod 4), by Lemma 1.2 (1), α = a + bi ∈ D(Zpt [i]) if and

only if p | a2 + b2.

Case 1. Let px ‖ a and py ‖ b, where x, y > 1. Then α3j

= 0 for some j > 1.

Set k = min{x, y}. Then α = pk(a0 + b0i) for some integers a0 and b0, and clearly

p ∤ gcd(a0, b0). Let (a0+b0i)
3 = a1+b1i, where a1 = a0(a

2
0−3b2

0) and b1 = b0(3a2
0−b2

0).

We can claim that p ∤ gcd(a1, b1). This is because, by virtue of p ∤ gcd(a0, b0), if

exactly one of a0 and b0 is not divisible by p, then without loss of generality we may

assume that p | a0 while p ∤ b0, hence obviously p ∤ b0(3a2
0 − b2

0), i.e., p ∤ b1. On

the other hand, if p ∤ a0 and p ∤ b0, assume that p | gcd(a1, b1), i.e., a0(a
2
0 − 3b2

0) ≡

b0(3a2
0−b2

0) ≡ 0 (mod p). Then we derive that 3a2
0−9b2

0 ≡ 3a2
0−b2

0 ≡ 0 (mod p) and

hence 8b2
0 ≡ 0 (mod p), which is impossible. Therefore, we must have p ∤ gcd(a1, b1).

Similarly, we have α3j

= p3jk(aj + bj i) with p ∤ gcd(aj , bj) for j > 0. Therefore,

α3j

= 0 if and only if 3jk > t, if and only if j > log3 t/k. Thus hα = ⌈log3 t/k⌉.

Case 2. Let p | a2 + b2 while p ∤ gcd(a, b). Then α3j

6= 0 for j > 0 and it is easy

to check that if α3j

= c + di then p ∤ c and p ∤ d. Moreover, since N(α3j

) ≡ N(α)3
j

(mod pt), by Theorem 2.8, α3j

lies on a cycle of Γ2(p
t) if and only if j is the least

nonnegative integer such that both pt | (N(α))3
j

and 3 ∤ o(2 Re(α3j

)). Hence, the

result follows. �

By Corollary 2.9 (5) and Theorem 3.7, if p is a prime congruent to 5 modulo 12,

the formula of the height of any vertex in Γ2(p
t) is as follows.

Corollary 3.8. Let α = a + bi ∈ D(Zpt [i]), where p is a prime congruent to 5

modulo 12, t > 1. Then the height hα of α is

hα =

{

⌈log3 t/k⌉, px ‖ a, py ‖ b, x, y > 1, k = min{x, y},

j, p ∤ a, p ∤ b, pt ‖ (N(α))3
j

.
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