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EXISTENCE OF ONE-SIGNED SOLUTIONS OF NONLINEAR

FOUR-POINT BOUNDARY VALUE PROBLEMS

Ruyun Ma, Ruipeng Chen, Lanzhou

(Received July 2, 2010)

Abstract. In this paper, we are concerned with the existence of one-signed solutions of
four-point boundary value problems

−u′′ +Mu = rg(t)f(u), u(0) = u(ε), u(1) = u(1− ε)

and
u′′ +Mu = rg(t)f(u), u(0) = u(ε), u(1) = u(1− ε),

where ε ∈ (0, 1/2),M ∈ (0,∞) is a constant and r > 0 is a parameter, g ∈ C([0, 1], (0,+∞)),
f ∈ C(R,R) with sf(s) > 0 for s 6= 0. The proof of the main results is based upon
bifurcation techniques.
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1. Introduction

In the past few years, the existence and multiplicity of positive solutions of non-

linear second-order Neumann problems

u′′ + ̺u+ f(t, u) = 0, t ∈ (0, 1),(1.1)

u′(0) = u′(1) = 0,(1.2)

where ̺ is a constant with ̺ ∈ (−∞, 0) ∪ (0, π2/4), has been studied by several

authors, see Jiang and Liu [3], Sun, Li and Cheng [10]–[11]. The main tool used in

[3], [10], [11] is the fixed point theorem in cones [2].

Supported by the NSFC (No. 11061030), the Fundamental Research Funds for the Gansu
Universities.
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Let ε ∈ (0, 1/2) be given. Let us consider the existence of one-signed solutions of

the nonlinear four-point boundary value problems

(1.3) −u′′ +Mu = rg(t)f(u), t ∈ (0, 1)

and

(1.4) u′′ +Mu = rg(t)f(u), t ∈ (0, 1),

subject to the boundary conditions

(1.5) u(0) = u(ε), u(1) = u(1 − ε),

where r > 0 is a parameter, g and f satisfy

(H1) g ∈ C([0, 1], (0,+∞));

(H2) f ∈ C(R,R) with sf(s) > 0 for s 6= 0;

(H3) there exist f0, f∞ ∈ (0,∞) such that

f0 = lim
|s|→0

f(s)

s
, f∞ = lim

|s|→∞

f(s)

s
.

Obviously, if u ∈ C1[0, 1] satisfies (1.5), then by Rolle’s mean value theorem, there

exist ξ ∈ (0, ε) and η ∈ (1 − ε, 1) such that

u′(ξ) = u′(η) = 0.

Letting ε→ 0, then ξ → 0 and η → 1, and accordingly, (1.5) reduces to the Neumann

boundary conditions (1.2).

The purpose of this paper is to prove the existence of positive solutions of (1.3)

and (1.4) subject to the boundary conditions (1.5). By applying the well-known

Rabinowitz’s global bifurcation theorem [8], we will prove the following

Theorem 1.1. Let M ∈ (0,∞) be given and (H1)–(H3) hold. Let λ1 be the

principal eigenvalue of the linear problem

(1.6) −u′′ +Mu = λg(t)u, t ∈ (0, 1), u(0) = u(ε), u(1) = u(1 − ε).

Assume that either

(1.7)
λ1

f∞
< r <

λ1

f0
or

(1.8)
λ1

f0
< r <

λ1

f∞
.

Then (1.3), (1.5) has two solutions u+ and u− with u+(t) > 0 on [0, 1] and u−(t) < 0

on [0, 1].
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Theorem 1.2. Let M ∈ (0, π2/4] be given and (H1)–(H3) hold. Let τ1 be the

principal eigenvalue of the linear problem

(1.9) u′′ +Mu = τg(t)u, t ∈ (0, 1), u(0) = u(ε), u(1) = u(1 − ε).

Assume that either

(1.10)
τ1
f∞

< r <
τ1
f0

or

(1.11)
τ1
f0

< r <
τ1
f∞

.

Then (1.4), (1.5) has two solutions u+ and u− with u+(t) > 0 on [0, 1] and u−(t) < 0

on [0, 1].

Remark 1.1. Conditions (1.7) and (1.8) are sharp to guarantee the existence of

one-signed solutions. This can be seen from the following example

(1.12) −u′′ +Mu = 1 · 1 · (λ̄1 − σ)u, u(0) = u(ε), u(1) = u(1 − ε),

where λ̄1 is the principle eigenvalue of the linear problem

−u′′ +Mu = λu, u(0) = u(ε), u(1) = u(1 − ε),

and can be explicitly given by

λ̄1 = M.

Take g(t) ≡ 1 and f(u) = (λ̄1 − σ)u. Then f0 = f∞ = (λ̄1 − σ) and (1.7), (1.8) do

not hold. Though σ is allowed to approach to 0, (1.12) has no nontrivial solutions

any more.

Remark 1.2. Miciano and Shivaji [7] studied the multiplicity of positive solutions

of the Neumann problem

u′′ + λf(u) = 0, t ∈ (0, 1),

u′(0) = u′(1) = 0

by the method of time map estimation. For other results on the existence of posi-

tive solutions of singular nonlinear Neumann problems, see Rachunková, Staněk and

Tvrdý [9], Sun, Cho and O’Regan [12], Chu, Sun and Chen [1], Li [5], and Li and

Jiang [4].
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The rest of this paper is organized as follows: In Section 2 and 3, we construct

the Green functions of linear problems

(1.13) −u′′ +Mu = 0, t ∈ (0, 1), u(0) = u(ε), u(1) = u(1 − ε)

and

(1.14) u′′ +Mu = 0, t ∈ (0, 1), u(0) = u(ε), u(1) = u(1 − ε),

respectively. Moreover, we study the properties of these Green’s functions and in-

vestigate the principal eigenvalues of the associated linear eigenvalue problem (1.6)

and (1.9). Section 4 is devoted to prove our main results via Rabinowitz’s global

bifurcation theorem.

2. Green’s function of (1.13)

In this section, we assume that

(H4) ε ∈ (0, 1/2) and M ∈ (0,∞).

Let m =
√
M , then (H4) implies that m > 0.

Let ψ1 be the unique solution of the initial value problem

(2.1)

{

−ψ′′
1 (t) +Mψ1(t) = 0, t ∈ (0, 1],

ψ1(0) = 0, ψ′
1(0) = 1.

Let ϕ1 be the unique solution of the initial value problem

(2.2)

{

−ϕ′′
1(t) +Mϕ1(t) = 0, t ∈ [0, 1),

ϕ1(1) = 0, ϕ′
1(1) = −1.

Then

ψ1(t) =
1

2m
(emt − e−mt), t ∈ [0, 1],(2.3)

ϕ1(t) =
1

2m
(em(1−t) − e−m(1−t)), t ∈ [0, 1],(2.4)

and it is easy to check that ψ1(t) > 0 on (0, 1] and ϕ1(t) > 0 on [0, 1). Moreover,

ψ1 is strictly increasing and convex on [0, 1], ϕ1 is strictly decreasing and convex on

[0, 1].
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Lemma 2.1. Let (H4) hold. Then for each h ∈ C[0, 1], the linear problem

(2.5) −u′′(t) +Mu(t) = h(t), t ∈ (0, 1), u(0) = u(ε), u(1) = u(1 − ε)

is equivalent to the integral equation

(2.6) u(t) =

∫ 1

0

K1(t, s)h(s) ds, t ∈ [0, 1],

where

K1(t, s) = G1(t, s) +G1(ε, s)
ϕ1(1 − ε)ψ1(t) + ϕ1(t)(ψ1(1) − ψ1(1 − ε))

̺1

+G1(1 − ε, s)
(ϕ1(0) − ϕ1(ε))ψ1(t) + ϕ1(t)ψ1(ε)

̺1
,

G1(t, s) =
1

∆1

{

ψ1(s)ϕ1(t), 0 6 s 6 t 6 1,

ψ1(t)ϕ1(s), 0 6 t 6 s 6 1,
(2.7)

∆1 = ψ′
1(t)ϕ1(t) − ψ1(t)ϕ

′
1(t) = ϕ1(0) > 0,(2.8)

̺1 = (ψ1(1 − ε) − ψ1(1))(ϕ1(ε) − ϕ1(0)) − ψ1(ε)ϕ1(1 − ε) > 0.(2.9)

Moreover, if h(t) > 0 and h(t) 6≡ 0 on [0, 1], then the function u defined by (2.6)

satisfies u(t) > 0, t ∈ [0, 1].

P r o o f. Firstly, we show that the unique solution of (2.5) can be represented

by (2.6). In fact, it follows from (2.3), (2.4) and (2.8) that the equation

−u′′(t) +Mu(t) = 0, t ∈ [0, 1]

has two independent solutions ψ1 and ϕ1. Now, by the method of variation of

constants, we may assume that

(2.10) u(t) = C1(t)ψ1(t) + C2(t)ϕ1(t), t ∈ [0, 1],

and therefore

(2.11)

{

ψ1(t)C
′
1(t) + ϕ1(t)C

′
2(t) = 0,

ψ′
1(t)C

′
1(t) + ϕ′

1(t)C
′
2(t) = −h(t).

It follows from (2.11) that

C′
1(t) =

−h(t)ϕ1(t)

ψ′
1(t)ϕ1(t) − ψ1(t)ϕ′

1(t)
, C′

2(t) =
h(t)ψ1(t)

ψ′
1(t)ϕ1(t) − ψ1(t)ϕ′

1(t)
,
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thus,

(2.12) C1(t) = C1(1) +

∫ 1

t

ϕ1(s)

∆1
h(s) ds, C2(t) = C2(0) +

∫ t

0

ψ1(s)

∆1
h(s) ds,

where ∆1 is defined as in (2.8).

Now, it follows from (2.10) and (2.12) that

u(t) = C1(1)ψ1(t) +

∫ 1

t

ψ1(t)ϕ1(s)

∆1
h(s) ds+ C2(0)ϕ1(t) +

∫ t

0

ψ1(s)ϕ1(t)

∆1
h(s) ds.

Let A1 = C1(1), B1 = C2(0), then

(2.13) u(t) =

∫ 1

0

G1(t, s)h(s) ds+A1ψ1(t) +B1ϕ1(t), t ∈ [0, 1],

where G1 is defined as in (2.7). This together with (2.3) and (2.4) implies that

(2.14)

{

u(0) =
∫ 1

0 G1(0, s)h(s) ds+A1ψ1(0) +B1ϕ1(0) = B1ϕ1(0),

u(ε) =
∫ 1

0
G1(ε, s)h(s) ds+A1ψ1(ε) +B1ϕ1(ε)

and

(2.15)

{

u(1) =
∫ 1

0
G1(1, s)h(s) ds+A1ψ1(1) +B1ϕ1(1) = A1ψ1(1),

u(1 − ε) =
∫ 1

0 G1(1 − ε, s)h(s) ds+A1ψ1(1 − ε) +B1ϕ1(1 − ε).

Combining (2.14), (2.15) with (1.5), it concludes that

(2.16)

{

A1ψ1(ε) +B1(ϕ1(ε) − ϕ1(0)) = −
∫ 1

0 G1(ε, s)h(s) ds,

A1(ψ1(1 − ε) − ψ1(1)) +B1ϕ1(1 − ε) = −
∫ 1

0
G1(1 − ε, s)h(s) ds.

Let C1 := −
∫ 1

0
G1(ε, s)h(s) ds, C2 := −

∫ 1

0
G1(1 − ε, s)h(s) ds. Then (2.16) yields

A1 =
C1ϕ1(1 − ε) − C2(ϕ1(ε) − ϕ1(0))

ψ1(ε)ϕ1(1 − ε) − (ψ1(1 − ε) − ψ1(1))(ϕ1(ε) − ϕ1(0))
,(2.17)

B1 =
C2ψ1(ε) − C1(ψ1(1 − ε) − ψ1(1))

ψ1(ε)ϕ1(1 − ε) − (ψ1(1 − ε) − ψ1(1))(ϕ1(ε) − ϕ1(0))
.(2.18)

Thus, the function u can be rewritten as

u(t) =

∫ 1

0

G1(t, s)h(s) ds+
C1ϕ1(1 − ε) − C2(ϕ1(ε) − ϕ1(0))

−̺1
ψ1(t)

+
C2ψ1(ε) − C1(ψ1(1 − ε) − ψ1(1))

−̺1
ϕ1(t),
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where

̺1 = (ψ1(1 − ε) − ψ1(1))(ϕ1(ε) − ϕ1(0)) − ψ1(ε)ϕ1(1 − ε)

is defined as in (2.9).

We claim that ̺1 > 0. In fact, it follows from (2.3) and (2.4) that

(2.19) ̺1 =
( 1

2m

)2

[(em − e−m) − (em(1−ε) − e−m(1−ε))]2 −
( 1

2m

)2

(emε − e−mε)2.

The properties of the function ψ1 imply that

em − e−m − em(1−ε) + e−m(1−ε) + emε − e−mε > 0,

and so we need only to prove that

em − e−m − em(1−ε) + e−m(1−ε) − emε + e−mε > 0.

Let f(t) = emt − e−mt. Then

f ′(t) = m(emt + e−mt) > 0 on [0, 1].

Moreover, it follows from the facts

f(0) = 0, f ′(t) > 0, t ∈ [0, 1]

that f(t) > 0 for t ∈ (0, 1], and therefore

f ′′(t) = m2(emt − e−mt) = m2f(t) > 0 t ∈ (0, 1].

Consequently, f is strictly increasing and convex on [0, 1]. Hence

f(1) − f(1 − ε) > f(ε) − f(0),

i.e.

em − e−m − em(1−ε) + e−m(1−ε) − emε + e−mε > 0.

Thus, it follows from (2.19) that ̺1 > 0.

By simple computations, we get

(2.20) u(t) =

∫ 1

0

G1(t, s)h(s) ds+

∫ 1

0

ϕ1(1 − ε)ψ1(t)

̺1
G1(ε, s)h(s) ds

+

∫ 1

0

(ϕ1(0) − ϕ1(ε))ψ1(t)

̺1
G1(1 − ε, s)h(s) ds

+

∫ 1

0

ϕ1(t)(ψ1(1) − ψ1(1 − ε))

̺1
G1(ε, s)h(s) ds

+

∫ 1

0

ϕ1(t)ψ1(ε)

̺1
G1(1 − ε, s)h(s) ds.
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It follows from (2.20) that (2.5) holds with K1(t, s) given by

K1(t, s) = G1(t, s) +G1(ε, s)
ϕ1(1 − ε)ψ1(t) + ϕ1(t)(ψ1(1) − ψ1(1 − ε))

̺1

+G1(1 − ε, s)
(ϕ1(0) − ϕ1(ε))ψ1(t) + ϕ1(t)ψ1(ε)

̺1
.

Next, we check that the function defined by (2.6) is a solution of (2.5). From

(2.20) we know that

u′(t) =
1

∆1
ϕ′

1(t)

∫ t

0

ψ1(s)h(s) ds+
1

∆1
ψ′

1(t)

∫ 1

t

ϕ1(s)h(s) ds(2.21)

+ ψ′
1(t)

∫ 1

0

ϕ1(1 − ε)

̺1
G1(ε, s)h(s) ds

+ ψ′
1(t)

∫ 1

0

(ϕ1(0) − ϕ1(ε))

̺1
G1(1 − ε, s)h(s) ds

+ ϕ′
1(t)

∫ 1

0

ψ1(1) − ψ1(1 − ε)

̺1
G1(ε, s)h(s) ds

+ ϕ′
1(t)

∫ 1

0

ψ1(ε)

̺1
G1(1 − ε, s)h(s) ds,

u′′(t) =
1

∆1
ϕ′′

1 (t)

∫ t

0

ψ1(s)h(s) ds+
1

∆1
ψ′′

1 (t)

∫ 1

t

ϕ1(s)h(s) ds

+
1

∆1
ϕ′

1(t)ψ1(t)h(t) −
1

∆1
ϕ1(t)ψ

′
1(t)h(t)

+ ψ′′
1 (t)

∫ 1

0

ϕ1(1 − ε)

̺1
G1(ε, s)h(s) ds

+ ψ′′
1 (t)

∫ 1

0

(ϕ1(0) − ϕ1(ε))

̺1
G1(1 − ε, s)h(s) ds

+ ϕ′′
1 (t)

∫ 1

0

ψ1(1) − ψ1(1 − ε)

̺1
G1(ε, s)h(s) ds

+ ϕ′′
1 (t)

∫ 1

0

ψ1(ε)

̺1
G1(1 − ε, s)h(s) ds.

Hence (2.20) together with (2.21) imply that

u′′ −Mu =
1

∆1
ϕ′

1(t)ψ1(t)h(t) −
1

∆1
ϕ1(t)ψ

′
1(t)h(t) =

1

∆1
(−∆1)h(t) = −h(t),

i.e.

−u′′(t) +Mu(t) = h(t), t ∈ [0, 1].
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Finally, we will show that the boundary conditions (1.5) can also be satisfied. It

follows from (2.20) that

u(0) =
C1(ψ1(1 − ε) − ψ1(1)) − C2ψ1(ε)

̺1
ϕ1(0),

u(ε) =

∫ 1

0

G1(ε, s)h(s) ds+
C2(ϕ1(ε) − ϕ1(0)) − C1ϕ1(1 − ε)

̺1
ψ1(ε)

+
C1(ψ1(1 − ε) − ψ1(1)) − C2ψ1(ε)

̺1
ϕ1(ε).

By routine computations, we can show that u(ε) − u(0) = 0, i.e.

u(ε) = u(0).

Similarly, we can prove that u(1 − ε) = u(1). �

Lemma 2.2. Let (H4) hold. Then the Green functionK1 defined as in Lemma 2.1

satisfies

(i) K1 : [0, 1] × [0, 1] → [0,+∞) is continuous;

(ii) K1(t, s) > 0 for each (t, s) ∈ (0, 1) × (0, 1).

P r o o f. It follows from (2.7)–(2.9) that (i) and (ii) hold. �

Define a cone

(2.22) P := {u ∈ C[0, 1] : u(t) > 0, t ∈ [0, 1]},

and a linear operator L1 : C[0, 1] → C[0, 1],

(2.23) (L1u)(t) :=

∫ 1

0

K1(t, s)g(s)u(s) ds, t ∈ [0, 1].

Lemma 2.3. Let (H1) and (H4) hold. Then

(a) L1 : C[0, 1] → C[0, 1] is a completely continuous linear operator;

(b) L1(P \ θ) ⊂ intP ;

(c) r(L1) 6= 0, and there exists e1 ∈ C[0, 1] with e1 > 0 on [0, 1] such that L1e1 =

r(L1)e1. Moreover, λ1 := (r(L1))
−1 is the principal eigenvalue of (1.6).

P r o o f. By the standard argument, we can prove (a).

To prove (c), by the well-known Krein-Rutman Theorem [2, Theorem 19.2 and

19.3], it is enough to show that (b) is true.
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For y ∈ (P \ θ), there exist t0 ∈ (0, 1) and δ ∈ (0,min{t0, 1 − t0}) such that

y(t) > 0, t ∈ (t0 − δ, t0 + δ).

Thus, it follows from Lemma 2.2 that

(L1y)(t) =

∫ 1

0

K1(t, s)rg(s)y(s) ds >

∫ t0+δ

t0−δ

K1(t, s)rg(s)y(s) ds > 0, t ∈ [0, 1],

which implies that L1y ∈ intP . �

3. Green’s function of (1.14)

In this section, we assume that

(H5) ε ∈ (0, 1/2) and M ∈ (0, π2/4].

Let m =
√
M , then (H5) implies that m > 0.

Let ψ2 be the unique solution of the initial value problem

(3.1)

{

ψ′′
2 (t) +Mψ2(t) = 0, t ∈ (0, 1],

ψ2(0) = 0, ψ′
2(0) = 1.

Let ϕ2 be the unique solution of the initial value problem

(3.2)

{

ϕ′′
2 (t) +Mϕ2(t) = 0, t ∈ [0, 1),

ϕ2(1) = 0, ϕ′
2(1) = −1.

Then it is easy to check that

(3.3) ψ2(t) =
1

m
sinmt, ϕ2(t) =

1

m
sinm(1 − t), t ∈ [0, 1],

and ψ2(t) > 0 on (0, 1], ϕ2(t) > 0 on [0, 1). Moreover, ψ2 is strictly increasing and

concave on [0, 1], ϕ2 is strictly decreasing and concave on [0, 1].

Lemma 3.1. Let (H5) hold. Then for each h ∈ C[0, 1], the linear problem

(3.4) u′′(t) +Mu(t) = h(t), t ∈ (0, 1), u(0) = u(ε), u(1) = u(1 − ε)

is equivalent to the integral equation

(3.5) u(t) =

∫ 1

0

K2(t, s)h(s) ds, t ∈ [0, 1],

602



where

K2(t, s) = −G2(t, s) +G2(ε, s)
ϕ2(1 − ε)ψ2(t) + ϕ2(t)(ψ2(1) − ψ2(1 − ε))

̺2

+G2(1 − ε, s)
(ϕ2(0) − ϕ2(ε))ψ2(t) + ϕ2(t)ψ2(ε)

̺2
,

G2(t, s) =
1

∆2

{

ψ2(s)ϕ2(t), 0 6 s 6 t 6 1,

ψ2(t)ϕ2(s), 0 6 t 6 s 6 1,
(3.6)

∆2 := ψ′
2(t)ϕ2(t) − ψ2(t)ϕ

′
2(t) = ϕ2(0) =

1

m
sinm > 0,(3.7)

̺2 := ψ2(ε)ϕ2(1 − ε) − (ψ2(1 − ε) − ψ2(1))(ϕ2(ε) − ϕ2(0)) > 0.(3.8)

Moreover, if h(t) > 0 and h(t) 6≡ 0 on [0, 1], then the function u defined by (3.5)

satisfies u(t) > 0, t ∈ [0, 1].

P r o o f. Firstly, we show that the unique solution of (3.4) can be represented

by (3.5). In fact, it follows from (3.3) and (3.7) that the equation

u′′(t) +Mu(t) = 0, t ∈ [0, 1]

has two independent solutions ψ2 and ϕ2. Now, by the method of variation of

constants, we may assume that

(3.9) u(t) = D1(t)ψ2(t) +D2(t)ϕ2(t), t ∈ [0, 1],

and therefore

(3.10)

{

ψ2(t)D
′
1(t) + ϕ2(t)D

′
2(t) = 0,

ψ′
2(t)D

′
1(t) + ϕ′

2(t)D
′
2(t) = h(t).

Then (3.10) yields

D′
1(t) =

h(t)ϕ2(t)

ψ′
2(t)ϕ2(t) − ψ2(t)ϕ′

2(t)
, D′

2(t) =
−h(t)ψ2(t)

ψ′
2(t)ϕ2(t) − ψ2(t)ϕ′

2(t)
,

thus,

(3.11) D1(t) = D1(1) −
∫ 1

t

ϕ2(s)

∆2
h(s) ds, D2(t) = D2(0) −

∫ t

0

ψ2(s)

∆2
h(s) ds,

where ∆2 is defined as in (3.7).
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Now (3.9) together with (3.11) imply that

u(t) = D1(1)ψ2(t) −
∫ 1

t

ψ2(t)ϕ2(s)

∆2
h(s) ds+D2(0)ϕ2(t) −

∫ t

0

ψ2(s)ϕ2(t)

∆2
h(s) ds.

Let A2 = D1(1), B2 = D2(0), then

(3.12) u(t) = −
∫ 1

0

G2(t, s)h(s) ds+A2ψ2(t) +B2ϕ2(t),

where G2 is defined as in (3.6). It follows from (3.3) and (3.12) that

(3.13)

{

u(0) = −
∫ 1

0 G2(0, s)h(s) ds+A2ψ2(0) +B2ϕ2(0) = B2ϕ2(0),

u(ε) = −
∫ 1

0
G2(ε, s)h(s) ds+A2ψ2(ε) +B2ϕ2(ε)

and

(3.14)

{

u(1) = −
∫ 1

0 G2(1, s)h(s) ds+A2ψ2(1) +B2ϕ2(1) = A2ψ2(1),

u(1 − ε) = −
∫ 1

0
G2(1 − ε, s)h(s) ds+A2ψ2(1 − ε) +B2ϕ2(1 − ε).

Then (3.13), (3.14) together with (1.5) imply that

(3.15)

{

A2ψ2(ε) +B2(ϕ2(ε) − ϕ2(0)) =
∫ 1

0 G2(ε, s)h(s) ds,

A2(ψ2(1 − ε) − ψ2(1)) +B2ϕ2(1 − ε) =
∫ 1

0
G2(1 − ε, s)h(s) ds.

Let

D1 :=

∫ 1

0

G2(ε, s)h(s) ds, D2 :=

∫ 1

0

G2(1 − ε, s)h(s) ds.

Then we know from (3.15) that

A2 =
D1ϕ2(1 − ε) −D2(ϕ2(ε) − ϕ2(0))

ψ2(ε)ϕ2(1 − ε) − (ψ2(1 − ε) − ψ2(1))(ϕ2(ε) − ϕ2(0))
,(3.16)

B2 =
D2ψ2(ε) −D1(ψ2(1 − ε) − ψ2(1))

ψ2(ε)ϕ2(1 − ε) − (ψ2(1 − ε) − ψ2(1))(ϕ2(ε) − ϕ2(0))
.(3.17)

Therefore, u can be rewritten as

u(t) = −
∫ 1

0

G2(t, s)h(s) ds+
D1ϕ2(1 − ε) −D2(ϕ2(ε) − ϕ2(0))

̺2
ψ2(t)

+
D2ψ2(ε) −D1(ψ2(1 − ε) − ψ2(1))

̺2
ϕ2(t),
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where

̺2 = ψ2(ε)ϕ2(1 − ε) − (ψ2(1 − ε) − ψ2(1))(ϕ2(ε) − ϕ2(0))

is defined as in (3.8).

We claim that ̺2 > 0. It follows from (3.3) that

(3.18) ̺2 =
( 1

m

)2

[sinmε+ sinm(1 − ε) − sinm][sinmε− sinm(1 − ε) + sinm].

It is easy to check that

sinmε− sinm(1 − ε) + sinm > 0,

and so we need only to prove that

sinmε+ sinm(1 − ε) − sinm > 0.

Let g(t) = sinmt. Then

g′(t) = m cosmt > 0 on [0, 1).

Moreover, it follows from the facts

g(0) = 0, g′(t) > 0, t ∈ [0, 1)

that g(t) > 0 for t ∈ (0, 1]. On the other hand,

g′′(t) = −m2 sinmt = −m2g(t) < 0 on (0, 1].

Hence, g is strictly increasing and concave on [0, 1], which implies that

sinmε+ sinm(1− ε)− sinm = g(ε) + g(1− ε)− g(1) = g(ε)− (g(1)− g(1− ε)) > 0.

Consequently, ̺2 > 0.

In a similar manner as in the proof of Lemma 2.1, we can show that

K2(t, s) = −G2(t, s) +G2(ε, s)
ϕ2(1 − ε)ψ2(t) + ϕ2(t)(ψ2(1) − ψ2(1 − ε))

̺2

+G2(1 − ε, s)
(ϕ2(0) − ϕ2(ε))ψ2(t) + ϕ2(t)ψ2(ε)

̺2
,

and the function u defined by (3.5) is a solution of (3.4). �
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Lemma 3.2. Let (H5) hold. Then the Green functionK2 defined as in Lemma 3.1

satisfies

(i) K2 : [0, 1] × [0, 1] → [0,+∞) is continuous;

(ii) K2(t, s) > 0 for each (t, s) ∈ (0, 1) × (0, 1).

P r o o f. Obviously, K2 is continuous on [0, 1] × [0, 1].

Now, we divide the proof of this Lemma into three cases.

Case 1. ε < s < 1 − ε. If t 6 s, then

K2(t, s) =
1

∆2

ϕ2(1 − ε)ψ2(t) + (ψ2(1) − ψ2(1 − ε))ϕ2(t)

̺2
· ψ2(ε)ϕ2(s)

+
1

∆2

(ϕ2(0) − ϕ2(ε))ψ2(t) + ψ2(ε)ϕ2(t)

̺2
· ψ2(s)ϕ2(1 − ε)

− 1

∆2
ψ2(t)ϕ2(s)

=
1

̺2∆2
[ϕ2(1 − ε)ψ2(t) + (ψ2(1) − ψ2(1 − ε))ϕ2(t)] · ψ2(ε)ϕ2(s)

+
1

̺2∆2
[(ϕ2(0) − ϕ2(ε))ψ2(t) + ψ2(ε)ϕ2(t)] · ψ2(s)ϕ2(1 − ε)

− 1

̺2∆2
[ψ2(ε)ϕ2(1 − ε)ψ2(t)ϕ2(s)

− (ϕ2(ε) − ϕ2(0))(ψ2(1 − ε) − ψ2(1))ψ2(t)ϕ2(s)]

> 0.

If s 6 t, then

K2(t, s) =
1

∆2

ϕ2(1 − ε)ψ2(t) + (ψ2(1) − ψ2(1 − ε))ϕ2(t)

̺2
· ψ2(ε)ϕ2(s)

+
1

∆2

(ϕ2(0) − ϕ2(ε))ψ2(t) + ψ2(ε)ϕ2(t)

̺2
· ψ2(s)ϕ2(1 − ε)

− 1

∆2
ψ2(s)ϕ2(t)

=
1

̺2∆2
[ϕ2(1 − ε)ψ2(t) + (ψ2(1) − ψ2(1 − ε))ϕ2(t)] · ψ2(ε)ϕ2(s)

+
1

̺2∆2
[(ϕ2(0) − ϕ2(ε))ψ2(t) + ψ2(ε)ϕ2(t)] · ψ2(s)ϕ2(1 − ε)

− 1

̺2∆2
[ψ2(ε)ϕ2(1 − ε)ψ2(s)ϕ2(t)

− (ϕ2(ε) − ϕ2(0))(ψ2(1 − ε) − ψ2(1))ψ2(s)ϕ2(t)]

> 0.
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Case 2. 0 6 s 6 ε. If t 6 s, then

K2(t, s) =
1

̺2∆2
[ϕ2(1 − ε)ψ2(t) + (ψ2(1) − ψ2(1 − ε))ϕ2(t)] · ψ2(s)ϕ2(ε)

+
1

̺2∆2
[(ϕ2(0) − ϕ2(ε))ψ2(t) + ψ2(ε)ϕ2(t)] · ψ2(s)ϕ2(1 − ε)

− 1

̺2∆2
[ψ2(ε)ϕ2(1 − ε)ψ2(t)ϕ2(s)

− (ϕ2(ε) − ϕ2(0))(ψ2(1 − ε) − ψ2(1))ψ2(t)ϕ2(s)],

this together with the facts

ϕ2(t) > ϕ2(s), ψ2(t) 6 ψ2(s), t 6 s

implies that

K2(t, s) > 0 for s 6= 0, t ∈ [0, 1].

If s 6 t, then

K2(t, s) =
1

̺2∆2
[ϕ2(1 − ε)ψ2(t) + (ψ2(1) − ψ2(1 − ε))ϕ2(t)] · ψ2(s)ϕ2(ε)

+
1

̺2∆2
[(ϕ2(0) − ϕ2(ε))ψ2(t) + ψ2(ε)ϕ2(t)] · ψ2(s)ϕ2(1 − ε)

− 1

̺2∆2
[ψ2(ε)ϕ2(1 − ε)ψ2(s)ϕ2(t)

− (ϕ2(ε) − ϕ2(0))(ψ2(1 − ε) − ψ2(1))ψ2(s)ϕ2(t)]

> 0

for s 6= 0, t ∈ [0, 1].

Case 3. 1−ε 6 s 6 1. By similar arguments as in Case 1 and 2, we can show that

K2(t, s) > 0 for s 6= 1, t ∈ [0, 1].

Consequently, K2(t, s) > 0 on (0, 1) × (0, 1). �

Define a linear operator L2 : C[0, 1] → C[0, 1],

(3.19) (L2u)(t) :=

∫ 1

0

K2(t, s)g(s)u(s) ds, t ∈ [0, 1].

Using a similar method as in the proof of Lemma 2.3, we can prove the following

607



Lemma 3.3. Let (H5) and (H1) hold. Then

(a) L2 : C[0, 1] → C[0, 1] is a completely continuous linear operator;

(b) L2(P \ θ) ⊂ intP ;

(c) r(L2) 6= 0, and there exists e2 ∈ C[0, 1] with e2 > 0 on [0, 1] such that L2e2 =

r(L2)e2. Moreover, τ1 := (r(L2))
−1 is the principal eigenvalue of (1.9), where

P is defined as in (2.22).

4. Proof of the main results

Let Y = C[0, 1] with the norm

‖u‖∞ = max
t∈[0,1]

|u(t)|.

Let

E = {u ∈ C1[0, 1] : u(0) = u(ε), u(1) = u(1 − ε)}

with the norm

‖u‖ = ‖u‖∞ + ‖u′‖∞.

Define an operator L : D(L) → Y by setting

Lu := −u′′ +Mu, u ∈ D(L),

where

D(L) = {u ∈ C2[0, 1] : u(0) = u(ε), u(1) = u(1 − ε)}.

Then L is a closed operator with L−1 : Y → E compact.

(H3) implies that there exist two functions ζ, ξ ∈ C(R) such that

f(u) = f0u+ ζ(u), f(u) = f∞u+ ξ(u)

and

lim
|u|→0

ζ(u)

u
= 0, lim

|u|→∞

ξ(u)

u
= 0.

Let

ξ̄(u) = max
06|s|6u

|ξ(s)|,

then ξ̄ is nondecreasing and

lim
u→∞

ξ̄(u)

u
= 0.
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P r o o f of Theorem 1.1. The proof is similar to the proof of [6, Theorem 1.1].

We state it here for readers’ convenience.

Let us consider

(4.1) Lu− λg(t)rf0u = λg(t)rζ(u)

as a bifurcation problem from the trivial solution u ≡ 0.

The equation (4.1) can be converted to the equivalent equation

(4.2) u(t) =

∫ 1

0

K1(t, s)[λg(s)rf0u(s) + λg(s)rζ(u(s))] ds

=: (λL−1[g(·)rf0u(·)] + λL−1[g(·)rζ(u(·))])(t).

Furthermore, note that ‖L−1[g(·)ζ(u(·))]‖ = o(‖u‖) for u near 0 in E, since

‖L−1[g(·)ζ(u(·))]‖

= max
t∈[0,1]

∣

∣

∣

∣

∫ 1

0

K1(t, s)g(s)ζ(u(s)) ds

∣

∣

∣

∣

+ max
t∈[0,1]

∣

∣

∣

∣

∫ 1

0

∂K1(t, s)

∂t
g(s)ζ(u(s)) ds

∣

∣

∣

∣

6 C0 · max
s∈[0,1]

|g(s)| · ‖ζ(u(·))‖∞.

In what follows, we use the terminology of Rabinowitz [8]. Let S+
1 denote the set

of functions in E which are positive on [0, 1] and let S−
1 = −S+

1 , S1 = S−
1 ∪ S+

1 .

They are disjoint and open in E. Finally, let Φ±
1 = R × S±

1 . The result of Rabi-

nowitz [8] for the problem (4.1) can be stated as follows: For v = {+,−}, there exists
a continuum C v

1 ⊂ Φv
1 of solutions of (4.1) joining (λ1/rf0, 0) to infinity. Moreover,

C v
1 \ {(λ1/rf0, 0)} ⊂ Φv

1.

It is clear that any solution of (4.1) of the form (1, u) yields a solutions u of the

four-point boundary value problem (1.3), (1.5). We will show that C v
1 crosses the

hyperplane {1}×E in R×E. To do this, it is enough to show that C v
1 joins (λ1/rf0, 0)

to (λ1/rf∞,∞). Let (µn, yn) ∈ C v
1 satisfy

µn + ‖yn‖ → ∞.

Note that µn > 0 for all n ∈ N since (0, 0) is the only solution of (4.1) for λ = 0 and

C v
1 ∩ ({0} × E) = ∅.
Case 1. λ1/f∞ < r < λ1/f0. In this case, we show that the interval

( λ1

rf∞
,
λ1

rf0

)

⊆ {λ ∈ R : ∃(λ, u) ∈ C
v
1 }.

We divide the proof into two steps.
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Step 1. We show that if there exists a constant C > 0 such that µn ⊂ (0, C], then

C
v
1 joins (λ1/rf0, 0) to (λ1/rf∞,∞).

In this case, it follows that ‖yn‖ → ∞. We divide the equation

(4.3) Lyn − µng(t)rf∞yn = µng(t)rξ(yn)

by ‖yn‖ and set yn = yn/‖yn‖. Since yn is bounded in C
2[0, 1], after taking a sub-

sequence, if necessary, we have that yn → y for some y ∈ E with ‖y‖ = 1. Since ξ̄ is

nondecreasing, lim
u→∞

ξ̄(u)/u = 0 together with (H2) imply that

lim
n→∞

|ξ(yn(t))|
‖yn‖

= 0,

since
|ξ(yn(t))|
‖yn‖

6
ξ̄(|yn(t)|)
‖yn‖

6
ξ̄(‖yn‖∞)

‖yn‖
6
ξ̄(‖yn‖)
‖yn‖

.

Thus,

y(t) =

∫ 1

0

K1(t, s)µ̄rg(s)f∞y(s) ds,

where µ̄ := lim
n→∞

µn, again choosing a subsequence and relabelling, if necessary. Thus

(4.4) Ly − µ̄g(t)rf∞y = 0.

We claim that

y ∈ C
v
1 .

Suppose on the contrary that y 6∈ C v
1 . Since y 6= 0 is a solution of (4.4) and has no

zeros, it follows that y ∈ C l
1 for some l ∈ {+,−}.

By the openness of E \ C v
1 , we know that there exists a neighborhood U(y, ̺0)

such that

U(y, ̺0) ⊂ E \ C
v
1 ,

which contradicts the fact that yn → y in E and yn ∈ C v
1 . Moreover, we have from

Lemma 2.3 that µ̄rf∞ = λ1. So

µ̄ =
λ1

rf∞
.

Therefore C v
1 joins (λ1/rf0, 0) to (λ1/rf∞,∞).

Step 2. We show that there exists a constant C > 0 such that µn ∈ (0, C] for all

n ∈ N.
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Suppose on the contrary that there exists no C such that µn ∈ (0, C] for all n ∈ N.

Choosing a subsequence and relabeling, if necessary, it follows that

lim
n→∞

µn = ∞.

Because (µn, yn) satisfies

Lyn = µng(t)r
f(yn)

yn

yn, 0 < t < 1,

from (H1) we know that there exists an interval [γ, δ] ⊂ [0, 1] such that g(t) > 0 for

all t ∈ [γ, δ]. So for t ∈ [γ, δ], lim
n→∞

µn = ∞ yields

µng(t)r
f(yn)

yn

→ ∞, n→ ∞.

By the Sturm comparison theorem, we get that yn has at least one zero in (γ, δ)

for n sufficiently large, and this contradicts the fact that yn has no zeros in (0, 1).

Therefore

µn 6 C

for some constant C > 0, independent of n ∈ N.

Case 2. λ1/f0 < r < λ1/f∞. In this case, if (µn, yn) ∈ C v
1 is such that

lim
n→∞

(µn + ‖yn‖) = ∞

and

lim
n→∞

µn = ∞,

then
( λ1

rf0
,
λ1

rf∞

)

⊂ {λ ∈ (0,∞) : (λ, u) ∈ C
v
1 },

moreover,

({1} × E) ∩ C
v
1 6= ∅.

Assume that {µn} is bounded, applying a similar argument to that used in Step 2
of Case 1, after taking a subsequence and relabeling, if necessary, it follows that

(µn, yn) →
( λ1

rf∞
,∞

)

, n→ ∞.

Again C v
1 joins (λ1/rf0, 0) to (λ1/rf∞,∞) and the result follows. �
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P r o o f of Theorem 1.2. Applying the similar methods as in the proof of Theo-

rem 1.1, we can prove Theorem 1.2. �
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