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Abstract. The note is related to a recently published paper J.M. Park, J. J. Oh, C.-
G. Park, D.H. Lee: The AP-Denjoy and AP-Henstock integrals. Czech. Math. J. 57
(2007), 689–696, which concerns a descriptive characterization of the approximate Kurzweil-
Henstock integral. We bring to attention known results which are stronger than those
contained in the aforementioned work. We show that some of them can be formulated
in terms of a derivation basis defined by a local system of which the approximate basis
is known to be a particular case. We also consider the relation between the σ-finiteness
of variational measure generated by a function and the classical notion of the generalized
bounded variation.
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1. Introduction

This note is motivated by a recently published paper [9] which concerns a descrip-

tive characterization of the approximate Kurzweil-Henstock integral. The point is

that unfortunately none of the results of that work can be found new, moreover,

some of them were known before in a reasonably stronger version. We discuss this

in more detail in Section 2 where in particular we recall some known results from

which the results of [9] follow. Let us remark, by the way, that the paper [9] is in

fact repetition, practically word by word, of the earlier papers [7] and [8] by the same

group of authors.

Validity of some results in this direction depends essentially on the assumption of

measurability of functions or sets under consideration. We consider this problem in

Section 3 and show that the a priori assumption of measurability can be dropped
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in some cases. This allows us to generalize one of our results from [12] related to

σ-finiteness of the variational measure defined by the approximate derivation basis.

Moreover, we formulate this and some other results in a little bit more general setting,

namely in terms of a derivation basis defined by a local system (see [14]) of which

the approximate basis is known to be a particular case.

In the last Section 4 we consider the relation between the σ-finiteness of the

variational measure generated by a function and the classical notion of the generalized

bounded variation.

2. Preliminaries. Remarks on the known results

We recall some definitions and notation comparing them with those of [9]. By

a local system [14] we mean a family∆ = {∆(x)}x∈R such that each∆(x) is a nonvoid

collection of subsets of R with the properties

(i) {x} /∈ ∆(x),

(ii) if S ∈ ∆(x) then x ∈ S,

(iii) if S ∈ ∆(x) and R ⊃ S then R ∈ ∆(x),

(iv) if S ∈ ∆(x) and δ > 0 then (x − δ, x + δ) ∩ S ∈ ∆(x).

A local system ∆ is said to be bilateral if, for each x ∈ R, every set S ∈ ∆(x) contains

points on either sides of x. A local system ∆ is said to be filtering if at each point

x ∈ R we have S1 ∩ S2 ∈ ∆(x) whenever S1 and S2 belong to ∆(x). Any S ∈ ∆(x)

is called a path leading to x. A function C on E ⊂ R such that C(x) ∈ ∆(x) for each

x ∈ E is called a choice on E. Given a choice C, we write (I, x) ∈ βC and say that

a tagged interval (I, x) is C-fine if x ∈ I and both endpoints of the closed interval I

are in C(x). A family {βC}C where C runs over all choices, is often called a derivation

basis (see [13]) generated by the local system ∆. A finite collection of C-fine tagged

intervals {(Ii, xi)}
n
i=1 with Ii ∩ int Ij = ∅ for i 6= j is called a C-fine division. It is

said to be tagged in a set E ⊂ R if xi ∈ E for each i = 1, . . . , n. It is said to be

a C-fine partition of an [a, b] if
n
⋃

i=1

Ii = [a, b].

The approximate derivation basis is generated by a particular local system, namely

by the density local system∆ap defined by the notion of the density of a set at a point:

∆ap(x) for each x ∈ R is the collection of all D ⊂ R such that there is Lebesgue

measurable E ⊂ D with x ∈ E and d(E, x) = 1, where d(E, x) stands for the density

of E at x (d̄(E, x) and d(E, x) will analogously mean the upper and the lower density

of E at x).

Let ∆ be a local system, F : R → R. The value

ω∆(F, x) = inf
S∈∆(x)

sup
y∈S

|F (x) − F (y)|
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is called the ∆-oscillation of F at x. We say F is ∆-continuous at x if ω∆(F, x) = 0.

We say F is ∆-differentiable at x if ω∆(Qx
F , x) = 0, where Qx

F (y) = (F (y) − F (x))×

(y − x)−1, y 6= x, Qx
F (x) = d for some d ∈ R; d is then the ∆-derivative D∆F (x)

of F at x. Let E ⊂ R. By the ∆-variational measure of E generated by F we

understand the value

V ∆
F (E) = inf

C
sup
D

n
∑

i=1

|F (bi) − F (ai)|,

where sup is taken over all C-fine divisions D = {([ai, bi], xi)}n
i=1 tagged in E and

inf is taken over all choices C. We say V ∆
F is σ-finite on a set E ⊂ R if E =

∞
⋃

n=1
En

and V ∆
F (En) < ∞ for each n. We say V ∆

F is absolutely continuous if V
∆
F (E) = 0 for

each nullset E.

The class of functions generating an absolutely continuous variational measure is

widely used in the Kurzweil-Henstock theory of integration. In the case of approx-

imate basis the authors of [7]–[9] use the term “AL functions (approximate Lusin

functions)” to name functions of this class.

Another class which also plays an important role in this theory is the class of

functions of generalized absolute continuity with respect to a basis. For the case of the

basis generated by a local system ∆ the definition is as follows (see [3]). A function

F is said to be AC∆ on a set E if for any ε > 0 there exist δ > 0 and a choice C

on E such that
n
∑

i=1

|F (bi) − F (ai)| < ε for any C-fine division D = {([ai, bi], xi)}n
i=1

tagged in E with
n
∑

i=1

(bi − ai) < δ. F is said to be ACG∆ on E if E =
∞
⋃

k=1

Ek and F

is AC∆ on Ek for each k.

Among almost everywhere (in the sense of Lebesgue measure) ∆-differentiable

functions, for a wide class of local systems ∆ the class ACG∆ is known to coincide

with the class of functions generating an absolutely continuous ∆-variational mea-

sure. In the case of approximate basis this is Lemma 2.2 of [9]. But it was known

earlier for a more general case (see [5, Theorem 5.1]).

To define, following [15], a Kurzweil-Henstock type integral with respect to a local

system ∆ we assume that ∆ is bilateral, filtering and has the partitioning property:

for each choice C and each [a, b] there is a C-fine partition of [a, b].

We say a function f : [a, b] → R is ∆-integrable if there is a number A, the value

of the ∆-integral, such that for each ε > 0 we can find a choice C with the property

that
∣

∣

∣

n
∑

i=1

f(xi)|Ii| − A
∣

∣

∣
< ε holds provided {(Ii, xi)}n

i=1 is a C-fine partition of [a, b].

In this case we write A = (∆)
∫ b

a f . The value of the integral is unique because ∆ is

assumed to be filtering. In these terms the approximate Kurzweil-Henstock integral
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(AP-Henstock integral as in [9]) is the ∆ap-integral. Note that the local system ∆ap

has the partitioning property (see [6, Lemma 3]).

For the ∆-integral many of the usual properties, known also for more general

classes of bases, hold. In particular (see [1]–[3], [6], [15]):

P1) If a function f is ∆-integrable on [a, b], then it is also ∆-integrable on each

subinterval of [a, b]. Therefore the indefinite ∆-integral F (x) = (∆)
∫ x

a
f is

defined for any x ∈ [a, b].

P2) The ∆-indefinite integral F of f is ∆-continuous at each point of [a, b] and it is

∆-differentiable a.e. with D∆F (x) = f(x) a.e. on [a, b].

P3) A function F , F (a) = 0, is the indefinite ∆-integral of a function f on [a, b] if

and only if F generates an absolutely continuous ∆-variational measure and F

is ∆-differentiable a.e. with D∆F (x) = f(x) a.e. on [a, b].

P4) A function F , F (a) = 0, is the indefinite ∆-integral of a function f on [a, b] if

and only if F is an ACG∆-function ∆-differentiable a.e. with D∆F (x) = f(x)

a.e. on [a, b].

The properties P3) and P4) are examples of the so-called partial descriptive charac-

terizations of the indefinite integral (see [10]). A certain drawback of these charac-

terizations is that ∆-differentiability a.e. of the functions in the class of primitives

is included into the characterization as an additional assumption. That is why they

are called “partial” to distinguish them from a “full descriptive characterization” in

which the differentiability a.e. of all the functions in the class of primitives is implied

by the main characteristic of the class.

The main results given in [7] and [9] can be summarized (in our language) as

follows: the class of indefinite ∆ap-integrals coincides with the class of all a.e. ap-

proximately differentiable functions with an absolutely continuous V
∆ap

F . So it is

a partial descriptive definition of the ∆ap-integral and a particular case of the above

property P3) which was known earlier in the local system setting (see [15]).

A deeper result giving full descriptive characterization of the ∆ap-integral is

Theorem 1. The class of indefinite ∆ap-integrals coincides with the class of all

functions F generating an absolutely continuous V
∆ap

F .

This result can be easily obtained from [5, Theorem 5.1]. In our paper [12] this

theorem was formulated as a corollary of a more general result. Making use of Vasile

Ene’s lemma (Lemma 2, next section), we have pointed out in [12] that even an

assumption weaker than absolute continuity of the approximate variational measure

V
∆ap

F generated by F , namely finiteness of V
∆ap

F on each nullset, implies that F is

almost everywhere approximately differentiable. In the next section we show that

the assumption of finiteness in the last statement can be replaced by an assumption
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of σ-finiteness of V
∆ap

F on nullsets. As we shall see, the problem of measurability is

involved in the proof.

3. Problems of measurability

We recall that an F : E → R, E ⊂ R, is a VBG-function if E =
∞
⋃

n=1
En and F is

VB on each En. If a VBG-function F on a measurable set E is measurable, then it

is approximately differentiable (i.e., ∆ap-differentiable) at almost every x ∈ E. This

is the so-called Denjoy-Khintchine theorem [11, Chapter 7 (4.3)].

The easiest proof of Theorem 1 rests on two facts. The first is that if a variational

measure V
∆ap

F , defined with respect to the density local system ∆ap, is absolutely

continuous, then F is approximately continuous and so measurable. The second is

Lemma 2 (see [4, Theorem 3]). A measurable F : [a, b] → R is VBG if and only

if it is so on each nullset.

So F , as a measurable VBG-function, is a.e. approximately differentiable, by

Denjoy-Khintchine theorem, and Theorem 1 follows. Let us stop for a moment

and remark that the measurability assumption in Lemma 2 is essential. This is

established by the following simple example.

Example. There is a function F : [0, 1] → [0, 1] which is not VBG, but it is so

on each null subset of [0, 1].

Construction. We will use the continuum hypothesis and transfinite induction.

Let Ω be the first uncountable ordinal. Arrange all reals of [0, 1] into a transfinite

sequence {pα}α<Ω. Arrange so all Gδ null subsets of [0, 1]: {Gα}α<Ω. Put H0 = G0

and for each α < Ω take an α̃ < Ω such that

Gα̃ ⊃
⋃

β<α

Hβ ∪ Gα

and such that

(1) Gα̃ \
⋃

β<α

Hβ is uncountable.

Define Hα = Gα̃. Clearly {Hα}α<Ω is ascending and
⋃

α<Ω

Hα =
⋃

α<Ω

Gα = [0, 1].

Put F (x) = pα if x ∈ Hα \
⋃

β<α

Hβ . Of course F is VBG on each nullset D ⊂ [0, 1].

Indeed, D ⊂ Gα ⊂ Hα for some α < Ω. Thus the image of D under F is contained

in the countable set {pβ}β6α.
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Due to (1), F takes on each x ∈ [0, 1] as a value uncountably many times. Such

a function cannot be VBG. Indeed, suppose [0, 1] =
∞
⋃

n=1
En and F is VB on each En.

Denote In = {pα : En ∩ F−1(pα) is infinite}, n ∈ N. Then |In| > 0 for some n, for

if not, from [0, 1] =
∞
⋃

n=1
In we would have |[0, 1]| = 0 (here and below | · | stands for

the Lebesgue outer measure). Fix this n and consider the indicatrix function I of

F ↾ En. It is a consequence of the Banach indicatrix theorem [11, Chapter 9 (6.4)]

that
∫ ∞

−∞

I 6 V (F ↾ En) < ∞.

On the other hand, I(y) = ∞ for each y ∈ In, whence

∫ ∞

−∞

I > ∞ · |In| = ∞,

a contradiction. �

We aim at discussing both the steps of the already described proof of Theorem 1.

We consider under what assumptions put on the local system ∆ each of the above

steps can follow. This will lead us to some generalizations.

First, we consider the question when measurability of F : R → R will follow from

σ-finiteness of V ∆
F on nullsets. We assume until the end of this section that a local

system ∆ = {∆(x)}x∈R has the following two extra properties, the latter being

a strengthening of the condition (iv):

(a) if S ∈ ∆(x) then there exists a measurable set R ⊂ S such that

d(R, x) > 0;

(b) if S ∈ ∆(x) and d(R, x) = 1, R ∋ x, then S ∩ R ∈ ∆(x).

Lemma 3. The set C∆
F of all points at which F is ∆-continuous is a measurable

subset of R. Moreover, F ↾ C∆
F is a measurable function.

P r o o f. Fix x ∈ C∆
F and n ∈ N. There is a path Sn

x ∈ ∆(x) such that |F (x) −

F (y)| < 1/n for each y ∈ Sn
x . By (a) there is a measurable Rn

x ⊂ Sn
x , R

n
x ∋ x, with

d(Rn
x , x) > 0. By virtue of the Lebesgue density theorem we can assume that Rn

x

has density 1 at each y ∈ Rn
x , y 6= x. We claim that the set

Sn =
⋃

x∈C∆
F

Rn
x
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is measurable. Suppose not. Let E be a measurable hull, D a measurable kernel of

Sn; we have |Sn \ D| = |E \ D| > 0. Pick an x ∈ Sn \ D which is a density point of

E \D. By the definition of Sn there is a measurable set Rn
x′ ⊂ Sn with positive lower

density at x. So, also (E \ D) ∩ Rn
x′ ⊂ Sn \ D has positive lower density at x and

consequently is not a nullset, a contradiction with the fact that D is a measurable

kernel of Sn. So Sn is measurable. To get the measurability of C∆
F it is enough to

check that

C∆
F =

∞
⋂

n=1

Sn.

By definition C∆
F ⊂

∞
⋂

n=1
Sn. The converse inclusion follows from the fact that

ω∆(F, y) 6 2/n for each y ∈ Rn
x , x ∈ C∆

F (see the property (b)).

Let α ∈ R. We will show the set E = {x ∈ C∆
F : F (x) < α} is measurable. Since

C∆
F is measurable and F is ∆-continuous on it, for almost every x ∈ E there is

a measurable S ⊂ E with d(S, x) > 0. Hence, in order to show measurability of E,

we can pattern the argument of the first part of the proof. �

Theorem 4. Assume V ∆
F is σ-finite on each nullset. Then F : R → R is measur-

able.

P r o o f. It is enough to show F is nearly everywhere∆-continuous, see Lemma 3.

Suppose the set D∆
F (of all points at which F is not ∆-continuous) is uncountable.

Since it is measurable (Lemma 3 again) we can pick an uncountable nullset D ⊂ D∆
F .

Let D =
∞
⋃

m=1
Dm, where V ∆

F (Dm) < ∞ for each m. For at least one m, say m0,

the set Dm is also uncountable. So, there is an n ∈ N such that the set E =
{

x ∈

Dm0
: ω∆(F, x) > 1/n

}

is infinite. Pick a sequence {xk}∞k=1 ⊂ E. As V ∆
F is a metric

outer measure, it becomes a measure if restricted to the class of Borel sets, and so

V ∆
F (Dm0

) > V ∆
F

(

{xk}
∞
k=1

)

=

∞
∑

k=1

V ∆
F ({xk}) >

∞
∑

k=1

ω∆(F, xk) >

∞
∑

k=1

1

n
= ∞,

a contradiction with V ∆
F (Dm0

) < ∞. �

In [12] we have proved that if the measure V
∆ap

F generated by ameasurable function

F on [a, b] is σ-finite on each nullset, then it is σ-finite on [a, b]. In turn, this implies F

is almost everywhere approximately differentiable. Combining this with Theorem 4

we finally get

Theorem 5. Assume V
∆ap

F is σ-finite on each nullset. Then V
∆ap

F is σ-finite and

F is approximately differentiable a.e.
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4. VBG property and σ-finiteness of variational measure

The second step in proving Theorem 1 was to establish that the σ-finiteness of

V
∆ap

F implies the VBG property of F . We extend this result to the case of more

general local systems.

Assume that the local system ∆ satisfies, beside (i)–(iv) by definition, also the

so-called intersection condition

(c) for each choice {C(x)}x∈R there is a δ : R → (0,∞) such that C(x) ∩ C(y) ∩

[x, y] 6= ∅ if |x − y| 6 min {δ(x), δ(y)}.

Theorem 6. Let F : R → R and let ∆ be as above. Suppose the variational

measure V ∆
F is σ-finite on E ⊂ R. Then F is VBG on E.

P r o o f. There is a sequence {En}
∞
n=1 such that

∞
⋃

n=1
En = E and V ∆

F (En) < ∞

for each n. It means that for a fixed n there is a choice {C(x)}x∈En
such that

r
∑

i=1

|F (bi) − F (ai)| < V ∆
F (En) + 1 for each C-fine division {([ai, bi], xi)}r

i=1 tagged

in En. Pick a function δ according to (c) for {C(x)}x∈En
and define Ekln =

{

x ∈

En : δ(x) > 1/k
}

∩
[

(l − 1)/k, l/k
]

, k ∈ N, l ∈ Z. Consider any collection of pairwise

nonoverlapping intervals {[cj, dj ]}s
j=1 with all cj , dj ∈ Ekln. Since dj − cj 6 1/k 6

min {δ(cj), δ(dj)}, j = 1, . . . , s, there is ξj ∈ [cj , dj ] ∩ C(cj) ∩ C(dj). The collection

{

([cj , ξj ], cj), ([ξj , dj ], dj)
}s

j=1

is thus a C-fine division tagged in En, whence

s
∑

j=1

|F (dj) − F (cj)| 6

s
∑

j=1

|F (ξj) − F (cj)| +
s

∑

j=1

|F (dj) − F (ξj)| < V ∆
F (En) + 1 < ∞.

We have proved F is VB on each Ekln, thus VBG on E. �

We will show now that the assumption related to the form of the intersection

condition cannot be weakened in the above theorem by replacing it with the so-

called external intersection condition of the form C(x) ∩ C(y) 6= ∅, even in case of

a continuous function. As an example it is enough to consider some P-adic path

system with a sequence P rapidly growing to ∞. We need more terminology.

Let P = {pj}∞j=0 be a fixed sequence of integers with pj > 1 for all j. We set

m0 = 1, mk = p0p1 . . . pk−1 for k > 1. We call the closed intervals

I(k)
r =

[

r

mk
,
r + 1

mk

]

, r ∈ Z,

for fixed k = 0, 1, . . ., the P-intervals of rank k.
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The points r/mk where r ∈ Z and k = 0, 1, . . ., constitute the set of all P-adic

rationals on R. Its complementary set on R is the set of all P-adic irrationals on R.

For each P-adic irrational point x there exists only one P-interval I
(k)
x = [a

(k)
x , b

(k)
x ]

of rank k containing x so that {x} =
∞
⋂

k=0

[a
(k)
x , b

(k)
x ]. We say that the sequence

{[a
(k)
x , b

(k)
x ]}k of nested P-intervals is the basic sequence of P-intervals convergent

to x. If x is a P-adic rational point, then there exist two descending sequences of

P-intervals for which x is a common endpoint starting with some k; i.e., for such

a point we have two basic sequences convergent to x: the left and the right one.

Now we define the system of P-adic paths. If x is a P-adic irrational we denote by

P−(x) and P+(x) the sequences {a
(k)
x }k and {b

(k)
x }k convergent to x, respectively,

which are given by the definition of the basic sequence of P-intervals. Then the set

Px = P−(x) ∪ P+(x) ∪ {x} is the P-adic path at x. In the case of a P-adic rational

x, we denote by P−(x) (by P+(x)) the sequence of the left (right) endpoints of the

intervals from the left (right) basic sequence. The definition of the P-adic path Px

at x is the same as in the case of a P-adic irrational. We denote by ∆P the local

system generated by these P-adic paths; i.e., ∆P(x) = {Px ∩ (x − δ, x + δ) : δ > 0},

x ∈ R.

Example. There is a sequence P and a continuous function F : [0, 1] → R such

that V∆P

F is σ-finite, but F is not VBG on some nullset A ⊂ [0, 1].

Construction. We consider the sequence P with p0 = m1 = 24 and pk = kmk for

k > 1. For each I
(k)
r we define a subinterval

J (k)
r =

[

r

mk
+

1

4mk
,
r + 1

mk
−

1

4mk

]

.

Note that it can be represented as a union of 1
2pk = 1

2kmk P-intervals of rank k + 1.

For each k > 1 we define on [0, 1] the following continuous and piecewise linear

functions:

Fk(x) =



































0 if x = 0 or x = 1,

1

mk−1
if x ∈ I

(k)
1+6j , j = 0, 1, . . . , 1

6mk − 1,

−
1

mk−1
if x ∈ I

(k)
4+6j , j = 0, 1, . . . , 1

6mk − 1,

linear on the closure of each interval contiguous to the above.

We also define the sequence of sets

A1 = J
(0)
0 =

[

1

4
,
3

4

]

, Ak+1 = Ak ∩

mk/6−1
⋃

j=0

(J
(k)
1+6j ∪ J

(k)
4+6j).
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We put A =
∞
⋂

k=1

Ak. It is clear that A is a perfect set of measure zero containing

only P-adic irrationals. We define

F =

∞
∑

k=1

FkχAk
.

This series is uniformly convergent and so F is a continuous function which is piece-

wise linear (with a countable number of linear pieces) on each interval contiguous to

A. We show that F is not VBG on A. To this end, it is enough to prove that F is VB

on no nonempty portion of A. Note that any such portion P contains a portion of

the type A∩J
(k)
r for any k > k0 and for a suitable r. Fix such a portion for a certain

k. It has nonempty intersection with 1
12pk = 1

12kmk intervals of the type I
(k+1)
1+6j and

1
12kmk intervals of the type I

(k+1)
4+6j . We can choose

1
12kmk intervals [αj , βj ] with

endpoints in A ∩ J
(k)
r such that αj ∈ A ∩ I

(k+1)
1+6j and βj ∈ A ∩ I

(k+1)
4+6j . As

k
∑

s=1
Fs is

constant on each A ∩ J
(k)
r ⊂ I

(k)
r , we have

F (αj) − F (βj) = Fk+1(αj)χAk+1
(αj) +

∞
∑

s=k+2

Fs(αj)χAs
(αj)

− Fk+1(βj)χAk+1
(βj) −

∞
∑

s=k+2

Fs(βj)χAs
(βj)

>
2

mk
−

∞
∑

s=k+2

2

ms−1
>

2

mk
− 2

2

mk+1
=

2

mk
− 2

2

km2
k

>
1

mk
.

So
kmk/12

∑

j=1

|F (αj) − F (βj)| >
k

12

and F is not VB on the portion P ⊃ A ∩ J
(k)
r and hence is not VBG on [0, 1].

Now we estimate the lower and upper ∆P -derivatives of F at x ∈ A: DPF (x)

and DPF (x). Let x ∈ A. Then {x} =
∞
⋂

k=0

[a
(k)
x , b

(k)
x ]. We have x − a

(k)
x > 1

4m−1
k and

b
(k)
x − x > 1

4m−1
k for each k. Note that

k
∑

s=1
FsχAs

is constant on [a
(k)
x , b

(k)
x ] if x ∈ A

and F (a
(k)
x ) = F (b

(k)
x ) =

k
∑

s=1
Fs(x)χAs

(x). Then

∣

∣

∣

∣

∣

F (x) − F (a
(k)
x )

x − a
(k)
x

∣

∣

∣

∣

∣

6

∞
∑

s=k+1

|Fs(x)χAs
(x)|

|x − a
(k)
x |

6

∞
∑

s=k+1

(ms−1)
−1

(4mk)−1
6

2

mk
4mk = 8
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and in the same way,
∣

∣

∣

∣

∣

F (b
(k)
x ) − F (x)

b
(k)
x − x

∣

∣

∣

∣

∣

6 8.

So,

−8 6 DPF (x) 6 DPF (x) 6 8

if x ∈ A. This implies that V∆P

F (A) = 0. �

Problem. Assume the variational measure of F : R → R related to a local system

∆ is σ-finite on each nullset. Prove (perhaps under some extra condition) that V ∆
F

is σ-finite on R.
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