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Abstract. In this paper we establish interior regularity for weak solutions and partial
regularity for suitable weak solutions of the perturbed Navier-Stokes system, which can be
regarded as generalizations of the results in L. Caffarelli, R. Kohn, L. Nirenberg : Partial
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1. Introduction and main results

Let Ω ⊂ R
N (N = 2, 3) be an open domain with smooth boundary ∂Ω. The

dynamical behavior of the viscous incompressible fluid flow in Ω is governed by the

following perturbed Navier-Stokes system (see page 140 in [1]):

{
∂tv − ∆v + (v · ∇)v + ∇π1 = −∂tv0 − (∂tω0) × x− ω0 × (ω0 × x) − 2ω0 × v,

∇ · v = 0,

where the translational velocity v0 = v0(t) and the angular velocity ω0 = ω0(t) =

(0, 0, . . . , 0, θ(t)) are N -vectors depending only on the time-variable t; v = (v1(x, t),

v2(x, t), . . . , vN (x, t)) and p = p(x, t) denote the unknown velocity vector and the

pressure, respectively.

*This work was completed with the support in part by Key Laboratory of Random Com-
plex Structures and Data Science, Chinese Academy of Sciences; National Natural Science
Foundation of China under grant No. 11071239.
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Set u = v + v0 + ω0 × x, π = π1 − v0 · (ω0 × x). Then the above equations can be

rewritten as follows:

∂tu− ∆u+ (u · ∇)u + ∇π = v0 · ∇u+ (ω0 × x) · ∇u− ω0 × u,(1.1)

(x, t) ∈ Ω × (0, T ),

∇ · u = 0, (x, t) ∈ Ω × (0, T ).(1.2)

Definition. The function u is called a weak solution of (1.1), (1.2) if u ∈

L∞(0, T ;L2(Ω)) with ∇u ∈ L2(0, T ;L2(Ω)) satisfies

−

∫ T

0

∫

Ω

u∂τv dxdτ +

∫ T

0

∫

Ω

∇u · ∇v dxdτ +

∫ T

0

∫

Ω

(u · ∇)u · v dxdτ

=

∫ T

0

∫

Ω

[v0 · ∇u+ (ω0 × x) · ∇u − ω0 × u]v dxdτ

for all v ∈ C∞
0 ((0, T );C∞

0,σ(Ω)).

Furthermore, we say that the weak solution u is a suitable weak solution of (1.1),

(1.2) if the associated pressure π is in LN/2(Ω×(0, T )), and the following generalized

energy inequality holds:

∫

Ω

|u(x, t)|2φ(x, t) dx+ 2

∫ t

0

∫

Ω

|∇u|2φdxdτ

6

∫ t

0

∫

Ω

[|u|2(φτ + ∆φ) + (|u|2 + 2π)u · ∇φ] dxdτ

− 2

∫ t

0

∫

Ω

|u|2(v0(τ) + ω0(τ) × x) · ∇φdxdτ

for each 0 6 φ ∈ C∞
0 (Ω × (0, T )).

In the absence of the terms on the right-hand side of (1.1), problem (1.1), (1.2)

is reduced to the standard incompressible Navier-Stokes equation. In the three di-

mensional case, a large gap remains between the regularity available in the existence

results and the additional regularity required in the sufficient conditions to guarantee

the smoothness of weak solutions of the standard Navier-Stokes equations. This gap

has been narrowed by the works of Iskauriaza-Seregin-Sverak [18], Ladayzhenskaya-

Seregin [19], Scheffer [25], Serrin [27], Struwe [29], see also [2], [3], [4], [5], [6], [8], [9],

[10], [13], [14], [15], [16], [20], [22], [23], [24], [26], [31], [32] and the references therein,

which bring about a deeper understanding of the regularity. In particular, some local

partial regularity results and Hausdorff dimension estimates on the possible singular

set have been obtained for a class of suitable weak solutions defined and constructed
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in [7], where the principal tools are the so-called generalized energy inequality and a

scaling argument.

The exterior problem of (1.1), (1.2) was studied in [11] from the point of view

of mechanics. Hishida [17] considered the problem (1.1), (1.2) with v0(t) ≡ 0,

ω0(t) ≡ const, 0 < |ω0(t)| ≪ 1, and established an existence result in a three-

dimensional exterior domain. Chen-Miyakawa [12] discussed the existence of a global

weak solution in the whole space RN (N = 2, 3) and the algebraic decay rates for

the kinetic energy of the weak solutions constructed. The global existence of weak

solutions of (1.1), (1.2) with inhomogeneous boundary values in smooth bounded do-

mains can be constructed by using Galerkin methods and weak convergence theories,

see [21] for example. In general domains, it is difficult to construct a global weak

solution for (1.1), (1.2), because the perturbed terms contain the space variable x,

which causes many difficulties at infinity (see Hishida’s paper [17] for example).

However, in this paper we mainly focus on the regularity of weak solutions, not the

existence.

As far as we know, there are few results on the regularity of weak solutions of (1.1),

(1.2). In the present paper, we try to establish regularity criteria for (1.1), (1.2),

which are similar to Serrin’s class in [27] and Takahashi’s criteria in [30]. In addition,

we also discuss partial regularity for suitable weak solutions of (1.1), (1.2), which

can be regarded as an extension of results in [7]. The regularity of the solution

at the point (x0, t0) seems to follow almost directly from the corresponding results

for the non-perturbed Navier-Stokes equations, but we cannot find exact references

explaining these questions. This is why we give strict and detailed proofs in the

present paper.

In this paper, we always suppose that v0(t), ω0(t) are smooth bounded on [0, T ),

0 < T <∞. Our main results read as follows:

Theorem 1.1. Suppose that u is a weak solution of (1.1), (1.2) with N = 2, 3.

Let one of the following conditions hold:

‖u‖Lq(0,T ;Lp(Ω)) <∞ for any N < p 6 ∞ with
N

p
+

2

q
6 1,

or

‖u‖L∞(0,T ;LN (Ω)) is suitable small.

Then, for any Ω′ with Ω′ ⊂ Ω and any 0 < σ < T ,

u, curlu ∈ L∞(Ω′ × (σ, T )).
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Now we recall the Lorentz space L(q) for 1 < q <∞,

L(q)(0, T ) =
{
f ∈ L1(0, T ) : sup

λ>0
λ{µ{t ∈ (0, T ) : |f(t)| > λ}}1/q

}
,

where µ denotes the Lebesgue measure on R.

Define g ∈ L(q),p(Q), Q = Ω × (0, T ) if

‖g‖L(q),p(Q) = {‖g(·, t)‖Lp(Ω)}L(q)(0,T ) <∞.

Set QR(x, t) = {(y, τ) ∈ Ω × (0, T ) : |y − x| < R, t−R2 < τ < t
}
.

Theorem 1.2. Let 1 6 p, q 6 ∞ with N/p + 2/q 6 1 and p > N (N = 2, 3).

Assume that u is a weak solution of (1.1), (1.2) in QR = QR(x0, t0) ⊂ Ω × (0, T ). If

there exists a positive number ε = ε(N, p) ≪ 1 such that

‖u‖L(q),p(QR) 6 ε,

then

u, curlu ∈ L∞(QR/2).

Next we deal with the partial regularity of suitable weak solutions of (1.1), (1.2).

As in [7], we call a point (x, t) singular if u is not L∞
loc in any neighborhood of (x, t);

the remaining points, where u is locally essentially bounded, will be called regular

points.

For any X ⊂ R
N × R and k > 0, define (see [7])

Fk(X) = lim
δ→0

Fk
δ (X), where Fk

δ (X) = inf

{ ∞∑

i=1

rk
i : X ⊂

∞⋃

i=1

Qri , ri < δ

}
.

Then Fk is a Borel regular measure. Hausdorff measure Hk is defined in an entirely

similar manner, but with Qri replaced by an arbitrary closed subset in R
N ×R with

diameter at most ri. Clearly, H
k 6 CFk.

It could be easily verified that any weak solution u is in Lq(0, T ;Lp(Ω)) with

N/p + 2/q = 1, p > N = 2. Therefore, based on Theorem 1.1, we always take the

dimension N = 3 in the next arguments.
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Theorem 1.3. Let ε1 > 0 be an absolute constant. Suppose that (u, π) is a

suitable weak solution of (1.1), (1.2) on QR(x0, t0) ⊂ Ω × (0, T ) such that

R−2

∫∫

QR(x0,t0)

(|u|3 + |u||π|) dxdt+R−13/4

∫ t0

t0−R2

(∫

|x−x0|<R

|π| dx

)5/4

dt 6 ε1.

Then |u(x, t)| 6 c(R) for almost all (x, t) ∈ QR/2(x0, t0). In particular, F5/3(S) = 0,

where S denotes the set of singular points.

Compared to Proposition 1 in [7], Theorem 1.3 shows that the perturbed terms in

problem (1.1) have little effect on the regularity of the standard Navier-Stokes flows.

Theorem 1.4. Let ε2 > 0 be an absolute constant. Suppose that (u, π) is a

suitable weak solution of (1.1), (1.2) on QR1(x0, t0) ⊂ Ω × (0, T ) such that

lim sup
r−→0

∫∫

Qr(x0,t0)

|∇u|2 dxdt 6 ε2.

Then (x0, t0) is a regular point of u. Furthermore, F1(S) = 0, which implies that

S has Hausdorff dimension at most 1.

Compared to Proposition 2 in [7], Theorem 1.4 reveals that the perturbed Navier-

Stokes system has the same Hausdorff dimensional estimates at the singular points

of suitable weak solutions of (1.1).

The local theory of partial regularity which we develop to prove Theorem 1.4 has

other applications as well. We use it to study the initial value problem on R3 in case

the initial velocity u0 satisfies either

(1.3)
1

2

∫

R3

|x||u0(x)|
2 dx , G <∞

or

(1.4)
1

2

∫

R3

|u0(x)|
2|x|−1 dx , L < L0.

Condition (1.3) stipulates that u0 should “decay sufficiently rapidly at∞”, and under

such assumption we can show that u is regular for |x| large enough.
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Theorem 1.5. Suppose that (u, π) is a suitable weak solution of (1.1), (1.2) on

R
3× (0, T ) with initial data u0 ∈ L2

σ(R3), and suppose (1.3) holds. Then u is regular

in the region {(x, t) ∈ R
3 × (0, T ) : |x|2t > K1}, where K1 = K1(E,G) is a constant

depending only on G and E , 1
2

∫
R3 |u0(x)|2 dx.

In the limit t → 0, the region {(x, t) ∈ R
3 × (0, T ) : |x|2t > K1} in Theorem 1.5

expands to include all space. However, if u0 is regular enough (for example, u0 ∈

H1(R3)), u is regular for a short time interval; in this case, Theorem 1.5 shows that

the set of possible singular points is bounded.

Theorem 1.6. Suppose that (u, π) is a suitable weak solution of (1.1), (1.2) on

R
3 × (0, T ) with initial data u0 ∈ L2

σ(R3). Let there exist an absolute constant

L0 > 0 such that (1.4) holds. Then u is regular in the region

Y ,

{
(a, s) ∈ R

3 × (0, T ) : |a|2 <
s(L0 − L)

2M2
−

(
4 +

M0

2M

)
s2

}
.

Here M0 , ‖u‖2
L∞(0,T ;L2(R3)), M , 2 sup

06t<T
(|v0(t)| + (1 + t)|ω0(t)|) <∞.

R em a r k. If |a| > 0, s > 0 in Theorem 1.6 are small enough, we know that the

set Y 6= ∅. Condition (1.4) represents a restriction that u0 “not be too singular”

at the origin. As it turns out, the argument works only if L is sufficiently small.

Theorem 1.6 shows, for an appropriate choice of the constant L0, that a suitable

weak solution with initial data satisfying (1.4) is regular in a parabolic domain above

the origin.

Let Ω = R
3 or an exterior domain in R

3. If the assumptions (1.3) and (1.4) are

removed, then any suitable weak solution of (1.1), (1.2) is still regular if the space

variable x is large enough and the time variable t is bounded below by a positive

small number.

Theorem 1.7. Let Ω = R
3 or an exterior domain in R

3, and let δ ∈ (0, T ).

Suppose that (u, π) is a suitable weak solution of (1.1), (1.2) on Ω×(0, T ). Then there

exist constants K = K(δ, T, u, π) > 0, C = C(δ, T, u, π) > 0 such that |u(x, t)| 6 C

for almost all (x, t) ∈ Ω × [δ, T ) with |x| > K.

R em a r k. The results in Theorems 1.1–1.7 are similar to those obtained for the

standard Navier-Stokes equations, and reveal that the perturbed terms (even if they

include the velocity and its first derivatives) in problem (1.1) have little effects on

the regularity of (suitable) weak solutions of (1.1), (1.2). This is what the present

paper shows to the interested readers.
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This paper is organized as follows: Section 2 is devoted to the proofs of Theo-

rems 1.1, 1.2, and we establish regularity criteria for weak solutions of (1.1), (1.2).

In Section 3, we focus on the partial regularity of weak solutions of (1.1), (1.2) in

the 3D whole space.

2. Interior regularity for weak solutions of (1.1), (1.2)

Set
C∞

0,σ(Ω) = {u ∈ C∞
0 (Ω): div u = 0},

L2
σ(Ω) = the closure of C∞

0,σ(Ω) in L2(Ω),

Br(x0) = {x ∈ R
N : |x− x0| < r},

and uD = 1/|D|
∫

D u(y) dy.

Consider the problem

(2.1)

{
∂tv − ∆v + ∇bv = F in R

N × (0, T ),

v(x, 0) = 0,

where v = (v1, v2, . . . , vd), d = N(N − 1)/2, N > 2, F = ∇g + h, ∇g =
( N∑

j=1

∂gij/∂xi

)d

i=1
, h = (h1, h2, . . . , hd), b = (bijk(x, t))d

i=1 for 1 6 i, k 6 d, 1 6 j 6 N ,

and ∇bv =
{ N∑

j=1

d∑
k=1

(∂/∂xj)(b
i
jk(x, t)vk(x, t))

}d

i=1
.

The function v ∈ Ls′

(0, T ;Ls(RN )) (1 < s, s′ 6 ∞) is said to be a weak solution

of (2.1) if

−

∫ T

0

∫

RN

(∂tϕ+ ∆ϕ+ b∇ϕ)v dxdt

=

∫ T

0

∫

RN

Fϕdxdt for any ϕ ∈ C∞
0 (RN × (0, T )).

The following lemma can be found in [30].

Lemma 2.1. Assume that 1 6 p, q 6 ∞ and N/p+ 2/q = 1 (N > 2), l, l′ satisfy

1/l = 1/p + 1/m, 1/l′ = 1/q + 1/m′, where 2 6 m 6 r 6 ∞, 2 6 m′ 6 r′ < ∞

satisfy 2/m+ 2/m′ 6 N/r + 2/r′ + 1. Suppose that v ∈ L2(0, T ;L2(RN )) is a weak

solution of (2.1) with F = ∇g + h and g, h ∈ L2(0, T ;L2(RN )). There exists a

positive constant ε such that

(i) if ‖b‖Lq(0,T ;Lp(RN )) 6 ε, then

‖b‖Lr′(0,T ;Lr(RN )) 6 C(‖g‖Lm′(0,T ;Lm(RN )) + ‖h‖Ll′(0,T ;Ll(RN )));
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or

(ii) if ‖b‖L(q)(0,T ;Lp(RN )) 6 ε, then

‖b‖L(r′)(0,T ;Lr(RN )) 6 C(‖g‖L(m′)(0,T ;Lm(RN )) + ‖h‖L(l′)(0,T ;Ll(RN ))).

Here C = C(N, d, T, r, r′,m,m′) and ε = ε(N, d, p, r′) if p > N , and ε = ε(N, d, r, r′)

if p = N . The exponent r should be

(1) 1 < r <∞ if p = N , q = ∞, or

(2) m′ = r′ and 1/m = 1/r + 1/N .

P r o o f of Theorem 1.1. Set ω = curlu. Then ω = (∂2u3 − ∂3u2,−∂1u3 + ∂3u1,

∂1u2 − ∂2u1) for N = 3, and ω = ∂1u2 − ∂2u1 for N = 2. Moreover,

(2.2) ∂tω − ∆ω + curl((u · ∇)u) = curl g(v0(t) · ∇u+ (ω0 × x) · ∇u− ω0 × u).

Note that for N = 3,

curl(v0(t) · ∇u) = curl

( 3∑

i=1

vi
0(t)∂iu

)
= (v0(t) · ∇)ω,(2.3)

curl((u · ∇)u) = (u · ∇)ω − (ω · ∇)u,(2.4)

and

curl[(ω0 × x) · ∇u− ω0 × u](2.5)

= curl[(−x2θ(t)∂1 + x1θ(t)∂2)u− (−u2θ(t), u1θ(t), 0)]

=
(
(ω0 × x) · ∇ω1 − θ(t)∂1u3, (ω0 × x) · ∇ω2 − θ(t)∂2u3,

(ω0 × x) · ∇ω3 + θ(t)(∂2u2 + ∂2u2)
)

− (−θ(t)∂3u1,−θ(t)∂3u2, 0)

= (ω0 × x) · ∇ω − ω0 × ω.

Inserting (2.3)–(2.5) into (2.2), we obtain

(2.6) ∂tω − ∆ω + (u · ∇)ω − (ω · ∇)u = (v0(t) · ∇)ω + (ω0 × x) · ∇ω − ω0 × ω,

which also holds for N = 2. For any (x0, t0) ∈ Ω × (0, T ) we have QR(x0, t0) ⊂

Ω × (0, T ) with some small number R > 0. Set v = ωψ, where ψ ∈ C∞
0 (QR(x0, t0))

with ψ ≡ 1 in QθR(x0, t0), θ ∈ (0, 1). Then v = ω in QθR(x0, t0), and v ∈ L2,2(RN ×

(−R2 + t0, t0)) solves in the sense of distribution

{
∂tv − ∆v + ∇bv = F (ω) in R

N × (t0 −R2, t0),

v(x, t0 −R2) = 0 in R
N ,
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where b = (bijk(x, t))d
i=1 with d = 1 if N = 2, and d = 3 if N = 3, bijk(x, t) =

ujδik − uiδjk, F (ω) = ∇g + h,

g = −2ω ⊗ (∇ψ) + ψ(v0(t) + ω0(t) × x) ⊗ ω,

and

h = −ω
N∑

i=1

∂i(ψv
i
0) − ψω0 × ω + ωψt + ω∆ψ +

( N∑

j,k=1

ωkbijk

∂ψ

∂xj

)N

i=1

.

Applying Lemma 2.1 and using the assumptions in Theorem 1.1, we get

‖v‖Lr′(0,T ;Lr(RN )) 6 C(‖g‖Lm′(0,T ;Lm(RN )) + ‖h‖Ll′(0,T ;Ll(RN )))(2.7)

6 C‖ω‖Lm′,m(QR).

Here Lm′,m(QR) = Lm′

(t0 −R2, t0;L
m(BR(x0))). The norm ‖b‖Lq(0,T ;Lp(RN )) in the

above formula is sufficiently small, and the exponents p, q, l,m, r, l′,m′, r′ satisfy the

relations in Lemma 2.1.

In particular, by the choice of the cut-off function ψ, one has from (2.7) that

(2.8) ‖ω‖Lr′,r(QR/2)
6 C‖ω‖Lm′,m(QR).

Step 1. Take m = r = m′ = 2, r′ = β in (2.8), β ∈ [2,∞). Since ω ∈ L2,2(QR),

we deduce ω ∈ Lβ,2(QR/2) for any β ∈ [2,∞).

Step 2. Take m = 2, m′ = r′ = β in (2.8). Then it follows from (2.8) that

ω ∈ Lβ,r0(QR/4), where r0 = N/(1 − 2ε0/β(β + ε0)), and ε0 > 0 is a small number.

Moreover, 1+N/r0 = 2− 2ε0/β(β + ε0) > N/2 (N = 2, 3) if ε0 > 0 is small enough.

Step 3. Take r = ∞, m = r0, m
′ = β, r′ = β + ε0 > m′ in (2.8). Then

N

m
+

2

m′
−

(N
r

+
2

r′
+ 1

)
=

2

β
−

2

(β + ε0)
−

2

β(β + ε0)
= 0.

Hence, from (2.8) we obtain ω ∈ Lβ,∞(QR/8) for any β ∈ [2,∞).

For any open region G with compact closure in Ω we have (see [27])

(2.9) u(x, t) =

∫

G

(∇xH(x− ξ)) × ω(ξ, t) dξ +A(x, t),

where H(x) is the fundamental solution of the Laplace equation, and A(x, t) is har-

monic in G. Moreover, in any region S = G × (T1, T2) with compact closure in

Ω × (0, T ), we also have

(2.10) ω(x, t) = ∇K ∗ g +B.

435



Here K is the fundamental solution of the heat equation, which is given by K =

K(x, t) = (4πt)−N/2e−|x|2/(4t) for t > 0; and K = K(x, t) = 0 for t 6 0. The

function B = B(x, t) is a solution of ∂tB−∆B = 0, and |g| 6 C(|ω||u|+ |∇u|+ |u|).

Since ω ∈ Lβ,∞(QR/8) for any β ∈ [2,∞), we infer from (2.9) that u,∇u ∈

Lβ,∞(QR1) for some R1 ∈ (0, R/8), and g ∈ Lq′,q(QR1) with q, q
′ ∈ [2,∞). As

in the proof of the main theorem with non-conservative force in [27], we, together

with (2.9), (2.10), obtain u, ω ∈ L∞,∞(QR2) for some R2 ∈ (0, R1). Using a standard

covering argument, we complete the proof of Theorem 1.1. �

P r o o f of Theorem 1.2. As in the proof of (2.8), we also have

‖v‖L(r′)(0,T ;Lr(RN )) 6 ‖ω‖Lm′,m(QR).

Note that ω ∈ L2,2(QR) yields ω ∈ L(2),2(QR/2). Repeating the proof of Theo-

rem 1.1, we complete the proof of Theorem 1.2. �

3. Proofs of Theorems 1.3–1.7

Proof of Theorem 1.3. We rewrite our hypothesis as follows:

R−2

∫∫

QR(x0,t0)

(|u|3 + |u||π|) dxdt(3.1)

+R−13/4

∫ t0

t0−R2

(∫

|x−x0|<R

|π| dx

)5/4

dt 6 ε1.

Note that QR/2(a, s) ⊂ QR(x0, t0) for any (a, s) ∈ QR/2(x0, t0). From (3.1) we

have

R−2

∫∫

QR/2(a,s)

(|u|3 + |u||π|) dxdt(3.2)

+R−13/4

∫ s

−R2/4+s

(∫

BR/2(a)

|π| dx

)5/4

dt 6 ε1.

Set rn = 2−nR, Qn = Qrn(a, s). Now we verify by induction that inequali-

ties (3.3)n and (3.4)n below hold:

(3.3n (n>3))

(∮

Qn

|u|3 dxdt

)4/3

+ r3/5
n

∮

Qn

|u||π − πn| dxdt 6 ε
2/3
1 ,

and

(3.4n (n>2)) sup
−r2+s<t6s

∮

|x−a|<rn

|u(x, t)|2 dx+ r−3
n

∫∫

Qn

|∇u|2 dxdt 6 C0ε
2/3
1 .
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Here
∮

Qn |f | dxdt = |Qn|−1
∫∫

Qn |f | dxdt, and gn = gn(t) =
∮
|x−a|<rn

g dx =

1/|Brn(a)|
∫
|x−a|<rn

g dx.

Step 1 : (3.3)k (3 6 k 6 n) implies (3.4)n+1. Set φn = χψn, where χ ∈ C∞

with 0 6 χ 6 1 and χ ≡ 1 on Q2 = Qr2(a, s); χ ≡ 0 out of QR/3(a, s); ψn(x, t) =

(r2n + s− t)−N/2e−|x−a|2/4(r2
n+s−t) for t < s+ r2n.

Note that

∂tφn + ∆φn = 0 on Q2,

|∂tφn + ∆φn| 6 C on Q1,

C1r
−3
n 6 φn(x, t) 6 C2r

−3
n and |∇φn(x, t)| 6 Cr−4

n , ∀ (x, t) ∈ Qn,

|φn(x, t)| 6 Cr−3
k and |∇φn(x, t)| 6 Cr−4

k for any (x, t) ∈ Qk−1 \Qk.

Taking φ = φn in the generalized energy inequality, we obtain

sup
s−r2<t6s

∮

|x−a|<rn+1

|u(x, t)|2 dx+ r−3
n+1

∫∫

Qn

|∇u|2 dxdt 6 C(I + II + III),

where

I =

∣∣∣∣
∫∫

Q1

|u|2(∂tφn + ∆φn) dxdt− 2

∫∫

Q1

|u|2(v0(t) + ω0(t) × x) · ∇φn dxdt

∣∣∣∣,

II =

∫∫

Q1

|u|3|∇φn| dxdt,

and

III =

∣∣∣∣
∫∫

Q1

πu · ∇φn dxdt

∣∣∣∣.

Therefore,

I 6 C

∫∫

Q1

|u|2 dxdt+ C

n∑

k=1

[
(r−4

k + r−3
k )

∫∫

Qk

|u|2 dxdt

]
(3.5)

6 Cε
2/3
1 + C

n∑

k=1

[
(r−4

k + r−3
k )r

5/3
k

(∫∫

Qk

|u|3 dxdt

)2/3]

6 Cε
2/3
1 + C

n∑

k=1

[(r−4
k + r−3

k )r
5/3
k (ε

1/2
1 r5k)2/3

6 Cε
2/3
1 + Cε

1/3
1

n∑

k=1

(rk + r2k) 6 Cε
2/3
1 .
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The estimates of II, III are given in [7], namely

(3.6) II + III 6 Cε
2/3
1 .

Combining (3.5) and (3.6), we infer that (3.4)n+1 (n > 3) holds.

Step 2 : (3.4)k (2 6 k 6 n) implies (3.3)n+1 (n > 2). As in [7], we have

∫

Qn+1

|u|3 dxdt 6 C∗ε1,

where C∗ is independent of n.

Hence, (∫

Qn+1

|u|3 dxdt

)4/3

6 (C∗ε1)
4/3 6

1

2
ε
2/3
1 ,

provided that (C∗ε1)
4/3 6 1

2 , which is possible if ε1 is small enough. The rest of the

proof is the same as that in [7] due to the following two facts:

(i) The generalized energy inequality is not used in Step 2.

(ii) It is not difficult to verify that

div{(v0(t) + ω0(t) × x) · ∇u− ω0(t) × u} = 0 in the sense of distribution.

Therefore, −∆π = div div(u ⊗ u) holds in the sense of distribution, and then the

pressure π has the same formula as in [7].

From the above arguments, we conclude that for any n > 2

∮

|x−a|<rn

|u(x, t)|2 dx 6 C0ε
2/3
1 for each (a, s) ∈ QR/2(x0, t0).

Then |u(a, s)|2 6 Cε
2/3
1 provided that (a, s) is a Lebesgue point for u, hence almost

everywhere on QR/2(x0, t0). The proof of F5/3(S) = 0 is the same as that in [7], so

we omit the details here. �

P r o o f of Theorem 1.4. For any 0 < r 6 1
2̺ with ̺ 6 R1, a test function φ

in the generalized energy inequality will be chosen satisfying φ ∈ C∞
0 (Q̺(x0, t0)),

0 6 φ 6 1, and φ ≡ 1 on Qr(x0, t0), |∇φ| 6 C̺−1, |∂tφ| + |∆φ| 6 C̺−2. Then

∣∣∣∣−2

∫∫

Q̺(x0,t0)

|u|2(v0(t) + ω0(t) × x) · ∇φdxdt

∣∣∣∣

6 C(1 + ̺)̺−1

∫∫

Q̺(x0,t0)

|u|2 dxdt

6 C̺

(
̺−2

∫∫

Q̺(x0,t0)

|u|3 dxdt

)2/3

.
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The estimates of the other terms on the right-hand side of the generalized energy

inequality can be obtained by following the proof of Lemma 5.5 in [7]. So Lemma 5.5

in [7] also holds for the suitable weak solution of (1.1), (1.2). Since the next arguments

are the same as those of Proposition 3 in [7], we omit the details here. �

P r o o f of Theorem 1.5. Let (u, π) be a suitable weak solution of (1.1), (1.2)

with G , 1
2

∫
R3 |x||u0(x)|2 dx <∞. Using a sequence of test functions converging to

φ ≡ 1 in the generalized energy inequality, we conclude that for each t > 0

(3.7)
1

2

∫

R3

|u(x, t)|2 dx+

∫ t

0

∫

R3

|∇u|2 dy ds 6
1

2

∫

R3

|u0(x)|
2 dx , E.

As in the proofs of Lemmas 8.1, 8.2 in [7], one has for almost all t > 0

1

2

∫

R3

|x||u(x, t)|2 dx+

∫ t

0

∫

R3

|x||∇u|2 dxds(3.8)

6 A(t) +
C

2

∫ t

0

∫

R3

(1 + |x|)|u|2 dxds,

where A(t) = G+ CEt1/2 + Ct1/4E3/2.

Set g(t) = 1
2

∫ t

0

∫
R3(1 + |x|)|u|2 dxds. Then (3.7), (3.8) imply

d

dt
g(t) 6 B(t) + Cg(t), where B(t) = A(t) + E.

After a direct calculation, we get for each t > 0

(3.9) g(t) 6 eCt

∫ t

0

e−CsB(s) ds.

Inserting (3.9) into (3.8), we conclude that

1

2

∫

R3

|x||u(x, t)|2 dx+

∫ t

0

∫

R3

|x||∇u|2 dxds 6 A(t) + CeCt

∫ t

0

e−CsB(s) ds.

The rest of the proof is similar to that of Theorem C in [7], so we omit the details

here. �

P r o o f of Theorem 1.6. Define v(y, t) = u(x, t), where y = x− tξ. Then for any

ξ ∈ R
3,

∂tv − ∆v + (v − ξ) · ∇v + ∇π = (v0(t) + ω0(t) × (y + tξ)) · ∇v − ω0(t) × v.
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Moreover, as in the proof of Lemma 8.3 in [7], one has for each t > 0

ψ(t)a(t) − a(0) +
1

k
(1 − e−kB0(t))(3.10)

6 − k

∫ t

0

ψa∂τB0 dτ + C̃

∫ t

0

ψa∂τB0 dτ + θ2
∫ t

0

ψ(τ) dτ + I(t),

where a(t) =
∫
R3 σε|v|2 dx, B0(t) =

∫ t

0

∫
R3 σε|∇v|2 dxdτ , ψ(t) = e−kB0(t), θ = |ξ|,

k > 0 is an absolute constant to be chosen later, σε(x) = (ε+ |x|2)−1/2, ε > 0, and

I(t) = −2

∫ t

0

∫

R3

ψ|v|2(v0(τ) + ω0(τ) × (y + τξ)) · ∇σε dy dτ.

Set M , sup
06t<T

2{|v0(t)| + (1 + t)|ω0(t)|} <∞. Then

|I(t)| 6 2

∫ t

0

∫

R3

ψ|v|2(|v0(τ)| + |ω0(τ)|(|y| + τ |ξ|))|∇σε| dy dτ(3.11)

6 M

∫ t

0

∫

R3

ψ|v|2(1 + |y| + |ξ|)σ2
ε dy dτ.

Note that

∫ t

0

∫

R3

ψ|v|2|y|σ2
ε(y) dy dτ(3.12)

=

∫ t

0

∫

{|y|>1}

ψ|v|2|y|σ2
ε(y) dy dτ +

∫ t

0

∫

{|y|<1}

ψ|v|2|y|σ2
ε(y) dy dτ

6

∫ t

0

∫

R3

ψ|v|2 dy dτ +

∫ t

0

∫

R3

ψ|v|2σ2
ε(y) dy dτ

6 ‖v‖2
L∞(0,T ;L2(R3))

∫ t

0

ψ dτ +

∫ t

0

∫

R3

ψ|v|2σ2
ε(y) dy dτ.

Inserting (3.12) into (3.11), we conclude that

|I(t)| 6 M(2 + θ)

∫ t

0

∫

R3

ψ|v|2σ2
ε(y) dy dτ +M‖u‖2

L∞(0,T ;L2(R3))

∫ t

0

ψ dτ(3.13)

6 CM(2 + θ)

∫ t

0

ψ(a∂τB)1/2 dτ +Mt‖u‖2
L∞(0,T ;L2(R3))

6 C2

∫ t

0

ψa∂τB dτ + [2M2(4 + θ2) +M‖u‖2
L∞(0,T ;L2(R3))]t,

where we have used the fact (see [7]) that
∫
R3 σ

2
ε |v|

2 dx 6 C(a∂τB)1/2.
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Combining (3.10) and (3.13), we obtain

ψ(t)a(t)−a(0)+
1

k
(1−e−kB(t)) 6 (−k+ C̃+C2)

∫ t

0

ψa∂τB dτ+D(θ, u)t = D(θ, u)t.

Here we choose k = C̃ + C2 and D(θ, u) = 2M2(4 + θ2) +M‖u‖2
L∞(0,T ;L2(R3))).

Hence,

(3.14) a(t) −
1

k
+

(1

k
− a(0) −D(θ, u)t

)
ekB(t) 6 0.

Passing to the limit ε → 0 in (3.14), replacing the variable y by x − tξ, and taking

L0 = k−1, we obtain

∫

R3×{t}

|u(x, t)|2

|x− tξ|2
dx+ (L0 − L−D(θ, u)t)e1/L

∫ t
0

∫R3 |∇u(x,τ)|2/|x−tξ|2 dx dτ 6 L0.

In particular,

(3.15)

∫ t

0

∫

R3

|∇u(x, τ)|2

|x− tξ|2
dxdτ <∞,

provided that

0 < t <
L0 − L

D(θ, u)
=

L0 − L

2M2(4 + |ξ|2) + M̃(u)
,(3.16)

M̃(u) = M‖u‖2
L∞(0,T ;L2(R3)).

Note that

|a|2 <
(L0 − L)s

2M2
−

(
4 +

1

2M
‖u‖2

L∞(0,T ;L2(R3))

)
s2

is equivalent to
L0 − L

D(|ξ|, u)
> s, ξ = s−1a.

Thus one can choose t ∈ (s − r2, s) such that (3.16) holds if r > 0 is sufficiently

small. Consequently,

|x− tξ| 6 |x− a| + |a− tξ| = |x− a| + |ξ||s− t| 6 r + |ξ|r2 6 2r if |ξ|r 6 1,

and so

lim sup
r−→0

r−1

∫∫

Qr(a,s)

|∇u(x, τ)|2 dxdτ 6
1

4
lim sup

r−→0

∫∫

Qr(a,s)

|∇u(x, τ)|2

|x− tξ|2
dxdτ = 0.

From Theorem 1.4 we infer that u is regular at (a, s). The proof of F1(S) = 0 is the

same as that in [7], so we omit the details here. �
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P r o o f of Theorem 1.7. Let δ > 0 and Ω = R
3. For any (x, t) ∈ R

3 × (δ, T ) we

can find a small number R > 0 such that QR(x, t) ⊂ R
3 × (δ/2, T ). Thus,

J(x, t) = R−2

∫∫

QR(x,t)

(|u|3 + |u||π|) dy dτ +R−13/4

∫ t

t−R2

(∫

BR(x)

|π| dy

)5/4

dτ

6 C(R)

(∫∫

QR(x,t)

|∇u|2 dxdτ

)3/4(∫ t

t−R2

(∫

BR(x)

|u|2 dy

)3

dτ

)1/4

+ C(R)

∫ t

t−R2

(∫

BR(x)

|u|2 dy

)3/2

dτ + C(R)

∫∫

QR(x,t)

|π|3/2 dy dτ

+ C(R)

(∫∫

QR(x,t)

|π|3/2

)5/6

dτ.

Since (u, π) is a suitable weak solution of (1.1), (1.2), we deduce that for a fixedR > 0,

lim
|x|→∞

J(x, t) = 0 for any t ∈ [δ, T ). Therefore, there exists K = K(δ, T,R, u, π) > 0

such that for any t ∈ [δ, T ), J(x, t) 6 ε1 for every x ∈ R
3 with |x| > K. Using

Theorem 1.3, one can find K1 > K such that |u(x, t)| 6 C for almost all (x, t) ∈

R
3 × [δ, T ) with |x| > K1. If Ω is an exterior domain in R

3, the proof is similar to

the above arguments, so we omit the details here. �
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