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Abstract

We show that every pseudocomplemented poset can be equivalently
expressed as a certain algebra where the operation of pseudocomplemen-
tation can be characterized by means of remaining two operations which
are binary and nullary. Similar characterization is presented for Stone
posets.
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The concept of pseudocomplement was introduced by O. Frink [2] for meet-
semilattices, Stone lattices were studied by R. Balbes and A. Horn [1]. S. K.
Nimbhokar and A. Rahemani [3] modified the approach developed for posets
by P. V. Venkatarasimhan [4] and use it for characterization of Stone join-
semilattices.
The aim of this paper is to get another approach which goes in a sense con-

versely. We will show that every pseudocomplemented poset can be organized
in a certain algebra. This can be analogously done for Stone posets.
Let us recall that the concept of pseudocomplement in a poset with the least

element 0 was introduced in [4] by means of order-ideals. However, it can be
easily paraphrased as follows.

Definition 1 Let P = (P ;≤, 0) be a poset with the least element 0, let a ∈ P .
We say that a∗ ∈ P is a pseudocomplement of a if

(i) there exists the infimum a ∧ a∗ of {a, a∗} and is equal to 0;
(ii) if b ∈ P and a ∧ b exists and equals 0, then b ≤ a∗.
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A poset P = (P ;≤, 0) is called pseudocomplemented if there exists a pseu-
docomplement a∗ for each a ∈ P . This fact will be expressed by notation
P = (P ;≤, 0,∗ ).

Convention In what follows, the notation a ∧ b = c will be read as “the
infimum a ∧ b exists and is equal to c”.

Example 1 Consider the poset P = ({0, a, b, c, d, 1};≤, 0) vizualized in Fig. 1:

0

ba

dc

1

Fig. 1

Evidently, P is neither a lattice nor a meet-semilattice. However, P is pseu-
docomplemented and the pseudocomplements are determined by Definition 1 as
follows

x 0 a b c d 1
x∗ 1 b a 0 0 0 .

The following is a trivial consequence of the definition.

Lemma 1 Let P = (P ;≤, 0) be a pseudocomplemented poset. Then

(a) P has the greatest element 1 = 0∗;
(b) x ≤ x∗∗, x∗∗∗ = x∗ and if x ≤ y, then y∗ ≤ x∗, for all x, y ∈ P .

We show now that a certain algebra of type (2, 0) can be assigned to every
poset P = (P ;≤, 0).

Definition 2 Let P = (P ;≤, 0) be a poset with the least element 0. Define
a binary operation � on P as follows: if x ∧ y exists, then x � y = x ∧ y, and
x � y = 0 otherwise. The algebra A(P ) = (P ;�, 0) will be called a P-algebra.
Example 2 Consider the poset P = ({0, a, b, c, d, 1};≤, 0) of Example 1 (vizual-
ized in Fig. 1). Then the corresponding P-algebra A(P ) = ({0, a, b, c, d, 1};�, 0)
is defined uniquelly by the operation table

� 0 a b c d 1
0 0 0 0 0 0 0
a 0 a 0 a a a
b 0 0 b b b b
c 0 a b c 0 c
d 0 a b 0 d d
1 0 a b c d 1 .
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Remark 1 (a) It is obvious that the operation � is commutative, i.e. x � y =
y � x for all x, y ∈ P .
(b) If x ≤ y then x ∧ y exists and x ∧ y = x, i.e. also x � y = x. Conversely,

if x � y = x then either x ∧ y exists, i.e. x ∧ y = x and hence x ≤ y, or x ∧ y
does not exist, i.e. 0 = x � y = x whence x = 0 ≤ y again. Thus we have

x ≤ y if and only if x � y = x

in every P-algebra A(P ) = (P ;�, 0).
Now, we prove that also conversely, every poset P = (P ;≤, 0) can be derived

from its assigned P-algebra A(P ). For this, we characterize the operation � of
A(P ) by several simple axioms.

Lemma 2 Let P = (P ;≤, 0) be a poset with 0 and A(P ) = (P ;�, 0) the cor-
responding P-algebra. Then the operations � and 0 satisfy the following condi-
tions:

(A0) x � 0 = 0

(A1) x � x = x

(A2) x � y = y � x

(A3) x � ((x � y) � z) = (x � y) � z

(A4) if there exists an element t such that (a) x � t = t = y � t and (b) for all
w, x � w = w = y � w implies w � t = w, then x � y = t, and if such an
element does not exist, then x � y = 0.

Proof By Remark 1 we have x ≤ y iff x � y = x. Since 0 is the least
element of P, we have x � 0 = 0 which is (A0). The conditions (A1), (A2)
follow directly by Definition 2. Further, x � y ≤ x and (x � y) � z ≤ x, thus
x� ((x�y)� z) = x∧ ((x�y)� z) = (x�y)� z which is (A3). For (A4), assume
that such an element t exists in P. Then, by (a), t ≤ x, t ≤ y and, by (b), it is
the greatest element in P of this property, i.e. t = x ∧ y and hence x � y = t. If
it does not exist, then x � y = 0, proving (A4). �

Lemma 3 Let A = (A;�, 0) be an algebra of type (2, 0) satisfying (A0)–(A4).
Define x ≤ y if x � y = x. Then P(A) = (A;≤, 0) is a poset with the least
element 0 and x � y = x ∧ y provided x ∧ y exists, and x � y = 0 otherwise.

Proof By (A0) and (A2) we have 0 ≤ x for each x ∈ A. By (A1) we obtain
x ≤ x, reflexivity of ≤. Assume x ≤ y and y ≤ x. Then, by (A2), x = x � y =
y � x = y proving antisymmetry of ≤. If x ≤ y and y ≤ z, i.e. x � y = x and
y�z = y, then by (A2) and (A3) we derive x�z = (x�y)�z = (x�(y�z))�z =
x � (y � z) = x � y = x whence ≤ is also transitive, i.e. it is a partial order on
A, thus (A;≤, 0) is a poset with the least element 0.
Assume now that a, b ∈ A and a∧b exists (with respect to the aforementioned

order ≤). Then for t = a ∧ b the assumptions of (A4) are satisfied and hence
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a � b = t = a ∧ b. If a ∧ b does not exist, then there is no t ∈ A satisfying the
assumptions of (A4) and hence a � b = 0. �

Let A = (A;�, 0) be an algebra satisfying (A0)–(A4). The poset P(A) =
(A;≤, 0) derived in Lemma 3 will be called the induced poset. We are going to
show that posets P with 0 and the corresponding P-algebras are in a one-to-one
correspondence.

Lemma 4 Let P = (P ;≤, 0) be a poset with 0, A(P ) = (P ;�, 0) the P-algebra
and P(A(P )) = (P ;�, 0) the induced poset. Then P = P(A(P )).
Let A = (A;�, 0) be an algebra satisfying (A0)–(A4), P(A) = (A;≤, 0) the

induced poset and A(P(A)) = (A;∩, 0) its P(A)-algebra. Then A = A(P(A)).

Proof (a) We need to show ≤ = �. Assume x ≤ y in P. By Remark 1, this
is equivalent to x � y = x in A(P ) which is equivalent by definition to x � y.
Hence P = P(A(P )).
(b) Assume a ∧ b exists in P(A). Then a ∩ b = a ∧ b in A(P(A)) but also

a� b = a∧ b in A by Lemma 3. In both cases, we obtain a∩ b = a� b and hence
A = A(P(A)). �

Now, we are ready to characterize pseudocomplementation in posets by
means of the corresponding P-algebra.
Theorem 1 Let P = (P ;≤, 0) be a poset with the least element 0, let A(P ) =
(P ;�, 0) be its P-algebra. Let ∗ be a unary operation on P . Then P = (P ;≤
, 0,∗ ) is a pseudocomplemented poset if and only if (P ;�,∗ , 0) satisfies the fol-
lowing conditions:

(P1) x � 0∗ = x

(P2) x � (x∗ � y) = 0

(P3) if x � (y � z) = 0 for all z ∈ P , then y � x∗ = y

Proof Assume that P = (P ;≤, 0,∗ ) is a pseudocomplemented poset. Then
for each x, y ∈ P we have x∗ � y ≤ x∗. Since x ∧ x∗ exists and is equal to 0,
we conclude that also x ∧ (x∗ � y) exists and is equal to 0, i.e. x � (x∗ � y) =
x∧ (x∗ � y) proving (P2). Assume x� (y� z) = 0 for each z ∈ P . If there exists
c ∈ P such that c �= 0 and x � y = c then, by (A2), (A3) and the assumption,
0 = x� (y � c) = x� (y � (x� y)) = y � (x� y) = x� y = c �= 0, a contradiction.
Therefore x∧ y = 0 whence y ≤ x∗ and y � x∗ = y proving (P3). The condition
(P1) is evident.
Conversely, let (P ;�,∗ , 0) satisfy (P1), (P2) and (P3). By (P1), 0∗ is the

greatest element of P. If y ≤ x and y ≤ x∗ then, according to (P2), we obtain
y = x � y = x � (x∗ � y) = 0. Hence x ∧ x∗ = 0. Assume now x ∧ z = 0. Then
x� (z� c) ≤ x and x� (z� c) ≤ z� c ≤ z for each c, thus x� (z� c) ≤ x∧ z = 0.
By (P3) we conclude z ≤ x∗, i.e. x∗ is the greatest element of P satisfying
x ∧ z = 0, i.e. it is the pseudocomplement of x. �

We focus our attention on Stone posets in the rest of the paper. As in the
previous case, the definition of [4] can be paraphrased as follows.
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Definition 3 Let P = (P ;≤, 0,∗ ) be a pseudocomplemented poset. Then P is
called a Stone poset if for each x ∈ P the supremum x∗∨x∗∗ exists and equals 1
(where 1 = 0∗).

Example 3 The poset from Example 1 is pseudocomplemented, but it is not
a Stone one because, e.g., a∗ ∨ a∗∗ = b ∨ a does not exist.

Example 4 Consider the poset P = ({0, a, b, c, d, p, q, 1};≤, 0) depicted in Fig. 2.

0

r

p
q

d

a b c

1

Fig. 2

Then P is pseudocomplemented, pseudocomplements are given by the table:

x 0 p q d a b c r 1
x∗ 1 c c a c 0 a c 0
x∗∗ 0 a a c a 1 c a 1 .

Since a ∨ c = 1 and 0 ∨ 1 = 1, we have x∗ ∨ x∗∗ = 1 for each x ∈ P , thus P is a
Stone poset.

We proceed analogously as in the previous case. Consider a bounded poset
P = (P ;≤, 0, 1). The operation � on P is defined by Definition 2. Now we
define 
 on P dually: if x∨y exists, then x
y = x∨y, and x
y = 1 otherwise.
The algebra B(P ) = (P ;
,�, 0, 1) will be called the P1-algebra assigned to P.

Remark 2 Analogously as in the previous case, one can easily check that 

has the properties:

(B0) x 
 1 = 1

(B1) x 
 x = x

(B2) x 
 y = y 
 x

(B3) x 
 ((x 
 y) 
 z) = (x 
 y) 
 z

(B4) if there exists an element s such that (a) x 
 s = s = y 
 s and (b) for all
u, x 
 u = u = y 
 u implies u 
 s = u, then x 
 y = s, and if such an
element does not exist, then x 
 y = 1.
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