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Abstract. In mixed linear statistical models the best linear unbiased estimators need a
known covariance matrix. However, the variance components must be usually estimated.
Thus a problem arises what is the covariance matrix of the plug-in estimators.
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INTRODUCTION

In mixed linear statistical models [7] the estimated parameters of the covariance
matrix (variance components) which must be used for the estimation of some param-
eters of the mean value of the observation vector make it necessary to use the plug-in
estimator instead of the BLUE (best linear unbiased estimator). This enlarges the
variances and the problem is to determine this enlargement in comparison to the
variances of the BLUE.

The aim of the paper is to contribute to the solution of the problem.

1. NOTATION AND PRELIMINARIES

P
The notation Y ~ N, (X,B, > ﬁiVi) means that Y is an n-dimensional normally
i=1

distributed random vector (observation vector) with the mean value E(Y) equal
to XB3. The n X k matrix X is given and its rank r(X) is equal to k¥ < n. The
k-dimensional vector 3 is an unknown vector parameter which must be estimated.

* Supported by the Czech Government under research project MSM 6198959214.
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The vector 9 = (1, ...,9,) of the variance components must be estimated as well.

It is assumed that ¢; > 0, ¢ =1,...,p, and the symmetric matrices Vy,...,V,, are
P

positive semidefinite and known. In the following text it is assumed that Y ¢;V; is

i=1
positive definite in a neighbourhood of a chosen point 9.

The BLUE of 3 is

-1

8= [X’ <§_p; ﬁivi)lxl_lx(éﬁivi) Y

(in more detail see [5]). If the vector ¥ is estimated, then the plug-in estimator is

4 -1 -1 4 -1
B = |X’ <Z &ivi> X] X' <Z &ivi> Y,
i=1 =1
where 9 = (191, e 19,,)’ is an estimator of 9.

The 99-MINQUE (minimum norm quadratic unbiased estimator) of 9 is (in more
detail see [7])

Y' (MxXoMx)tVi(MxZoMx)TY

3 -1
(1) Y= S(MxEoMxﬁ : ;
Y (MxXoMx)tV,(MxZoMx)TY
p
where g = Y 90, Vi, 90 = (¥o,1,-..,90,)" is an approximate value of the vector ¥,
i=1

My = I — X(X'X) !X’ is the projection matrix on the Euclidean complement of
the subspace M{Xu: u € R*} and R* is the k-dimensional real linear vector space.
The (7, j)th entry of the matrix 37 s i)+ 18

{S(mxsorrr tig = TI[Vi(MxZoMx)TV;(MxZoMx) "], 4,j=1,...,p.

The symbol (MxXoMx)" means the Moore-Penrose generalized inverse of the
matrix Mx YoM x and under our assumption it can be expressed as

(2) MxEZMx)t =3, - 7' X(X'ES; ' X)Xy, !

(in more detail see [6]).

The symbol * means the Hadamard multiplication [6]. It is defined as follows. Let
A, ., and B, ,, be n x m matrices. Then {A,, ,, * By, m}ij = aijbij, i =1,...,n,
j=1,...,m, where a; ; = {Ap m}ij, bij = {Bn,m}i;. (It is used in Lemma 2.3.)
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p
In the case of normality, i.e. Y ~ N, (X,@, > 191-V1-), an important property of
i=1

the estimation (1) is that its covariance matrix Vary, () can be expressed as

(3) \{9%1"(19) = 28 e SoMr)+-
The symbol ® means the tensor (Kronecker) multiplication [6], i.e.
a1B, ..., amB
A®B= )
an1B, . GnmB

1,=(1,...,1) € R" and el(.n) € R™ is the vector with the ith entry equal to 1 and
the other entries are zero.

The problem is to find Vary, [3(19)] at least approximately.

In the following text it is assumed that 1 is obtained by the iterative procedure,
i.e.
Y'[MXE(ﬂS)MX]+V1[MxE('l?S)MX]"'Y
—1 .
’195+1 = S[M:pz(ﬁs)MX]+ .
Y’[MXE('BS)MX]"'VP[MQCE('BS)MX]"'Y

Lemma 1.1. The random variable Y/ (MxXoMx)"V;(MxXoMx)"Y can be
expressed as vV'E; 'V, 2 v, where v =Y — X(X'3;'X) ' X'S; Y.

Proof. It is a direct consequence of (2). O

Lemma 1.2. Let v ~ N,(0,T) and t; ; = {T}i;,¢,57=1,...,n. Then
tijteitrs + i jlerts + i jte stir
+tiktjites + i ktjrtis + ikt stir
E(v;vjup0vr0s) = § +tigtjetes + tiitjrte s + tigt ster
+tirtikts + tirtyite,s + tirt sti
Ftistiktir + tistjile,r + i sty rte,

i, 5,k l,r,s=1,...,n.

Proof. The characteristic function of v is
1
©y(u) = Elexp(iu'v)] = eXp(—Eu"Ih).

Thus .
0°(py(u))
O0u; 0Ol Ou 0urOug

After simple however rather tedious calculation we obtain the statement of the

= —E(v;0;0500,Vs).
u=0

lemma. O
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Remark 1.3. If the n3 x n® matrix
D = E[(v) & (W) & (vV')]
is used, then E(v;v;viviv,vs) is its entry in the position given by the matrix
/

o 6 ef) e o (ef") ool @ (el?)

2. LINEAR ERROR PROPAGATION LAW
Lemma 2.1. Let 99 be an approximate value of 9,
v=Y - XX'Z,'X)"'X'®; Y,

and let the matrix Sy, v, )+ be regular. Here

p
3 = Zﬁo,ivm o = (Yo,1,---,Y0,p)"

i=1
Then
A —_ A p —_
By + 69) = B(W0) — > CoXZy ' ViB; v,
i=1
where Cy = X', X, and
V3 viEs vy
- .
190+619:S(MX20]\4X)+ :
vV, E Y

Proof. We have

0B (90)
o

B(9y + 59) ~ B(9) + 59,

where

0B(%0) _ 0
= Calxlﬁfl(ﬁo)vizfl(190)XC51X'271(190)Y
_ Cglxlzfl(ﬁo)vizfl(,ﬂo)Y _ _Cglxlzfl(,ﬂo)v.

[(X'=71(90)X) ' X'E ™ (90)] Y

The equality (M xX(19)Mx)TY = X71(d¢)v is obvious (see Lemma 1.1).
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Let
{S(]\lJXZOMx)+}i7j :Sivj, 2'7]':17...,197
P
D= Z190,¢C(§1X’E_1(190)Vi2‘1(190) — C81X/E—1(00)7
=1

P
=) sYCIXETH(90)ViE T (90).
i=1

Then
By + 59) ~ ZU vwWETH )V, E (),

since

Dv = C !X’ (9){Y - X[X'Z71(899)X] ! X'Z"1 ()Y} = 0.

In the case of normality the vectors 5’(190) and v are stochastically independent

and
Ey, (U;vv'E1(90)V,;Z7H(0)v) = 0.

Thus the following statement is valid.

Lemma 2.2. The covariance matrix of the plug-in estimator ,5'(190 + 51\9) is

approximately given by the expression

p
Co' + By (ZZU VB (90) VB (90) v B (90 VB () U]
=1 1=1
Lemma 2.3. Let
Aji = By, (vwWEGIV; B0 W SV S V).

Then
{A s =1 (Ko (30 V;30) @ (B0 ViZg ] e,

where

K,s= Z Z Z Z[e&”) ® (egl))/ ® e(V”) ® (egn))/] B, (0,0500050,05).

a=1pB=1vy=146=1

Here v ~ N, (0,3, — XCy'X') (see Lemma 1.2).
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Proof. The (r,s)-entry of the matrix A;; is

Q
Il
—
®
Il
—

2
Il
—
>
Il
—

Since in (4) each term
{Z0'Visg ), S0 Visg )

is multiplied by Ey,(v,vsv4v3v4v5) it is sufficient to use the Hadamard multiplica-

tion, i.e.

{A i s = 12 {Kp o+ [(301V;501) @ (20 ViZg )] 1,0,

The full expression for Vary, [3(9 + 51\9)] is
Var[B(8 + 59))
0

n.on p n o n
= Cal + Z Z{ (Z Colxlzolsi,jviz()l) Z Z [egn) ® (egn))/}

j=11=1  \i=1 r=1s=1

x 1/, ({Z Z Z Z [e((l”) ® (egl))/ ® e(W”) ® (eg"))/] Ey, (vrvsvavgvvv(;}

a=1pB=1v=146=1

n !
« [(Z5'V;301) ® (zolvlzol)]) 1,2 (Z zolvkskvlzolxcol) }
k=1

Thus the enlargement of Vary, [3(19)] caused by the use of 3(19¢ + (5/1\9) instead of
,@(00) is relatively complicated for numerical calculation even for an approximation

only.
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Remark 2.4. The linear error propagation law gives a good results in such a
case only when the standard deviation of the random argument is relatively small as
compared with its mean value If n = f(£), where € ~1 (1, 0?), then the approxima-
tion Var(n) ~ (df(u)/du)?0? is admissible if o/ p is sufficiently small, e.g. o/p < 0.1
(in more detail see [1]).

If instead of £ the estimation of the variance components 191, . ,19,, is considered

p
in the case of normality, i.e. Y ~ N, (X,@, > 191-V1-), the values (see (3))
i=1

\/{ZS(MXEOMX + }Li
¥; ’

t=1,...,p,

must be sufficiently small.

3. OBSERVATION VECTOR Y AND THE ESTIMATOR % OF THE VECTOR 1
ARE INDEPENDENT

The expression for Vary, [B(9 + 51\9)] given in the preceding section needs a rela-
tively tedious numerical calculation.

The situation seems to be simpler if the experiment is replicated. It is not so
rare, since in experimental science a rule “one measurement is no measurement”
governs. In a replicated experiment the residual vector v and the estimator 9 can
be determined in such a way that they are, in the case of normality, stochastically
independent.

The situation is also favourable in the case that ¥ is estimated from another
experiment and thus also the vectors Y and 9 are independent.

Lemma 3.1. In an m-times replicated experiment the model considered is

Y1
Yo
Let
1 < _ — 1>
S= o LY YY), Y=00 Y

and Sy, o where
{Sy-1}is = T (V2 'V;80 1Y), d,5=1,....p,
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be regular. Then one of the unbiased estimators of ¥ is

Tr(SZ, ' Vi, h)
. 2

: , Var(9) = ——S_!

Jo

9 =81 ,
E01 m—1 E017

Tr(SE; 'V, 5 )
and 9 and

— — 1
v=Y - XX'Z;'X)"'X'E; 'Y ~ N, [o, — (2o — XC;'X)
m
are stochastically independent.

p .
Proof. Since Ey(S) = > ¥;V,, the estimator 9 is obviously an unbiased
i=1

estimator of 9. The expression for Varg, (9) is implied by the equality
2
covy, [Tr(SEy 'V, 20 ), Tr(SE, ' V; 30 )] = — Tr(V,E, 'V, 201.

The matrix S can be expressed as

m—1
1
— ; &,
where &1,...,&,—1 are 1.i.d. and & ~ N, (0,%). Thus

covy, [Tr(SE, ' V2o ), Tr(SE, 'V, 20 )]

1 m—1 m—1
= (m 1)z OV [TY(Z ékﬁzzolvizol) : TY(Z ékszzolvizol)]
k=1 k=1

m—1m—1
1

T (m—1)? DD cove, (635 ViSy 6k 61551V, 5 16)
k=1 [=1

1 m—1

= (m — 1)2 Z COVy, (ﬁkzglvizglﬁm 52251\@‘261&)
k+1

2 _ _ _ -
= —— Tr(% %, v,E e Ve

2 _ _
= —— Tr(Vi3g 'v,=01).

Here the relationships
£~ N,(0,3)) = V{A =A"B=DB}covy, (¢ A, £'BE) = 2Tr(ZpAZ(B)

are utilized. The independence of the vectors v and 9 is implied by the fact that S
and Y are independent. ([
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The expression for Vary, (ﬁﬁ) = %S;L shows that the values
0

s,
¥ ’

can be made sufficiently small by sufficiently large number of replication.

P .

Theorem 3.2. Let Y ~ N,(X3, > 9;V;) and let the estimator ¥ of 9 be
i=1

independent of Y. Let Varg,(9) = W, {W},; =w;j;, i,7 =1,...,p. Then the

covariance matrix of the plug-in estimator B(ﬁo + 01) is approximately given by the

relationship
Var [6(90 + 59))
0
P P
~Cot + > 0D 69:00;,C5 XS Vi (M BgMx ) TV, 21X Gy
i=1 j=1

p p
)0 wi Gy XISV (Mx B M) TV, BT XC
i=1 j=1

If B(90) = (X'EyX) ' X'E;5Y and 9 is given by Lemma 3.1, then

Var[B(9 + 59)]

1 1 &

= = §9;60;Cy ' X' S5 Vi(MxEoMx) TV, 2,1 XCy !

m +m;; 0 0 (Mx3oMx) 0 0
p P
ZZ HCIX'E TV (MyZoMx) TV, 2,1 XC Y
z=1]=1

where §1; = Ego(&\?) and s"7 = {S;ll}ij, ,j=1,...,p.
o1,
Proof. Since
BB + 69) ~ B(D, Z Cy X'V, 55 e,

i=1

where v =Y — XC; .4 Dre 1Y and v and 59 are stochastically independent, we can
write
C,; = covy, (Cy'X'S; 'V, 25 ved;, C; ' XS5 1V, 25 1vad;)
= By, (Cy'X'E5 'V, S5 v/ S5V, 251X C ) By, (50:60;)
=Cy ' X'E, 'V, (MxEgM,) TV, 3, 1 XCy H(w; j + 69:9;).
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In the case of a replicated model the matrices
Calv Ealv Vi; (MXEOMX)Jrv and Vja
must be substituted by

1 1 1
—Cyt, mEy, — Vi, m(Mx3My)", and — V,
m m m

respectively. The value w; ; must be substituted by % shI, O
Let
U171, ey U17p
Up1, ..., Upy
where

U, = Ci'X'S;Vi(MyZoMx) PV, S0 XCy Y, 0, =1,...,p.
Then
g%r[éwo +09)] ~ Cyt + (59 @ L) U(69 @ I i)
+ (1, @ L k) [(W @ I ) * UJ(1, @ Ti ).

In the case of a replicated model,
. —~ 1 1
Var[B(9g + 09)] &~ — Cyt + — (69" @ 11 ) U(69 ® I, 1)
Yo m m

2
+ m(l; ® Ik,k) [(S;OL ® Ik’k) * U] (1p ® Ik,k).

Remark 3.3. The term
(5’(9/ &® Ik7k)U(519 ® Ik,k)

can be neglected for a function h’3, B € R* if 69 € N},, where N}, is the insensitivity
region given as
Ni, = {09: (69) W69 < 2¢h’'Cy 'h},
where
(W}, = CyI XSV, (MxZoMx) TV, 3, ' XC; h.
If 69 € Ny, then Vary, [B(9 + 69)] < (1+¢)2 Var[B(d)] (the term &2 is neglected).

In more detail see [3], [4], [2]. The confidence region for §9 must be used in order to
be sure that ¥ € NV,
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4. NUMERICAL EXAMPLE

()~ (1) (5 o))
()~ (o) (5 7))

(v0.4/1 = 0.632 > 0.1, v/7/16 = 0.165 > 0.1) and let Y and 9 be stochastically
independent.
The BLUE of 3 is

[ Lo (e ) () -5

The plug-in estimator is

Let

@o>)§o>’~< ~

G- DaY1 + 01 Ys
192 +1§1 .

1
Regarding Theorem 3.2, where ¥y = <16)’ we have that

1, -1
(MxEoMx)" = ! <_ ’ >7

1416 1, 1
(L Lyt
Co = (1 * 16) T
2 2 /\ -
>3 E(09:)E(09;)Cy X2V (Mx BoMy ) TV, 5 1 XCy
i=1 j=1

= (691)70.0521 + (6992)%0.0002,

2 2
SN wi G IXIET Vi (My BMx) TV, 351X Cp !

i=1 j=1

256 1
=04 + 7 x — =0.0222.

1 17
Thus
\gar[f;(ﬁo +09)] ~ 0.9412 + 0.0521(591)2 + 0.0002(692) + 0.0222 = 0.9634
0

(for 691 = 0¥2 = 0).

665



The plug-in estimator was simulated 50000times and for 97, = d¥3 = 0 we ob-

tained
| 50000 o e
e — v) =
£0000 2 (8 B) 0.9775.

The approximated value attains 98.6% = 0.9634/0.9775 x 100% of the true
value, even if the uncertainties of the estimators d¢; and 0 are relatively large
(0.632;0.165).
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