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Abstract

Four formulas of the Menzerath–Altmann law are tested from the point
of view of their applicability and suitability. The accuracy of related ap-
proximations of measured data is examined by the least square method at
first. Then the accuracy of calculated parameters in the formulas under
consideration is compared statistically. The influence of neglecting param-
eter c is investigated as well. Finally, the obtained results are discussed
by means of an illustrative example from quantitative linguistics.
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1 Introduction

The Menzerath–Altmann law (shortly, MAL) is with no doubts one of the mile-
stones of quantitative linguistics. Its verbal (heuristic) form says that “the
longer a language construct is, the shorter its components (constituents) are.”
By a construct we mean a unit on a higher language level (e.g. a clause, i.e. an
autonomous unit in terms of its pragmatics, semantic construction and gram-
mar which is based on a finite verb form) and by a constituent we mean a unit

*Supported by the Council of the Czech Government (MSM 6198959214).
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6 J. Andres, L. Kubáček, J. Machalová, M. Tučková

on a lower language level (e.g. a word). The length x of a construct is measured
in its constituents, while y is the average length of its constituents measured
in units on the nearest lower language level. For instance, x can be a length
of a clause measured in the number of words and y then denotes the average
number of composing words measured in the number of syllables.
Although the length x of a construct is (unlike y ∈ (0,∞)) always a positive

integer, i.e. x ∈ N, for the sake of derivation of the mathematical “continuous”
form of MAL, we will nevertheless consider x to be also positively real-valued,
i.e. x ∈ (0,∞).
Hence, recalling the mathematical derivation of MAL due to G. Altmann [1],

[2], [20], the relative rate of the change of y can be expressed as ẏ
y , where ẏ = dy

dx
is obviously the derivative of y w.r.t. x. According to the verbal formulation
above, this rate is inversely proportional to x up to an additive constant c ∈ R,
i.e.

ẏ

y
=

−b
x

+ c, (1)

where −b is the proportionality coefficient. Let us note that it is convenient to
take it with the minus sign, as we shall see later.
Integrating the ordinary differential equation (1) w.r.t. x, we obtain the

equation
ln y = −b ln x+ cx+ C,

where C ∈ R is another additive constant, i.e. after delogarithmization, we get

y = eCx−becx.

Thus, the general solution of (1) takes the form

y(x) = Ax−becx, where A = eC > 0. (2)

This is so called complete formula of MAL.
Let us note that in many empirical studies concerning sentence or clause

structures, and all the better in supra-sentence structures like semantic con-
structs, only its hyperbolic part is used, namely (c = 0)

y = Ax−b, (3)

see e.g. [9], [10]. Here, we therefore speak about the truncated formula of MAL.
On the other hand, it was demonstrated that the role of the exponential

parts, which can be omitted in the case of semiotically higher levels, increases
with a decreasing linguistic level, and so it is usually not omitted (for instance,
in the case of words and syllables).
In order to simplify the computation of parameters b, c in (2) or b in (3), we

can still put A := y(1)
ec = y1

ec in (2), i.e.

y = y1x
−bec(x−1), (4)

or A := y(1) = y1 in (3), i.e.
y = y1x

−b. (5)
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The main aim of the present paper is to show both theoretically as well
as practically (by means of an illustrative linguistic example) how much the
formulas (2)–(5) differ each from other. For the first glance, it might be expected
that the optimal results must be connected with the complete formula (2), while
the roughest are those related to the truncated formula (5). However, as we shall
see, the situation will not be so simple but rather delicate for such a statement.
It will become more transparent and maybe also a bit surprising by means of the
least square method applied below for numerical computation of parameters A,
b, c in (2)–(5) in Section 2 and their statistical verification in Sections 3 and 4.
For more details concerning various aspects of MAL, we recommend e.g.

the papers [1], [2], [3], [4], [6], [8]–[10], [11]–[13], [15], [16], [18], [20], [21]. In
[20], the whole panorama of further variants of linguistic formulas of this sort
is presented.

2 Accuracy of approximations of measured data

Let us consider separately the following cases:

I) y = y1x
−b, i.e. A = y(1) = y1 and c = 0, (cf. (5)),

II) y = Ax−b, i.e. c = 0, (cf. (3)),

III) y = y1x
−bec(x−1), i.e. Aec = y(1) = y1, (cf. (4)),

IV) y = Ax−becx, (cf. (2)).

ad I) (one free parameter b)

Logarithmizing the equation (5), we obtain

ln y = ln y1 − b lnx,

i.e.
ln yi = ln y1 − b lnxi, i = 1, 2, . . . ,

where xi = i denotes the length of the i-th construct and yi denotes the length
of the i-th constituent of xi.
Hence, denoting still ui := lnxi and vi := ln yi, we can minimize the function

ψI(b) :=
∑
i

wi [v1 − bui − vi]
2

w.r.t. b, where wi = zi∑
i zi
are the weights corresponding to the i-th relative

frequency zi∑
i zi
.

Putting
ψ̇I(b) = 2

∑
i

wi [v1 − bui − vi] (−ui) = 0,

we arrive at

bI =
v1

∑
i wiui −

∑
i wiuivi∑

i wiu2i
=

ln y1
∑

i wi lnxi −
∑

i wi lnxi ln yi∑
i wi (lnxi)

2 . (6)
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Since

ψ̈I(b) = 2
∑
i

wiu
2
i > 0,

we really have that

min
b
ψI(b) = ψI(bI).

Moreover, the related least square value ΔI takes the form

ΔI :=
∑
i

wi [y(xi)− yi]
2 =

∑
i

wi

[
y1x

−bI
i − yi

]2
. (7)

Remark 1 Let us note that bI can slightly differ from b̂I satisfying

min
b

∑
i

wi

[
y1x

−b
i − yi

]2
=

∑
i

wi

[
y1x

−b̂I
i − yi

]2
,

but statistically bI , and subsequently also ΔI , can be acceptable (see e.g. [14,
pp. 219–225]).

Example 1 Considering the Czech translation by Slavík of Poe’s Raven, the
following data were calculated in [5]:

xi yi zi

1 3.4444 9
2 1.8548 31
3 1.5256 26
4 1.8068 22
5 1.9467 15
6 1.8810 7
7 1.9091 11
8 1.8250 5
9 1.9899 11
10 1.6000 3
11 1.7955 4
12 1.8750 4

xi yi zi

13 2.0769 1
14 1.7500 2
15 2.2000 1
16 1.6875 1
17 1.6471 1
18 1.8333 1
19 0
20 0
21 0
22 0
23 1.8696 1
24 1.8333 1

Here, xi indicates that the clause consists of i words (i.e. that the length of
i-th sentence is i), its frequence in the given translation is zi and yi denotes the
average length of composing words of such sentences.
Applying formulas (6) and (7), bI and ΔI = ΔI(bI) can be easily calculated

as follows:

bI
.
= 0.3574, ΔI

.
= 0.3014.

Because of AI = y1, we trivially have AI
.
= 3.4444.
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Figure 1: Calculated data yi (see the tables above) versus the values y(xi) =
3.4444i−0.3574, i = 1, 2, . . . , 24.

ad II) (two free parameters A, b)

Logarithmizing the equation (3), we obtain

ln y = lnA− b lnx,

i.e.

ln yi = lnA− b lnxi, i = 1, 2, . . . ,

where the symbols xi and yi have the same meaning as above.
Hence, denoting again ui := lnxi, vi := ln yi and newly a := lnA, we can

minimize the function

ψII(a, b) :=
∑
i

wi [a− bui − vi]
2

w.r.t. a = lnA, b, where the weights wi =
zi∑
i zi
are the same as in the case I).

Putting

∂ψII

∂a
= 2

∑
i

wi [a− bui − vi] = 0,

∂ψII

∂b
= 2

∑
i

wi [a− bui − vi] (−ui) = 0,
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we arrive at

AII = exp

(∑
i wi lnxi

∑
i wi (lnxi) (ln yi)−

∑
i wi (lnxi)

2 ∑
i wi ln yi

[
∑

i wi lnxi]
2 − ∑

i wi (lnxi)
2

)
, (8)

bII =

∑
i wi (lnxi) (ln yi)−

∑
i wi lnxi

∑
i wi ln yi

[
∑

i wi lnxi]
2 − ∑

i wi (lnxi)
2 . (9)

Since
∂2ψII

∂a2
= 2

∑
i

wi = 2 > 0

and (in view of the Schwarz inequality)

∂2ψII

∂a2
∂2ψII

∂b2
−

[
∂2ψII

∂a∂b

]2

= 4
∑
i

wiu
2
i − 4

[ ∑
i

wiui

]2

> 0,

we really have that

min
a,b

ψII(a, b) = ψII (lnAII , bII) .

Moreover, the related least square value ΔII takes the form

ΔII :=
∑
i

wi

[
AIIx

−bII
i − yi

]2
. (10)

Example 2 Consider the same tables as in Example 1 and let us note that the
analogy of Remark 1 holds here as well.
Hence, applying formulas (8), (9) and (10), the values of AII , bII and ΔII

can be calculated as follows:

AII
.
= 2.0815, bII

.
= 0.0753, ΔII

.
= 0.1453.

ad III) (two free parameters b, c)

Logarithmizing the equation (4), we obtain

ln y = ln y1 − b lnx+ c (x− 1) ,

i.e.
ln yi = ln y1 − b lnxi + c (xi − 1) , i = 1, 2, . . . ,

where the symbols xi and yi have the same meaning as above.
Hence, denoting again ui := lnxi (⇒ xi = exp(ui)) and vi = ln yi, we can

minimize the function

ψIII(a, b) :=
∑
i

wi [v1 − bui + c (xi − 1)− vi]
2

w.r.t. b, c, where the weights wi =
zi∑
i zi
are the same as above.
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Figure 2: Calculated data yi (see the tables above) versus the values y(xi) =
2.0815i−0.0753, i = 1, 2, . . . , 24.

Putting

∂ψIII

∂b
= 2

∑
i

wi [v1 − bui + c (xi − 1)− vi] (−ui) = 0,

∂ψIII

∂c
= 2

∑
i

wi [v1 − bui + c (xi − 1)− vi] (xi − 1) = 0,

we arrive at (AIII = y1

ecIII )

bIII =

∑
i wi (xi − 1)2

∑
i wi lnxi (ln y1 − ln yi)∑

i wi (lnxi)
2 ∑

i wi (xi − 1)
2 − [

∑
i wi (xi − 1) lnxi]

2

+

∑
i wi (xi − 1) lnxi

∑
i wi (xi − 1) (ln yi − ln y1)∑

i wi (lnxi)
2 ∑

i wi (xi − 1)
2 − [

∑
i wi (xi − 1) lnxi]

2 , (11)

cIII =

∑
i wi (xi − 1) lnxi

∑
i wi lnxi (ln y1 − ln yi)∑

i wi (ln xi)
2 ∑

i wi (xi − 1)
2 − [

∑
i wi (xi − 1) lnxi]

2 +

+

∑
i wi (lnxi)

2 ∑
i wi (xi − 1) (ln yi − ln y1)∑

i wi (ln xi)
2 ∑

i wi (xi − 1)
2 − [

∑
i wi (xi − 1) lnxi]

2 . (12)

Since
∂2ψIII

∂b2
= 2

∑
i

wiu
2
i = 2

∑
i

wi (lnxi)
2
> 0
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and (in view of the Schwarz inequality)

∂2ψIII

∂b2
∂2ψIII

∂c2
−

[
∂2ψIII

∂b∂c

]2

=

= 4
∑
i

wi (lnxi)
2
∑
i

wi (xi − 1)
2 − 4

[∑
i

wi (xi − 1) lnxi

]2

> 0,

we really have that

min
b,c

ψIII(b, c) = ψIII (bIII , cIII) .

Moreover, the related least square value ΔIII takes the form

ΔIII :=
∑
i

wi

[
y1x

−bIII
i ecIII (xi−1) − yi

]2
. (13)

Example 3 Consider the same tables as in Example 1 and let us note that the
analogy of Remark 1 holds here as well.
Hence, applying formulas (11), (12) and (13), the values of bIII , cIII and

ΔIII can be calculated as follows:

AIII
.
= 3.1424, bIII

.
= 0.6788, cIII

.
= 0.0918, ΔIII

.
= 0.1399.

ad IV) (three free parameters A, b, c)

Logarithmizing the equation (2), we obtain

ln y = lnA− b lnx+ cx,

i.e.
ln yi = lnA− b lnxi + cxi, i = 1, 2, . . . ,

where the symbols xi and yi have the same meaning as above.
Hence, denoting again ui := lnxi (⇒ xi = exp(ui)), vi := ln yi and a := lnA,

we can minimize the function

ψIV (a, b, c) :=
∑
i

wi [a− bui + cxi − vi]
2

w.r.t. a, b, c, where the weights wi =
zi∑
i zi
are the same as above.

Putting

∂ψIV

∂a
= 2

∑
i

wi [a− bui + cxi − vi] = 0,

∂ψIV

∂b
= 2

∑
i

wi [a− bui + cxi − vi] (−ui) = 0,

∂ψIV

∂c
= 2

∑
i

wi [a− bui + cxi − vi]xi = 0,
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Figure 3: Calculated data yi (see the tables above) versus the values y(xi) =
3.1424i−0.6788e0.0918(i−1), i = 1, 2, . . . , 24. Since the related function is not
decreasing, it becomes linguistically uninterpretable.

we arrive at (AIV = exp(aIV ))

aIV =
1

τ

{∑
i

wi ln yi

[( ∑
i

wixi lnxi

)2

−
∑
i

wix
2
i

∑
i

wi(lnxi)
2

]

+
∑
i

wi lnxi ln yi

[∑
i

wix
2
i

∑
i

wi lnxi −
∑
i

wixi
∑
i

wixi lnxi

]

+
∑
i

wixi ln yi

[ ∑
i

wixi
∑
i

wi (lnxi)
2 −

∑
i

wi lnxi
∑
i

wixi lnxi

]}
, (14)

bIV =
1

τ

{∑
i

wi ln yi

[∑
i

wixi
∑
i

wixi lnxi −
∑
i

wix
2
i

∑
i

wi lnxi

]

+
∑
i

wi lnxi ln yi

[∑
i

wix
2
i −

( ∑
i

wixi

)2 ]

+
∑
i

wixi ln yi

[∑
i

wixi
∑
i

wi lnxi −
∑
i

wixi lnxi

]}
, (15)
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cIV =
1

τ

{∑
i

wi ln yi

[∑
i

wixi
∑
i

wi (lnxi)
2 −

∑
i

wi lnxi
∑
i

wixi lnxi

]

+
∑
i

wi lnxi ln yi

[∑
i

wixi lnxi −
∑
i

wixi
∑
i

wi lnxi

]

+
∑
i

wixi ln yi

[( ∑
i

wi lnxi

)2

−
∑
i

wi (ln xi)
2

]}
, (16)

where

τ =

(∑
i

wixi lnxi

)2

+

(∑
i

wi lnxi

)2 ∑
i

wix
2
i +

(∑
i

wixi

)2 ∑
i

wi (lnxi)
2

−
∑
i

wi (lnxi)
2
∑
i

wix
2
i − 2

∑
i

wi lnxi
∑
i

wixi
∑
i

wixi lnxi.

We can namely prove again (see e.g. [14, p. 83]) that

min
a,b,c

ψIV (a, b, c) = ψIV (aIV , bIV , cIV ) .

Moreover, the related the least square value takes the form

ΔIV :=
∑
i

wi

[
AIV x

−bIV
i ecIV xi − yi

]2
. (17)

Example 4 Consider the same tables as in Example 1 and let us note that the
analogy of Remark 1 holds here as well.
Hence, applying formulas (15), (16) and (17), the values of AIV , bIV , cIV

and ΔIV can be calculated as follows:

AIV
.
= 2.2939, bIV

.
= 0.3094, cIV

.
= 0.0442, ΔIV

.
= 0.1085.

Summing up the above calculations, we can give the following theorem.

Theorem 1 Approximative values of parameters A, b, c in formulas (2)–(5)
of MAL can be obtained from the lengths of associated constructs x1, x2, . . . ,
their frequences z1, z2, . . . , and constituents y1, y2, . . . , by means of a regression
method in the forms (6) and (8), (9) and (11), (12) and (14)–(16), respectively.
The appropriate least square values take the forms (7) and (10) and (13) and
(17), respectively.

3 Comparison of accuracy of parameter estimations

In order to compare formulas (2)–(5), the experiment design theory should be
employed (see e.g. [17]). This technique is closely related to the previous one but
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Figure 4: Calculated data yi (see the tables above) versus the values y(xi) =
2.2939i−0.3094e0.0442i, i = 1, 2, . . . , 24. Since the related function is not decreas-
ing, it becomes linguistically uninterpretable.

the output is different. It does not concern the information about conformity
of data with the applied approximation formula, but the value of variance of
the free parameters estimates (in statistical terms, we speak about unknown
parameters) Θ̂I := b or Θ̂II := (A, b)′ or Θ̂III := (b, c)′ or Θ̂IV := (A, b, c)′

which appear in the respective formulas (2)–(5). The prime symbol denotes as
usually the transposition. Althought this analysis is again based on the least
square method, it is necessary to introduce adequate terms because of input
variables constructed in a different way. After logarithmizing the equations
(2)–(5), we obtain four linear regression models. Their general form is

y ∼n

(
FΘ, σ2I

)
, (18)

where y has the same meaning as above, n is the number of measurement points,
F is a design matrix given by the concrete formula (2) or (3) or (4) or (5), Θ is
an appropriate vector of unknown parameters, σ2 is a measurement error and I
denotes the unit matrix. We assume the independence of random variables yi,
i = 1, . . . , n.
Without any loss of generality, we can now restrict ourselves to a specific

area of the experiment realization which is known as the set of experimental
points

x = {x1, . . . , xn} .
The symbol xi = i has the same meaning as above and in order to guarantee
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the sufficient richness of the experimental set, we consider the total number of
measurements n to be equal to 10 000.
The following analysis is based on the validity of the formula (see [14, p. 50])

Var(Θ̂(Yδ), N) :=
σ2

N
M−1(δ) (19)

whose proof can be found in ([19]). The symbol N denotes the total number
of measurements at the points xi, i.e. N =

∑
i zi. It says that the covariance

matrix estimate of unknown parameters (contained in a regression model) is
equal to the product of the expression σ2

N and the inverted matrixM(δ), called
information matrix, namely

M(δ) :=
n∑

i=1

δiwifif
′
i . (20)

The form (20) of an information matrix is given by several variables. In
particular, the design of experiment is a function

δi : xi → [0, 1] , where
n∑

i=1

δi = 1, i = 1, . . . , n,

which determines a significance of the experiment at various points of the ex-
perimental set. In our case, the significance is the same for all experimental
points. Therefore, the value of design of experiment is a constant, i.e. δi = 1

n .
Variable wi =

zi∑
i zi
represents the above mentioned weight. Since this value is

constant in formulas (2)–(5), it can be neglected, without any loss of generality,
in subsequent calculations. Last, but not least, vector fi is the variable which
represents i− th line of design matrix F.
Expression σ2

N in (19) depends on the particular experiment, but it is the
same for all models in (18). Thus, this expression can be put equal to 1, for the
sake of comparison of formulas (2)–(5).
The comparison of regression models will be made by means of a standard

deviation of individual unknown parameter estimates, i.e.

μ(Θ̂) :=

√
diag[Var(Θ̂)]. (21)

ad I) (one free parameter b)

Logarithmizing the equation (5), we arrive in view of (18) to the equality:⎛⎜⎜⎜⎝
0

v2 − ln y1
...

vn − ln y1

⎞⎟⎟⎟⎠ =

⎛⎜⎝ −u1
...

−un

⎞⎟⎠
︸ ︷︷ ︸

F

(
b
)
+ ε,
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where ε is an error vector with the covariance matrix equal to σ2I. The variables
yi, ui and vi have the same meaning as above.
The information matrix takes, according to (20) (when taking the weights

wi = 1), the form

M(δ) =

n∑
i=1

1

n
(−ui) (−ui) = 1

n

n∑
i=1

u2i ,

from which (cf. (19), when taking σ2

N = 1)

VarI(Θ̂(Yδ))
.
= 1.461694 · 10−6,

and subsequently (see (6))

μ(bI)
.
=

√
1.461694 · 10−6 .

= 0.001209. (22)

ad II) (two free parameters A, b)

Logarithmizing the equation (3), we arrive in view of (18) to the equality:⎛⎜⎝ v1
...
vn

⎞⎟⎠ =

⎛⎜⎝ 1 ,−u1
...
1 ,−un

⎞⎟⎠
︸ ︷︷ ︸

F

(
a
b

)
+ ε,

where ε has the same meaning as in the foregoing case. The variables yi, ui and
vi have the same meaning as above and a = lnA.
The information matrix takes, according to (20) (when taking the weights

wi = 1), the form

M(δ) =

n∑
i=1

1

n

(
1

−ui
) (

1, −ui
)

=
1

n

n∑
i=1

(
1, −ui

−ui, u2i

)
=

1

n

(
n, −∑n

i=1 ui
−∑n

i=1 ui,
∑n

i=1 u
2
i

)
,

from which (cf. (19), when taking σ2

N = 1)

VarII(Θ̂(Yδ))
.
=

(
0.006875 0.000825
0.000825 0.000100

)
,

and subsequently (see (8), (9))

μ(lnAII)
.
=

√
0.006875

.
= 0.082921, (23)

i.e. (cf. [14, p. 215])

μ(AII) =
∂ea

∂a

∣∣∣∣
a=lnAII

μ(lnAII) = AIIμ(lnAII)
.
= 2.0815 · 0.08291 .

= 0.170919,

(24)
μ(bII)

.
=

√
0.000100

.
= 0.010025. (25)
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ad III) (two free parameters b, c)

Logarithmizing the equation (4), we arrive in view of (18) the equality:⎛⎜⎜⎜⎝
0

v2 − ln y1
...

vn − ln y1

⎞⎟⎟⎟⎠ =

⎛⎜⎝ −u1 , x1 − 1
...

−un , xn − 1

⎞⎟⎠
︸ ︷︷ ︸

F

(
b
c

)
+ ε.

The vector ε and the variables yi, ui and vi have the same meaning as above.
The information matrix takes, according to (20), (when taking the weights

wi = 1), the form

M(δ) =

n∑
i=1

1

n

( −ui
xi − 1

) (−ui, xi − 1
)
=

1

n

n∑
i=1

(
u2i , −ui(xi − 1)

−ui(xi − 1), (xi − 1)2

)

=
1

n

( ∑n
i=1 u

2
i , −∑n

i=1 ui(xi − 1)
−∑n

i=1 ui(xi − 1),
∑n

i=1(xi − 1)2

)
,

from which (cf. (19), when taking σ2

N = 1)

VarIII(Θ̂(Yδ))
.
= 1.0 · 10−5

(
0.868651 0.001135
0.001135 0.000001

)
,

and subsequently (see (11), (12))

μ(bIII)
.
=

√
0.868651

.
= 0.002947, (26)

μ(cIII)
.
=

√
0.000001

.
= 0.000004. (27)

ad IV) (three free parameters A, b, c)

Logarithmizing the equation (2), we arrive in view of (18) the equality:⎛⎜⎝ v1
...
vn

⎞⎟⎠ =

⎛⎜⎝ 1 ,−u1 , x1
...
1 ,−un , xn

⎞⎟⎠
︸ ︷︷ ︸

F

⎛⎝ a
b
c

⎞⎠ + ε.

The vector ε and the variables yi, ui and vi have the same meaning as above.
The information matrix takes according to (20), (when taking the weights

wi = 1), the form

M(δ) =
n∑

i=1

1

n

⎛⎝ 1
−ui
xi

⎞⎠ (
1 ,−ui , xi

)
=

1

n

n∑
i=1

⎛⎝ 1, −ui, xi
−ui, u2i , −uixi
xi, −uixi, x2i

⎞⎠
=

1

n

⎛⎝ n, −∑n
i=1 ui,

∑n
i=1 xi

−∑n
i=1 u

2
i ,

∑n
i=1 u

2
i , −∑n

i=1 uixi∑n
i=1 xi, −∑n

i=1 uixi,
∑n

i=1 x
2
i

⎞⎠ ,
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from which (cf. (19), when taking σ2

N = 1)

VarIV (Θ̂(Yδ))
.
=

⎛⎝ 0.018689 0.002724 0.75 · 10−8

0.002724 0.000405 0.12 · 10−8

0.75 · 10−8 0.12 · 10−8 0.48 · 10−12

⎞⎠ ,

and subsequently (see (14)–(16))

μ(lnAIV )
.
=

√
0.018689

.
= 0.136710, (28)

i.e. (cf. [14, p. 215])

μ(AIV ) =
∂ea

∂a

∣∣∣∣
a=lnAIV

μ(lnAIV ) = AIV μ(lnAIV )
.
= 2.2939 · 0.13671 .

= 0.313600,

(29)

μ(bIV )
.
=

√
0.000405

.
= 0.020148, (30)

μ(cIV )
.
=

√
0.48 · 10−12 .

= 0.000007. (31)

Summing up the above calculations, we can give the following theorem.

Theorem 2 The standard deviation μ of parameters a, b, c in formulas (2)–(5)
of MAL takes (by means of (19)–(21)) the respective forms (22) or (23), (25)
or (26), (27) or (28), (30), (31). The deviations are universal in the sense
that they are independent of concrete data x1, x2, . . . ; y1, y2, . . . ; z1, z2, . . . , and
subsequently of concrete values of parameters bI or AII , bII or bIII , cIII or
AIV , bIV , cIV , respectively. The deviations μ(AII) and μ(AIV ) are no longer
universal, but they satisfy the respective estimates (24) and (29).

Remark 2 There is a question about the correct usage of regression models
I) and III) in the above mentioned form. It concerns the fixed value y1 which
can be further regarded as a constant by means of which the remaining un-
known parameters are estimated. Nevertheless, since the value y1 represents
the realization of a random variable, it contains the measurement error which is
subsequently transferred to the regression model. Unfortunately, the regression
model does not take this “double error” into account. By this reason, we must
consider all the resulting values obtained by means of formulas (4) and (5) only
as those conditioned by the value of y1.

4 Tolerance region for neglecting parameter c

In this section, the influence of neglecting parameter c (i.e. c = 0) will be
discussed in a more detail.
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ad I and III) (two free parameters b, c vs. one free parameter b)

We consider the same regression model as in the previous chapter but, this time,
we will write the plan matrix F in a different way, namely in the form of a block
matrix. The aim is to separate the unknown parameter c from the remaining
unknown parameters. Thus, we obtain the model given by⎛⎜⎝ v2 − ln y1

...
vn − ln y1

⎞⎟⎠ = (X, S)

(
b
c

)
+ ε,

where ε is an error vector with the covariance matrix equal this time to σ2V−1,
i.e.

X =

⎛⎜⎝−u2
...

−un

⎞⎟⎠, S =

⎛⎜⎝ x2 − 1
...

xn − 1

⎞⎟⎠, V−1=

⎛⎜⎜⎜⎝
1
w2

+ 1
w1
, 1

w1
, . . . 1

w1
1
w1
, 1

w3
+ 1

w1
, . . . 1

w1

...
...

...
...

1
w1
, . . . 1

w1
, 1

wn
+ 1

w1

⎞⎟⎟⎟⎠.
The variables yi, ui and vi have the same meaning as those already discussed
above. The matrix V is given by a concrete experiment (in our case, see Exam-
ple 3). After performing a relatively long procedure (see [7, p. 95]), we arrive
at the expression describing the tolerance region, i.e.,

κ =

⎧⎪⎪⎨⎪⎪⎩c : |c| ≤
σ√

S′VX
{
X′VS

[
S′ (NXV−1NX)

+
S
]−1

S′VX
}+

X′VS

⎫⎪⎪⎬⎪⎪⎭ , (32)

where NX is the projection matrix of the form

NX =

⎛⎜⎜⎜⎝
1, 0, . . . , 0
0, 1, . . . , 0
...
...

...
...

0, . . . , 0, 1

⎞⎟⎟⎟⎠
︸ ︷︷ ︸

I

−

⎛⎜⎝ −u2
...

−un

⎞⎟⎠ (
n∑

i=2

u2i

)−1 (−u2, . . . , −un )
.

The symbol “+” indicates the Moore–Penrose inverse (cf. e.g. [14, p. 40]). The
tolerance region for a parameter c estimate depends on the value of σ. If we
do not know the value of σ2 from the previous measurements, then we must
estimate it by the formula

σ̂2
III =

[
y∗ − (X,S)

(
bIII
cIII

)]′
V

[
y∗ − (X,S)

(
bIII
cIII

)]
n− k

, (33)

where y∗ = (y2, . . . , yn)
′, k is the total number of unknown parameters in the

model (4), i.e. k = 2, and n is the total number of measurement points in the
tables in Example 1 without the value y1, i.e. n = 19.
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Example 5 Consider the same tables as in Example 1 and let us note that the
analogy of Remark 1 holds here as well. In view of (33), we get that

σ̂III =

√
σ̂2
III

.
= 0.102319

and, according to (32), we arrive at κIII
.
= [−0.103574, 0.103574] .

Since cIII
.
= 0.0918 in Example 3 satisfies −0.103574 < 0.0918 < 0.103574,

i.e. cIII ∈ κIII , the parameter cIII can be neglected in formula (4). In other
words, formula (4) can be compensated by formula (5), in this case.

ad II and IV) (three free parameters A, b, c vs. two free parameters
A, b)

We again rewrite the original regression model described above into the block
form, i.e. ⎛⎜⎝ v1

...
vn

⎞⎟⎠ = (X, S)

⎛⎝ a
b
c

⎞⎠ + ε,

where ε is again an error vector with the covariance matrix equal to σ2V−1, i.e.

X =

⎛⎜⎝ 1, −u1
...
...

1, −un

⎞⎟⎠ , S =

⎛⎜⎝ x1
...
xn

⎞⎟⎠ , V−1 =

⎛⎜⎜⎜⎝
1
w1

0 . . . 0

0 1
w2

. . . 0
...
...
...
...

0 . . . 0 1
wn

⎞⎟⎟⎟⎠ .

The variables yi, ui and vi have the same meaning as above and the matrix V
is given by a concrete experiment (in our case, see Example 4). The projection
matrix NX in the equation (32) takes now the form

NX = I−

⎛⎜⎝ 1, −u1
...
...

1, −un

⎞⎟⎠ (
n, −∑n

i=1 ui
−∑n

i=1 ui,
∑n

i=1 u
2
i

)−1 (
1, . . . , 1

−u1, . . . , −un
)
.

In Example 4, the value of σ can be estimated as follows:

σ̂2
IV =

ΔIV

n− k
⇒ σ̂IV =

√
σ̂2
IV , (34)

where the value of ΔIV comes from (17) and n = 20, in this case.

Example 6 Consider the same tables as in Example 1 and let us note that the
analogy of Remark 1 holds here as well. In view of (34), we get that

σ̂IV
.
= 0.079890

and, according to (32), we arrive at κIV
.
= [−0.047844, 0.047844] .

Since cIV
.
= 0.0442 in Example 4 satisfies −0.047844 < 0.0442 < 0.047844,

i.e. cIV ∈ κIV , the parameter cIV can be neglected in formula (2). In other
words, formula (2) can be compensated by formula (3), in this case.
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5 Concluding remarks

In Sections 2 and 3, the comprehensive analysis was done which provides a com-
parison of four formulas (2)–(5) from the point view of the best approximation
of data as well as of the accuracy of parameters A, b, c estimates. These two
approaches are based on the least square method, but provide somewhat differ-
ent goals. Thus, we provide an information about a suitability of the usage of
models which are evaluated from two perspectives.
As already pointed out, from the point of view of the first perspective, it

might be expected that the best results can be obtained by means of formula
(2), while the worst by means of formula (5). In order to compare formulas
(3) and (4), containing two free parameters, one can immediately say only the
following. Checking the inequalities (10) and (13), for bII

.
= bIII , if AII < y1

and cIII ≥ 0, then ΔII < ΔIII and, reversely, if AII > y1 and cIII ≤ 0, then
ΔII > ΔIII . Otherwise, more sophisticated comparison techniques must be
applied.
In view of the analysis in Sections 3 and 4, the situation is however much

more delicate. In fact, since the accuracy of calculated parameters in formulas
(2)–(5) is given by the inequalities μ(bI) < μ(bIII) < μ(bII) < μ(bIV ), the
related errors must be balanced in an optimal way (whence the title of the
paper).
For instance, in our linguistic experiment, since ΔIII < ΔII as well as

μ(bIII) < μ(bII), the application of formula (4) is evidently better than of
(3). Nevertheless, because of ΔIV < ΔIII < ΔI and, at the same time, of
μ(bI) < μ(bIII) < μ(bIV ), it is so far difficult to make any conclusion concerning
the privileged formulas. This will be done later, on the basis of conclusions in
Section 4.
Furthermore, although the shape of graph to functions associated with for-

mulas (2)–(5) does not seem to differ much when taking into account the weights
wi (see Figures 1–4) or omitting them (see Figures 5–8), the respective least
square values differ more than by one order. More precisely, the least square
values including the weights are more than eleven times better than those with
wi = 1, i = 1, 2, . . .
Replacing, for the same goal, the formulas (2)–(5) by polynomials of second

(i.e. with three coefficients) or third (i.e. with four coefficients) degree (for the
associated graphs, see Figures 9 and 10), the related least square values are
Δ

.
= 0.1126 and Δ

.
= 0.1123. One can readily check that they do not only differ

much each from other, but also from ΔIII
.
= 0.1234 and ΔIV

.
= 0.1085. On the

other hand, no graph in Figures 3, 4, 7, 8, 9 and 10 reflects, for higher values
of xi = i, the verbal form of MAL, because the associated functions are not
decreasing.
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I
 x−b
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I
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1

Figure 5: Calculated data yi (see the tables above) versus the values y(xi) =
3.4444i−0.2570, with wi = 1, i = 1, 2, . . . , 24.
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II
 = 2.2921
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II
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Δ
II
 = 2.1602
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II
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II

Figure 6: Calculated data yi (see the tables above) versus the values
y(xi) = 2.2921i−0.0905, with wi = 1, i = 1, 2, . . . , 24.
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III
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III

 = 1.6002
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1
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III ec
III

(x−1)

AIII = 3.3002

Figure 7: Calculated data yi (see the tables above) versus the values y(xi) =
3.3002i−0.4697e0.0428(i−1), with wi = 1, i = 1, 2, . . . , 24. Since the related func-
tion is not decreasing, it becomes linguistically uninterpretable.
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Figure 8: Calculated data yi (see the tables above) versus the values y(xi) =
2.5760i−0.2728e0.0250i, with wi = 1, i = 1, 2, . . . , 24. Since the related function
is not decreasing, it becomes linguistically uninterpretable.
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Δ = 0.1126

y(x) = 0.003 x2 − 0.0701 x + 2.1406

Figure 9: Calculated data yi (see the tables above) versus the values y(xi) =
0.0030x2i − 0.0701xi + 2.1406, i = 1, 2, . . . , 24.
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y(x) = − 0.0008 x3 + 0.0305 x2 − 0.2985 x + 2.5691

Figure 10: Calculated data yi (see the tables above) versus the values y(xi) =
−0.0008x3i + 0.0305x2i − 0.2985xi + 2.5691, i = 1, 2, . . . , 24.
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Δ = 0.0084

y=y(x) is a spline of degree 3

Figure 11: Calculated data yi (see the tables above) versus the values y(xi) =
−0.0808 (xi − 1)

3
+ 0.7790 (xi − 1)

2 − 2.1664 (xi − 1) + 3.3759, for xi ∈ 〈1, 5〉,
y(xi) = 0.0380 (xi − 5)3 − 0.1901 (xi − 5)2 + 0.1893 (xi − 5) + 2.0059, for xi ∈
〈5, 7〉, y(xi) = −0.0031 (xi − 7)

3
+0.0377 (xi − 7)

2−0.1156 (xi − 7)+1.9278, for
xi ∈ 〈7, 13〉, y(xi) = 0.0023 (xi − 13)3 − 0.0187 (xi − 13)2 − 0.0020 (xi − 13) +

1.9136, for xi ∈ 〈13, 19〉, y(xi) = −0.0049 (xi − 19)
3
+ 0.0232 (xi − 19)

2
+

0.0248 (xi − 19) + 1.7302, for xi ∈ 〈19, 24〉, i = 1, 2, . . . , 24.

Applying, again for the same goal, a suitable spline of the third degree (see
e.g. the one in Figure 11 with 20 coefficients), the related least square value
can be very small (in our case, Δ

.
= 0.0084). Although, the associated function

is not decreasing, one can say that “statistically”, or “in the average”, it has
already a decreasing tendency, in accordance with the verbal form of MAL. On
the other hand, this is due to the quite noneffective presence of 20 coefficients.
From the point of view of the second perspective, besides the mentioned

inequalities
μ(bI) < μ(bIII) < μ(bII) < μ(bIV ), (35)

we can also write that

(μ(aII) < μ(aIV ) ⇒)μ(AII) < μ(AIV ), and μ(cIII) < μ(cIV ).

According to the analysis in Section 4, the complete formula (2) can be
compensated by the truncated one (3), as well as (4) by (5). In this light and
because of (35), formula (5) is in fact better than (4). On the other hand, despite
the fact that (2) can be compensated by (3) and the inequalities μ(bII) < μ(bIV ),
in view of parameter values bII

.
= 0.0753 and bIV

.
= 0.3094, formula (3) is the
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worst of all. After all, since (4) was already shown to be more suitable than (3),
the simplest formula (5) is optimal for the computation of parameter b. Thus,
bI

.
= 0.3574 is the best estimate (among bI , bII , bIII , bIV ) of parameter b, in our

linguistic experiment. We believe that this particular case can be extended to
a more general situation which will be treated by ourselves elsewhere.
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