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EXISTENCE OF POSITIVE PERIODIC SOLUTIONS OF

AN SEIR MODEL WITH PERIODIC COEFFICIENTS*
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Abstract. An SEIR model with periodic coefficients in epidemiology is considered. The
global existence of periodic solutions with strictly positive components for this model is
established by using the method of coincidence degree. Furthermore, a sufficient condition
for the global stability of this model is obtained. An example based on the transmission of
respiratory syncytial virus (RSV) is included.
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1. Introduction

Epidemic model dynamics, due to its theoretical and practical significance, has

been studied extensively [2], [3], [5]–[7], [13], [19]. There have been many good re-

sults on the existence of the threshold values which determine whether the infectious

disease will die out, the local and global stability of the disease-free equilibrium

and the endemic equilibrium, the existence of periodic solutions through Hopf bi-

furcation [23], [24], the persistence and extinction of the disease etc. In most of

the epidemic models by far, all the parameters in the models are constants. Since

periodicity is ubiquitous in nature, one can easily find many different periodic pop-

ulation models [9], [15], [20], [21]. Many diseases also show seasonal behavior, such

as flu [8], measles, chickenpox, mumps [17], mucormycosis [1] etc. This is the case

for the contagious diseases spread by mosquitos, where most of the mosquitos die

out in winter but they reproduce hugely in summer, hence the spread of the disease

*This work was supported by the National Natural Science Foundation of P.R.China
(11001215, 10961022, 11101323).

601



is seasonal. Thus under the periodic environment, it is more realistic to investigate

the corresponding epidemic models with periodic coefficients.

Compartments with labels such as S, E, I, and R are often used for the epidemiolog-

ical classes. SEIR is the abbreviation of “susceptible-exposed-infectious-recovered”.

Acronyms for epidemiology models are often based on the flow patterns between the

compartments such as SEIR model. In an SEIR model, when there is an adequate

contact of a susceptible with an infective so that transmission occurs, then the sus-

ceptible enters the exposed class E of those in the latent period, who are infected

but not yet infectious. After the latent period ends, the individual enters the class I

of infectives, who are infectious in the sense that they are capable of transmitting

the infection. When the infectious period ends, the individual enters the recovered

class R consisting of those with permanent infection-acquired immunity. In 1995,

Michael Y. Li and James S. Muldowney studied an SEIR model [16] in epidemiol-

ogy. After that, there have been many works about the epidemic models with latent

period [12], [18], [25], [26]. Relying on the above-mentioned statements, we will con-

fine ourselves here to the case that the biological or environmental parameters are

periodic with some common period. For autonomous epidemic models, the existence

and stability of the positive equilibrium play an important role. A periodic solution

with strictly positive components in the periodic model will play the same role as

a positive equilibrium in the autonomous model does [4], [14]. Its global existence

and stability are very basic and important epidemiologic problems and can be used

to interpret the periodic phenomenon for some diseases. It is natural to ask for

conditions under which the resulting periodic model would have a periodic solution.

The purpose of this paper is to consider the SEIR epidemic model with periodic

coefficients of the form

(1.1)























S′(t) = Λ(t) − β(t)S(t)I(t) − µ(t)S(t),

E′(t) = β(t)S(t)I(t) − (µ(t) + ε(t))E(t),

I ′(t) = ε(t)E(t) − (µ(t) + α(t) + γ(t))I(t),

R′(t) = γ(t)I(t) − µ(t)R(t),

where Λ(t), β(t), µ(t), ε(t), α(t), and γ(t) are positive periodic continuous functions

with the common period T . The total population N is divided into four classes: S,

E, I, and R which are susceptible, exposed, infective and recovered, respectively.

Λ(t) is the recruitment rate (including newborns, immigrant et al.) at time t. The

function β(t) is the disease transmission coefficient of the disease, µ(t) is the instan-

taneous death rate. The instantaneous per capita rates of leaving the exposed class

and infective class are denoted by ε(t) and γ(t), respectively. The function α(t) is

the mortality induced by the disease. Because R(t) does not appear in the first three
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equations of (1.1), system (1.1) reduces to the following 3-dimensional system:

(1.2)











S′(t) = Λ(t) − β(t)S(t)I(t) − µ(t)S(t),

E′(t) = β(t)S(t)I(t) − (µ(t) + ε(t))E(t),

I ′(t) = ε(t)E(t) − (µ(t) + α(t) + γ(t))I(t).

Obviously, the global existence of positive periodic solutions of (1.2) implies that

of (1.1).

The plan is the following: In Section 2, we give some preliminaries. In Section 3,

coincidence degree theory proposed by Gaines and Mawhin [10] is used to establish

the existence of positive periodic solutions of (1.2). In Section 4, by constructing

a Lyapunov function, we establish a sufficient condition for the global stability of

model (1.2).

2. Preliminaries

In this section, we will give the positivity and global existence for the solutions

of (1.1). For the sake of convenience in the presentation of the results, we define the

real numbers f , f l, and fu by

(2.1) f =
1

T

∫ T

0

f(t) dt, f l = min
t∈[0,T ]

f(t), fu = max
t∈[0,T ]

f(t)

for a continuous T -periodic function f(t).

Theorem 2.1. The solution (S(t), E(t), I(t), R(t)) of system (1.1) with positive

initial condition is positive and ultimately uniformly bounded on [0,∞).

P r o o f. Assume the solution (S(t), E(t), I(t), R(t)) with a positive initial con-

dition exists and is unique on [0, b), where 0 < b 6 ∞ (see [11]). Since

S′(t) = Λ(t) − β(t)S(t)I(t) − µ(t)S(t) > −(β(t)I(t) + µ(t))S(t),

we have

S(t) > S(0) exp

(

−

∫ t

0

β(θ)I(θ) + µ(θ) dθ

)

> 0

for all t ∈ [0, b). Hence, one must have E(t) > 0 for all t ∈ [0, b). Otherwise, there

will exist a t1 ∈ (0, b) such that E(t1) = 0 and E(t) > 0 in (0, t1). Thus for any

t ∈ [0, t1),

I ′(t) = ε(t)E(t) − (µ(t) + α(t) + γ(t))I(t) > −(µ(t) + α(t) + γ(t))I(t).
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Integrating the above inequality from 0 to t yields

I(t) > I(0) exp

(

−

∫ t

0

(µ(θ) + α(θ) + γ(θ)) dθ

)

> 0

for all t ∈ (0, t1). For t ∈ [0, t1],

E′(t) = β(t)S(t)I(t) − (µ(t) + ε(t))E(t) > −(µ(t) + ε(t))E(t).

Integrating this inequality from 0 to t1, we have

E(t1) > E(0) exp

(

−

∫ t1

0

(µ(θ) + ε(θ)) dθ

)

> 0,

a contradiction to E(t1) = 0. So, E(t) > 0 for all t ∈ [0, b). Using the same

method, we can show that I(t) > 0 for all t ∈ [0, b). From the fourth equation of

system (1.1) we have R(t) > R(0) exp
(

−
∫ t

0
µ(θ) dθ

)

> 0 on [0, b). Therefore, we

obtain E(t) > 0, I(t) > 0 and R(t) > 0 for all t ∈ [0, b). Furthermore, the total

number of population N(t) satisfies the equation

(2.2) N ′(t) = Λ(t) − µ(t)N(t) − α(t)I(t) 6 Λu − µlN(t)

which implies that

N(t) 6 N(0)e−µlt +
Λu

µl
(1 − e−µlt) 6 N(0) +

Λu

µl
.

Thus (S(t), E(t), I(t), R(t)) is bounded on [0, b). Therefore, we have b = ∞. Again

by (2.2), we get

(2.3) lim sup
t→∞

N(t) 6
Λu

µl
.

Hence S(t), E(t), I(t), and R(t) are all ultimately uniformly bounded with common

upper bound Λu/µl. The proof is complete. �
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3. Existence of positive periodic solutions

In this section we begin by recalling the notion of Mawhin’s continuation theorem,

which will be used to prove the existence of positive periodic solutions. The proof is

based on the following observation.

Let X and Z be normed vector spaces, let L : DomL ⊂ X → Z be a linear

mapping, and letN : X → Z be a continuous mapping. The mapping L will be called

a Fredholm mapping of index zero if dimKerL = codim Im L < ∞ and Im L is closed

in Z. If L is a Fredholm mapping of index zero, there exist continuous projectors

P : X → X and Q : Z → Z such that Im P = KerL, KerQ = Im L = Im(I −Q) and

X = KerL ⊕ KerP , Z = Im L ⊕ Im Q. It follows that L|Dom L∩KerP : (I − P )X →

Im L is invertible. We denote the inverse of that map byKp. If Ω is an open bounded

subset of X , the mapping N will be called L-compact on Ω if QN(Ω) is bounded and

Kp(I − Q)N : Ω → X is compact. Since Im Q is isomorphic to KerL, there exists

an isomorphism J : Im Q → KerL.

For convenience of the reader, we introduce the continuation theorem [10] as fol-

lows.

Lemma 3.1. Let Ω ⊂ X be an open bounded set. Let L be a Fredholm mapping

of index zero and let N be L-compact on Ω. Assume

(i) for each λ ∈ (0, 1), x ∈ ∂Ω ∩ Dom L, Lx 6= λNx,

(ii) for each x ∈ ∂Ω ∩ KerL, QNx 6= 0,

(iii) deg(JQN, Ω ∩ KerL, 0) 6= 0.

Then the operator equation Lx = Nx has at least one solution in Dom L ∩ Ω.

Consider the change of variables

S(t) = exp{u1(t)}, E(t) = exp{u2(t)}, I(t) = exp{u3(t)}.

Then the system (1.2) can be transformed into

(3.1)











u′

1(t) = Λ(t)e−u1(t) − β(t)eu3(t) − µ(t),

u′

2(t) = β(t)eu1(t)+u3(t)−u2(t) − (µ(t) + ε(t)),

u′

3(t) = ε(t)eu2(t)−u3(t) − (µ(t) + α(t) + γ(t)).

It is obvious that if equation (3.1) admits a T -periodic solution (u∗

1(t), u
∗

2(t), u
∗

3(t))
T,

then (exp u∗

1(t), exp u∗

2(t), exp u∗

3(t))
T is a positive T -periodic solution of (1.2). There-

fore, we first study equation (3.1). In order to use the continuation theorem, we first

define

X = Z = {u(t) = (u1(t), u2(t), u3(t))
T ∈ C(R,R3) : u(t) = u(t + T )}
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with the norm

‖u‖ = max
t∈[0,T ]

|u1(t)| + max
t∈[0,T ]

|u2(t)| + max
t∈[0,T ]

|u3(t)|.

Then (X, ‖ · ‖) and (Z, ‖ · ‖) are Banach spaces. Define

Nu(t) =





Λ(t)e−u1(t) − β(t)eu3(t) − µ(t)

β(t)eu1(t)+u3(t)−u2(t) − (µ(t) + ε(t))

ε(t)eu2(t)−u3(t) − (µ(t) + α(t) + γ(t))



 , u ∈ X,

Lu(t) =
du(t)

dt
, Pu =

1

T

∫ T

0

u(t) dt, u ∈ X,

Qz =
1

T

∫ T

0

z(t) dt, z ∈ Z.

Then it follows that

Dom L = {u(t) = (u1(t), u2(t), u3(t))
T ∈ C1(R,R3) : u(t) = u(t + T )},

Im P = KerL = R
3,

Im L = KerQ = Im(I − Q) =

{

u ∈ X :
1

T

∫ T

0

u(t) dt = 0

}

.

Since dimKerL = codim Im L = 3, L is a Fredholm mapping of index zero. Fur-

thermore, Im L is closed in X . Also, the generalized inverse Kp of L, Kp : Im L →

Dom L ∩ KerP admits the expression

Kpz =

∫ t

0

z(s) ds −
1

T

∫ T

0

∫ t

0

z(s) ds dt, t ∈ [0, T ].

Thus

QNu(t) =

















1

T

∫ T

0

Λ(t)e−u1(t) dt −
1

T

∫ T

0

(β(t)eu3(t) + µ(t)) dt

1

T

∫ T

0

β(t)eu1(t)+u3(t)−u2(t) dt −
1

T

∫ T

0

(µ(t) + ε(t)) dt

1

T

∫ T

0

ε(t)eu2(t)−u3(t) dt −
1

T

∫ T

0

(µ(t) + α(t) + γ(t)) dt

















,

and

Kp(I − Q)Nu(t)

=















∫ t

0

Λ(t)e−u1(t) dt −

∫ t

0

(β(t)eu3(t) + µ(t)) dt
∫ t

0

β(t)eu1(t)+u3(t)−u2(t) dt −

∫ t

0

(µ(t) + ε(t)) dt
∫ t

0

ε(t)eu2(t)−u3(t) dt −

∫ t

0

(µ(t) + α(t) + γ(t)) dt














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−

















1

T

∫ T

0

∫ t

0

Λ(s)e−u1(s) ds dt −
1

T

∫ T

0

∫ t

0

(β(s)eu3(s) + µ(s)) ds dt

1

T

∫ T

0

∫ t

0

β(s)eu1(s)+u3(s)−u2(s) ds dt −
1

T

∫ T

0

∫ t

0

(µ(s) + ε(s)) ds dt

1

T

∫ T

0

∫ t

0

ε(s)eu2(s)−u3(s) ds dt −
1

T

∫ T

0

∫ t

0

(µ(s) + α(s) + γ(s)) ds dt

















−
( t

T
−

1

2

)

















∫ T

0

Λ(t)e−u1(t) dt −

∫ T

0

(β(t)eu3(t) + µ(t)) dt
∫ T

0

β(t)eu1(t)+u3(t)−u2(t) dt −

∫ T

0

(µ(t) + ε(t)) dt
∫ T

0

ε(t)eu2(t)−u3(t) dt −

∫ T

0

(µ(t) + α(t) + γ(t)) dt

















.

It is easily seen that QN and Kp(I − Q)N are continuous. By using the Arzela-

Ascoli theorem, it is not difficult to show that Kp(I − Q)N(Ω) is compact for any

open bounded set Ω ⊂ X . Moreover, QN(Ω) is bounded. Thus, N is L-compact

on Ω for any open bounded set Ω ⊂ X .

Now we reach the position where we search for an appropriate open bounded subset

for the application of the continuation theorem. Corresponding to the operator

equation Lx = λNx, λ ∈ (0, 1), we have

(3.2)











u′

1(t) = λ
(

Λ(t)e−u1(t) − β(t)eu3(t) − µ(t)
)

,

u′

2(t) = λ
(

β(t)eu1(t)+u3(t)−u2(t) − (µ(t) + ε(t))
)

,

u′

3(t) = λ
(

ε(t)eu2(t)−u3(t) − (µ(t) + α(t) + γ(t))
)

.

Assume that u(t) = (u1(t), u2(t), u3(t))
T ∈ X is a solution of equation (3.2) for a

certain λ ∈ (0, 1). Let ξi, ηi ∈ [0, T ] for i = 1, 2, 3, be defined as

(3.3) u1(ξ1) = min
t∈[0,T ]

u1(t), u2(ξ2) = min
t∈[0,T ]

u2(t), u3(ξ3) = min
t∈[0,T ]

u3(t)

and

(3.4) u1(η1) = max
t∈[0,T ]

u1(t), u2(η2) = max
t∈[0,T ]

u2(t), u3(η3) = max
t∈[0,T ]

u3(t).

By their periodicity, we have u̇i(ξi) = 0 and u̇i(ηi) = 0 for i = 1, 2, 3. From the third

equation of (3.2) we obtain

(3.5) ε(ξ3)e
u2(ξ3)−u3(ξ3) = µ(ξ3) + α(ξ3) + γ(ξ3)

which implies

(3.6) eu2(ξ2)−u3(ξ3) 6
(µ + α + γ)u

εl
.
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From the second equation of (3.2) we obtain

(3.7) β(ξ2)e
u1(ξ2)+u3(ξ2)−u2(ξ2) = µ(ξ2) + ε(ξ2).

Combining (3.6) with (3.7) yields

(3.8) eu1(ξ1) 6
(µ + ε)u(µ + α + γ)u

βlεl
.

On the other hand, by the third equation of (3.2) we get

(3.9) ε(η3)e
u2(η3)−u3(η3) = µ(η3) + α(η3) + γ(η3)

which implies

(3.10) eu2(η2)−u3(η3) >
(µ + α + γ)l

εu
.

By the second equation of (3.2) we conclude that

β(η2)e
u1(η2)+u3(η2)−u2(η2) = µ(η2) + ε(η2)

which together with (3.10) implies that

(3.11) eu1(η1) >
(µ + ε)l(µ + α + γ)l

βuεu
.

From the first equation of (3.2) one obtains

Λ(ξ1)e
−u1(ξ1) = µ(ξ1) + β(ξ1)e

u3(ξ1)

which together with (3.8) implies that

(3.12) eu3(η3) >
µu

βu

[

βlΛlεl

µu(µ + ε)u(µ + α + γ)u
− 1

]

.

From (3.10) and (3.12) we also have

(3.13) eu2(η2) >
µu(µ + α + γ)l

εuβu

[

βlΛlεl

µu(µ + ε)u(µ + α + γ)u
− 1

]

.

By the first equation of (3.2) we get

Λ(η1)e
−u1(η1) = µ(η1) + β(η1)e

u3(η1)
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which implies

(3.14) eu3(ξ3) 6
µl

βl

[

βuΛuεu

µl(µ + ε)l(µ + α + γ)l
− 1

]

.

Combining (3.5) with (3.14) gives

(3.15) eu2(ξ2) 6
µl(µ + α + γ)u

εlβl

[

βuΛuεu

µl(µ + ε)l(µ + α + γ)l
− 1

]

.

Assume the following inequality holds:

βlΛlεl

µu(µ + ε)u(µ + α + γ)u
> 1.

Then it follows that

u1(ξ1) 6 ln
{(µ + ε)u(µ + α + γ)u

βlεl

}

,(3.16)

u2(ξ2) 6 ln

{

µl(µ + α + γ)u

εlβl

[ βuΛuεu

µl(µ + ε)l(µ + α + γ)l
− 1

]

}

,

u3(ξ3) 6 ln

{

µl

βl

[ βuΛuεu

µl(µ + ε)l(µ + α + γ)l
− 1

]

}

,

u1(η1) > ln
{(µ + ε)l(µ + α + γ)l

βuεu

}

,

u2(η2) > ln

{

µu(µ + α + γ)l

εuβu

[ βlΛlεl

µu(µ + ε)u(µ + α + γ)u
− 1

]

}

,

u3(η3) > ln

{

µu

βu

[ βlΛlεl

µu(µ + ε)u(µ + α + γ)u
− 1

]

}

.

Integrating the last two equations of (3.2) over the interval [0, T ], we obtain

∫ T

0

β(t)eu1(t)+u3(t)−u2(t) dt = (µ + ε)T

and
∫ T

0

ε(t)eu2(t)−u3(t) dt = (µ + α + γ)T.
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It follows from (3.16) that

u2(t) 6 u2(ξ2)+

∫ T

0

|u̇2(t)| dt(3.17)

= u2(ξ2)+ λ

∫ T

0

|β(t)eu1(t)+u3(t)−u2(t) − (µ(t)+ ε(t))| dt

6 u2(ξ2)+ 2

∫ T

0

β(t)eu1(t)+u3(t)−u2(t) dt

6 ln

{

µl(µ + α + γ)u

εlβl

[ βuΛuεu

µl(µ + ε)l(µ + α + γ)l
− 1

]

}

+ 2(µ + ε)T , ̺3,

u2(t) > u2(η2)−

∫ T

0

|u̇2(t)| dt

= u2(η2)−λ

∫ T

0

|β(t)eu1(t)+u3(t)−u2(t) − (µ(t)+ ε(t))| dt

> u2(η2)− 2

∫ T

0

β(t)eu1(t)+u3(t)−u2(t) dt

> ln

{

µu(µ + α + γ)l

εuβu

[ βlΛlεl

µu(µ + ε)u(µ + α + γ)u
− 1

]

}

− 2(µ + ε)T , ̺4,

u3(t) 6 u3(ξ3)+

∫ T

0

|u̇3(t)| dt

= u3(ξ3)+ λ

∫ T

0

|ε(t)eu2(t)−u3(t) − (µ(t)+ α(t)+ γ(t))| dt

6 u3(ξ3)+ 2

∫ T

0

ε(t)eu2(t)−u3(t) dt

6 ln

{

µl

βl

[ βuΛuεu

µl(µ + ε)l(µ + α + γ)l
− 1

]

}

+ 2(µ + α+ γ)T , ̺5,

u3(t) > u3(η3)−

∫ T

0

|u̇3(t)| dt

= u3(η3)−λ

∫ T

0

|ε(t)eu2(t)−u3(t) − (µ(t)+ α(t)+ γ(t))| dt

> u3(η3)− 2

∫ T

0

ε(t)eu2(t)−u3(t) dt

> ln

{

µu

βu

[ βlΛlεl

µu(µ + ε)u(µ + α+ γ)u
− 1

]

}

− 2(µ + α+ γ)T , ̺6.

On the other hand, integrating the first equation of (3.2) yields

∫ T

0

Λ(t)e−u1(t) dt =

∫ T

0

(µ(t) + β(t)eu3(t)) dt 6 (µ + βe̺5)T.
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This implies

u1(t) 6 u1(ξ1) +

∫ T

0

|u̇1(t)| dt(3.18)

= u1(ξ1) + λ

∫ T

0

|Λ(t)e−u1(t) − (µ(t) + β(t)eu3(t))| dt

6 u1(ξ1) + 2

∫ T

0

Λ(t)e−u1(t) dt

6 ln

{

(µ + ε)u(µ + α + γ)u

βlεl

}

+ 2(µ + βe̺5)T , ̺1,

u1(t) > u1(η1) −

∫ T

0

|u̇1(t)| dt

= u1(η1) − λ

∫ T

0

|Λ(t)e−u1(t) − (µ(t) + β(t)eu3(t))| dt

> u1(η1) − 2

∫ T

0

Λ(t)e−u1(t) dt

> ln

{

(µ + ε)l(µ + α + γ)l

βuεu

}

− 2(µ + βe̺5)T , ̺2.

Let M1 = max{|̺1|, |̺2|}, M2 = max{|̺3|, |̺4|}, and M3 = max{|̺5|, |̺6|}. Note

that M1, M2, and M3 are independent of λ. Let us take M0 large enough such that

the only solution (p, q, r) ∈ R
3 of the algebraic equation

(3.19)











Λ − µep − βep+r = 0,

βep+r − (µ + ε)eq = 0,

εeq − (µ + α + γ)er = 0

with


































ep =
(µ + ε)(µ + α + γ)

εβ
,

eq =
εβΛ − µ(µ + ε)(µ + α + γ)

εβ
,

er =
εβΛ − µ(µ + ε)(µ + α + γ)

εβ(µ + ε)

satisfies ‖(p, q, r)T‖ = |p| + |q| + |r| < M0. Let M = M0 + M1 + M2 + M3 and let

Ω be the open set given by

Ω = {u(t) = (u1(t), u2(t), u3(t))
T ∈ X : ‖u‖ < M}.
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It is clear that Ω satisfies the requirement (i) in the continuation theorem. When

u ∈ ∂Ω ∩ KerL = ∂Ω ∩ R
3, u is a constant vector in R

3 with ‖u‖ = M . Then

QNu =





Λe−u1 − βeu3 − µ

βeu1+u3−u2 − (µ + ε)

εeu2−u3 − (µ + α + γ)



 6= 0.

Furthermore, direct calculation produces

deg(JQN(u1, u2, u3)
T, ∂Ω ∩ KerL, (0, 0, 0)T)

= sign

∣

∣

∣

∣

∣

∣

Λeu1 0 −βeu3

βeu1+u3−u2 −βeu1+u3−u2 βeu1+u3−u2

0 εeu2−u3 −εeu2−u3

∣

∣

∣

∣

∣

∣

(p,q,r)

= sign(−εβ
2
ep+r) = −1 6= 0,

where J can be the identity mapping and (p, q, r) is the unique solution to equa-

tion (3.19). By the continuation theorem, system (3.1) admits at least one T -periodic

solution. Now, we are able to state our main result.

Theorem 3.1. If βlΛlεl/µu(µ + ε)u(µ + α + γ)u > 1, then system (1.2) has at

least one T -periodic solution with strictly positive components.

R em a r k 3.1. Clearly, when βlΛlεl/µu(µ + ε)u(µ + α + γ)u > 1, system (1.1)

has at least one positive T -periodic solution. When all coefficients Λ(t), β(t),

µ(t), ε(t), α(t), and γ(t) are positive constants, then system (1.1) degenerates

into an autonomous system. The basic reproductive number can be given by

R0 = βΛε/µ(µ + ε)(µ + α + γ). By Theorem 3.1, R0 > 1 implies the existence of a

positive equilibrium.

4. Global stability

In this section we will use the method of Lyapunov functions to study the global

stability for system (1.2).

Definition 4.1. System (1.2) is said to be globally asymptotically stable (or

globally attractive) if, for any two solutions (S1(t), E1(t), I1(t)) and (S2(t), E2(t),

I2(t)) with positive initial values, the following equation holds:

lim
t→∞

(|S1(t) − S2(t)| + |E1(t) − E2(t)| + |I1(t) − I2(t)|) = 0.
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Theorem 4.1. If µ > 2βΛu/µl, then system (1.2) is globally asymptotically

stable.

P r o o f. Let (S1(t), E1(t), I1(t)) and (S2(t), E2(t), I2(t)) be any two solutions

of (1.2) with positive initial values. Since µ > 2βΛu/µl, we can find an ε > 0 small

enough such that

(4.1) µ > 2β
(Λu

µl
+ ε

)

.

By (2.3), one can ensure that N(t) 6 Λu/µl + ε for sufficiently large t. Without loss

of generality, we assume

Si(t) + Ei(t) + Ii(t) 6
Λu

µl
+ ε, i = 1, 2.

We construct

V (t) = |S1(t) − S2(t)| + |E1(t) − E2(t)| + |I1(t) − I2(t)|.

The upper right derivative of V (t) along (1.2) is given by

D+V (t) = sign{S1(t) − S2(t)}(−β(t)S1(t)I1(t) + β(t)S2(t)I2(t)(4.2)

− µ(t)S1(t) + µ(t)S2(t)) + sign{E1(t) − E2(t)}

× (β(t)S1(t)I1(t) − β(t)S2(t)I2(t) − (µ(t) + ε(t))(E1(t) − E2(t)))

+ sign{I1(t) − I2(t)}(ε(t)(E1(t) − E2(t))

− (µ(t) + α(t) + γ(t))(I1(t) − I2(t)))

6 2β(t)|S1(t)I1(t) − S2(t)I2(t)| − µ(t)|S1(t) − S2(t)|

− µ(t)|E1(t) − E2(t)| − (µ(t) + α(t) + γ(t))|I1(t) − I2(t)|

6 −
(

µ(t) − 2β(t)
(Λu

µl
+ ε

))

|S1(t) − S2(t)| − µ(t)|E1(t) − E2(t)|

−
(

µ(t) + α(t) + γ(t) − 2β(t)
(Λu

µl
+ ε

))

|I1(t) − I2(t)|

6 −
(

µ(t) − 2β(t)
(Λu

µl
+ ε

))

V (t).

613



For any t > 0, there exists an n ∈ N satisfying nT 6 t < (n + 1)T , which implies

n → ∞ as t → ∞. Applying (4.1) and (4.2) yields

V (t) 6 V (0) exp

(

−

∫ t

0

(

µ(s) − 2β(s)
(Λu

µl
+ ε

))

ds

)

6 V (0) exp

(

−

∫ nT

0

(

µ(s) − 2β(s)
(Λu

µl
+ ε

))

ds

)

× exp

(
∫ t

nT

∣

∣

∣
µ(s) − 2β(s)

(Λu

µl
+ ε

)∣

∣

∣
ds

)

= V (0) exp

(

−
(

µ − 2β
(Λu

µl
+ ε

))

nT

)

× exp

(
∫ t

nT

∣

∣

∣
µ(s) − 2β(s)

(Λu

µl
+ ε)

∣

∣

∣
ds

)

6 V (0) exp
(

MT −
(

µ − 2β
(Λu

µl
+ ε

))

nT
)

,

where M = max
s∈[0,T ]

|µ(s) − 2β(s)(Λu/µl + ε)|. The above inequality implies that

V (t) → 0 as t → ∞. Therefore, the system (1.2) is globally asymptotically stable.

This completes the proof. �

R em a r k 4.1. Here we need to show that the conditions in Theorem 3.1 and

Theorem 4.1 cannot hold simultaneously. In fact, the conditions in both these theo-

rems are sufficient but not necessary. The stability of the positive periodic solution

is a very interesting open problem, which can be considered in our future research.

E x am p l e 4.1. We choose parameters in (1.2) similar to those in [22] for res-

piratory syncytial virus (RSV), one kind of childhood disease. We fix µ = 0.041;

β(t) = 256(1 + 0.2 cos(2πt + 0.26)); ε = 91; α = 0; γ = 36. We also assume that

the annual recruitment rate is periodic due to opening and closing of schools, set

Λ(t) = 1 + 0.2 cos(2πt). Then we obtain











S′(t) = 1 + 0.2 cos(2πt) − 0.041S(t)− 256(1 + 0.2 cos(2πt + 0.26))S(t)I(t),

E′(t) = 256(1 + 0.2 cos(2πt + 0.26))S(t)I(t) − 0.041E(t)− 91E(t),

I ′(t) = 91E(t) − 0.041I(t)− 36I(t).

Clearly, the condition in Theorem 3.1 holds for this system. Numerical simulation

is depicted in Fig. 1.
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Figure 1. The figure shows the movement paths of S, E, and I as functions of time t. The
1-periodic positive solution exists with initial value (0.15, 0.01, 0.03).
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