Czechoslovak Mathematical Journal

Pablo Rocha; Marta Urciuolo
On the $H^{p}-L^{q}$ boundedness of some fractional integral operators

Czechoslovak Mathematical Journal, Vol. 62 (2012), No. 3, 625-635

Persistent URL: http://dml.cz/dmlcz/143014

Terms of use:

© Institute of Mathematics AS CR, 2012

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

ON THE H^{p} - L^{q} BOUNDEDNESS OF SOME FRACTIONAL INTEGRAL OPERATORS

P. Rocha, M. Urciuolo, Córdoba

(Received November 1, 2010)

Abstract. Let A_{1}, \ldots, A_{m} be $n \times n$ real matrices such that for each $1 \leqslant i \leqslant m, A_{i}$ is invertible and $A_{i}-A_{j}$ is invertible for $i \neq j$. In this paper we study integral operators of the form

$$
T f(x)=\int k_{1}\left(x-A_{1} y\right) k_{2}\left(x-A_{2} y\right) \ldots k_{m}\left(x-A_{m} y\right) f(y) \mathrm{d} y
$$

$k_{i}(y)=\sum_{j \in \mathbb{Z}} 2^{j n / q_{i}} \varphi_{i, j}\left(2^{j} y\right), 1 \leqslant q_{i}<\infty, 1 / q_{1}+1 / q_{2}+\ldots+1 / q_{m}=1-r, 0 \leqslant r<1$, and $\varphi_{i, j}$ satisfying suitable regularity conditions. We obtain the boundedness of $T: H^{p}\left(\mathbb{R}^{n}\right) \rightarrow$ $L^{q}\left(\mathbb{R}^{n}\right)$ for $0<p<1 / r$ and $1 / q=1 / p-r$. We also show that we can not expect the $H^{p}-H^{q}$ boundedness of this kind of operators.

Keywords: integral operator, Hardy space
MSC 2010: 42B20, 42B30

1. Introduction

In [4] the authors obtain the L^{p} boundedness, $p>1$, for a class of maximal operators on the three dimensional Heisenberg group. The operators they consider have relevance in the analysis on $\operatorname{SL}\left(\mathbb{R}^{3}\right)$. Some of them actually arise in the study of the boundary behavior of Poisson integrals on the symmetric space $\operatorname{SL}\left(\mathbb{R}^{3}\right) / \mathrm{SO}(3)$. To obtain the principal results, they analyze the $L^{2}(\mathbb{R})$ boundedness of integral operators of the form

$$
T f(x)=\int|x-y|^{-\alpha}|x+y|^{\alpha-1} f(y) \mathrm{d} y
$$

$0<\alpha<1$.
Partially supported by SECYTUNC, and CONICET.

A natural question is if these operators are also bounded from $L^{p}(\mathbb{R})$ into $L^{q}(\mathbb{R})$ for certain $1<p, q<\infty$, and if this kind of results still hold for larger dimensions or for more general kernels. In this context, in [3] the authors study integral operators on \mathbb{R}^{n} with kernels of the form

$$
k(x, y)=k_{1}\left(x-a_{1} y\right) k_{2}\left(x-a_{2} y\right) \ldots k_{m}\left(x-a_{m} y\right)
$$

with $a_{j} \in \mathbb{R} \backslash\{0\}, a_{i} \neq a_{j}$ for $i \neq j, 1 \leqslant i, j \leqslant m$ and

$$
k_{i}(y)=\sum_{j \in \mathbb{Z}} 2^{j n / q_{i}} \varphi_{i, j}\left(2^{j} y\right),
$$

for certain functions $\varphi_{i, j}$ satisfying some regularity properties. They obtain that this operator is bounded from $L^{p}\left(\mathbb{R}^{n}\right)$ into $L^{q}\left(\mathbb{R}^{n}\right)$ for $1<p<1 / r$ and $1 / q=1 / p-r$.

Now we consider the following natural generalization of these operators. For $n, m \in$ \mathbb{N}, let A_{1}, \ldots, A_{m} be real $n \times n$ matrices such that for each $1 \leqslant i \leqslant m, A_{i}$ is invertible and $A_{i}-A_{j}$ is invertible if $i \neq j$. Let $m>1, q_{1}, \ldots, q_{m}$ be real numbers, $1<q_{i}<\infty$ such that

$$
\frac{1}{q_{1}}+\frac{1}{q_{2}}+\ldots+\frac{1}{q_{m}}=1-r
$$

for some $0 \leqslant r<1$. If $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is a multiindex, we denote $|\alpha|=\alpha_{1}+\ldots+\alpha_{n}$, and $D^{\alpha}=\partial^{|\alpha|} / \partial y_{1}^{\alpha_{1}} \ldots \partial y_{n}^{\alpha_{n}}$. For $1 \leqslant i \leqslant m$ let $\left\{\varphi_{i, j}\right\}_{j \in \mathbb{Z}}$ be a family of smooth and non negative real functions defined on \mathbb{R}^{n}, such that

$$
\operatorname{supp}\left(\varphi_{i, j}\right) \subset\left\{y \in \mathbb{R}^{n}: 2^{-1} \leqslant|y| \leqslant 2\right\}
$$

and such that for each multiindex $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ there exists M_{α} such that $\sup _{j \in \mathbb{Z}}\left\|D^{\alpha} \varphi_{i, j}\right\|_{\infty} \leqslant M_{\alpha}$. $j \in \mathbb{Z}$

Let

$$
\begin{equation*}
k(x, y)=k_{1}\left(x-A_{1} y\right) k_{2}\left(x-A_{2} y\right) \ldots k_{m}\left(x-A_{m} y\right) \tag{1}
\end{equation*}
$$

with

$$
k_{i}(y)=\sum_{j \in \mathbb{Z}} 2^{j n / q_{i}} \varphi_{i, j}\left(2^{j} y\right),
$$

and let T be the integral operator with kernel $k(x, y)$, i.e.

$$
\begin{equation*}
T f(x)=\int k(x, y) f(y) \mathrm{d} y \tag{2}
\end{equation*}
$$

We observe that if $\varphi_{i, j}=\varphi_{i, k}$ for all $j, k \in \mathbb{Z}$ then $k_{i}\left(2^{s} y\right)=2^{-s n / q_{i}} k_{i}(y)$. So k_{i} is "homogeneous" of degree $-n / q_{i}$ and then the "homogeneity degree" of k is $-n(1-r)$.

The Hardy-Littlewood-Sobolev theorem shows that the Riesz potential operator $I_{n r}$, with kernel $1 /|y|^{n(1-r)}$, is bounded from $L^{p}\left(\mathbb{R}^{n}\right)$ into $L^{q}\left(\mathbb{R}^{n}\right)$, for $0<r<1,1<p<$ $1 / r$ and $1 / q=1 / p-r$. Also for the endpoint cases, it is known that $I_{n r}$ is not bounded from L^{1} into $L^{1 /(1-r)}$ and neither from $L^{1 / r}\left(\mathbb{R}^{n}\right)$ into $L^{\infty}\left(\mathbb{R}^{n}\right)$ (See [6], p. 119). In 1960 E. Stein and G. Weiss [8] used the theory of harmonic functions of several variables to prove that these operators are bounded from $H^{1}\left(\mathbb{R}^{n}\right)$ to $L^{1 /(1-r)}\left(\mathbb{R}^{n}\right)$ and in 1980 M . Taibleson and G. Weiss, using the molecular characterization of the real Hardy spaces, obtained the boundedness of these operators from $H^{p}\left(\mathbb{R}^{n}\right)$ into $H^{q}\left(\mathbb{R}^{n}\right)$, where $0<p<1$ and $1 / q=1 / p-r$ (see [9]).

Also in [1] the authors obtain the $H^{p}\left(\mathbb{R}^{n}\right)-L^{q}\left(\mathbb{R}^{n}\right)$ boundedness, $n /(n+\alpha) \leqslant$ $p \leqslant 1,1 / q=1 / p-\alpha / n$, for the homogeneous fractional convolution operators $T_{\Omega, \alpha}$ given by

$$
T_{\Omega, \alpha} f(x)=\int_{\mathbb{R}^{n}} \frac{\Omega(x-y)}{|x-y|^{n-\alpha}} f(y) \mathrm{d} y
$$

where $0<\alpha<n, \Omega$ is homogeneous of degree zero on \mathbb{R}^{n} with $\Omega \in L^{s}\left(S^{n-1}\right), s \geqslant 1$.
In [5] we obtain the $H^{p}\left(\mathbb{R}^{n}\right)-L^{p}\left(\mathbb{R}^{n}\right)$ boundedness, $0<p \leqslant 1$, of integral operators with kernels of the form

$$
\begin{equation*}
k(x, y)=\left|x-a_{1} y\right|^{-\alpha_{1}} \ldots\left|x-a_{m} y\right|^{-\alpha_{m}} \tag{3}
\end{equation*}
$$

where $a_{i} \neq a_{j}$ for $i \neq j, m>1$ and $\alpha_{1}+\ldots+\alpha_{m}=n$ and we also show that we can not expect the $H^{p}\left(\mathbb{R}^{n}\right)$ boundedness of them. These kernels can be expresed as in (1), with $r=0$.

In this paper we obtain the $H^{p}\left(\mathbb{R}^{n}\right)-L^{q}\left(\mathbb{R}^{n}\right)$ boundedness of the operator T defined by (2), for $0<p<1 / r$ and $1 / q=1 / p-r$. By duality we obtain the corresponding $L^{1 / r}\left(\mathbb{R}^{n}\right) \rightarrow \operatorname{BMO}\left(\mathbb{R}^{n}\right)$ boundedness. Also, in the last section, for each $0<r<1$ we give an example of an operator T_{r} on $H^{p}(\mathbb{R})$, having a kernel of the form (3) with $m=2$ and $\alpha_{1}+\alpha_{2}=1-r$, that is not bounded from $H^{p}(\mathbb{R})$ into $H^{q}(\mathbb{R})$ for $0<p \leqslant 1 /(1+r)$ and $1 / q=1 / p-r$.

Throughout this paper, c will denote a positive constant not necessarily the same at each occurrence.

2. Preliminary results

We note that the condition $1 / q=1 / p-r, 1<p<1 / r$ is necessary for the boundedness from $L^{p}\left(\mathbb{R}^{n}\right)$ into $L^{q}\left(\mathbb{R}^{n}\right)$ of certain subfamily of operators of the form (2).

Remark 1. A standard homogeneity argument shows that if an operator with general kernel k with "homogeneity degree" $-n(1-r)$ is bounded from $L^{p}\left(\mathbb{R}^{n}\right)$ into
$L^{q}\left(\mathbb{R}^{n}\right)$ for some $1<p, q<\infty$, then $1 / q=1 / p-r$. Now for $l \in \mathbb{Z}$, let T^{l} be the integral operator with kernel $k^{l}=k_{1}^{l}\left(x-A_{1} y\right) \ldots k_{m}^{l}\left(x-A_{m} y\right)$, where $k_{i}^{l}(y)=$ $\sum_{j \in \mathbb{Z}} 2^{j n / q_{i}} \varphi_{i, j-l}\left(2^{j} y\right)$. If for each $1 \leqslant i \leqslant m, \varphi_{i, j}=\varphi_{i, k}$ for all $j, k \in \mathbb{Z}$ then $T^{l}=T$. Also, if all the operators T^{l} are bounded from $L^{p}\left(\mathbb{R}^{n}\right)$ into $L^{q}\left(\mathbb{R}^{n}\right)$ for some $1<$ $p, q<\infty$, and $0<\sup \left\|T^{l}\right\|_{p, q} \leqslant C<\infty$, then $1 / q=1 / p-r$. Indeed for $l \in \mathbb{Z}$ we denote $f_{l}(x)=2^{-l n} f\left(2^{-l} x\right)$ then

$$
T\left(f_{l}\right)(x)=2^{-\ln (1-r)} T^{l} f\left(2^{-l} x\right)
$$

so

$$
\begin{aligned}
\|T f\|_{q} & =\left\|T\left(\left(f_{-l}\right)_{l}\right)\right\|_{q} \leqslant 2^{-\ln (1-r)+n l / q}\left\|T^{l}\left(f_{-l}\right)\right\|_{q} \\
& \leqslant C 2^{-\ln (1-r)+l \frac{n}{q}}\left\|f_{-l}\right\|_{p}=C 2^{-\ln (1 / q-1 / p+r)}\|f\|_{p}
\end{aligned}
$$

and then $1 / q-1 / p+r=0$.
With respect to the endpoint $(p, q)=(1,1 /(1-r))$ and $(p, q)=(1 / r, 0)$, as in the case of the Riesz potentials, we can not expect $L^{p}\left(\mathbb{R}^{n}\right)-L^{q}\left(\mathbb{R}^{n}\right)$ boundedness. For the first one we take $f=\chi_{B}$ the characteristic function of the unit ball of \mathbb{R}^{n} and $k(x, y)=1 /\left|x-A_{1} y\right|^{n / q_{1}} \ldots 1 /\left|x-A_{m} y\right|^{n / q_{m}}$. A simple computation shows that for $|x| \gg 1, T f(x) \geqslant c /|x|^{n(1-r)}$ and then $T f \notin L^{1 /(1-r)}$. The second case follows by duality.

Lemma 1. If $k(x, y)$ is the kernel defined by (1) and $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is a multiindex then

$$
\left|\frac{\partial^{|\alpha|}}{\partial y_{1}^{\alpha_{1}} \ldots \partial y_{n}^{\alpha_{n}}} k(x, y)\right| \leqslant c\left(\prod_{i=1}^{m}\left|x-A_{i} y\right|^{-\frac{n}{q_{i}}}\right)\left(\sum_{l=1}^{m}\left|x-A_{l} y\right|^{-1}\right)^{|\alpha|}
$$

with c independent of x, y.
Proof. We denote $D_{y}^{\alpha}=\partial^{|\alpha|} / \partial y_{1}^{\alpha_{1}} \ldots \partial y_{n}^{\alpha_{n}}$. By the Leibniz formula,

$$
\begin{aligned}
D_{y}^{\alpha} k(x, y) & =D_{y}^{\alpha}\left(\prod_{1 \leqslant i \leqslant m} k_{i}\left(x-A_{i} y\right)\right) \\
& =\sum_{\Gamma_{1}+\ldots+\Gamma_{m}=\alpha} c_{\Gamma_{1}, \ldots, \Gamma_{m}} D_{y}^{\Gamma_{1}}\left(k_{1}\left(x-A_{1} y\right)\right) \ldots D_{y}^{\Gamma_{m}}\left(k_{m}\left(x-A_{m} y\right)\right)
\end{aligned}
$$

now

$$
k_{i}\left(x-A_{i} y\right)=\sum_{j \in \mathbb{Z}} 2^{j n / q_{i}} \varphi_{i, j}\left(2^{j}\left(x-A_{i} y\right)\right)
$$

For each fixed x only a finite number of j 's (independent of x) are involved in the above sum, also $2^{j} \leqslant 2\left|x-A_{i} y\right|^{-1}$ for $2^{j}\left(x-A_{i} y\right) \in \operatorname{supp} \varphi_{i, j}$, also $\sup _{j \in \mathbb{Z}}\left\|D^{\alpha} \varphi_{i, j}\right\|_{\infty}<$ ∞, so

$$
\left|D_{y}^{\Gamma_{i}}\left(k_{i}\left(x-A_{i} y\right)\right)\right|=\left|\sum_{j \in \mathbb{Z}} 2^{j n / q_{i}} D_{y}^{\Gamma i}\left(\varphi_{i, j}\left(2^{j}\left(x-A_{i} y\right)\right)\right)\right| \leqslant c\left|x-A_{i} y\right|^{-n / q_{i}-\left|\Gamma_{i}\right|}
$$

thus

$$
\begin{aligned}
\left|D_{y}^{\alpha} k(x, y)\right| & \leqslant c \sum_{\Gamma_{1}+\ldots+\Gamma_{m}=\alpha} c_{\Gamma_{1}, \ldots, \Gamma_{m}} \prod_{1 \leqslant i \leqslant m}\left|x-A_{i} y\right|^{-n / q_{i}-\left|\Gamma_{i}\right|} \\
& =c\left(\prod_{1 \leqslant i \leqslant m}\left|x-A_{i} y\right|^{-n / q_{i}}\right)\left(\sum_{\Gamma_{1}+\ldots+\Gamma_{m}=\alpha} c_{\Gamma_{1}, \ldots, \Gamma_{m}} \prod_{1 \leqslant i \leqslant m}\left|x-A_{i} y\right|^{-\left|\Gamma_{i}\right|}\right) \\
& \leqslant c\left(\prod_{1 \leqslant i \leqslant m}\left|x-A_{i} y\right|^{-n / q_{i}}\right)\left(\sum_{1 \leqslant l \leqslant m}\left|x-A_{l} y\right|^{-1}\right)^{|\alpha|} .
\end{aligned}
$$

3. The main results

As we have said in the introduction, in the case that A_{i} is a multiple of the identity, in [3] the authors obtain that T is well defined on $L^{p}\left(\mathbb{R}^{n}\right)$ and that it is bounded from $L^{p}\left(\mathbb{R}^{n}\right)$ into $L^{q}\left(\mathbb{R}^{n}\right)$ for $1<p<1 / r$ and $1 / q=1 / p-r$. We will show that with slight modifications on the proofs, this result still holds for A_{i} satisfying the above stated hypothesis.

Proposition 2. Let T be the operator defined by (2). If $1<p<1 / r, 0 \leqslant r<1$ and $1 / q=1 / p-r$, then T is a well defined and bounded operator from $L^{p}\left(\mathbb{R}^{n}\right)$ into $L^{q}\left(\mathbb{R}^{n}\right)$.

Proof. As in the proof of Lemma 2.1 in [3] we obtain that for $l \in \mathbb{Z}, 1 /(1-r)<$ $p \leqslant \min _{1 \leqslant i \leqslant m} p_{i} / q_{i}(1-r)$

$$
\left\|\sum_{s_{1}, \ldots, s_{m} \leqslant-l} \prod_{1 \leqslant i \leqslant m} 2^{s_{i} n / q_{i}} \varphi_{i, s_{i}}\left(2^{s_{i}}\left(x-A_{i} y\right)\right)\right\|_{L^{p}(\mathrm{~d} y)} \leqslant c 2^{n l / p}
$$

and also as in the proof of Lemma 2.2 in the same paper,

$$
\left\|\sum_{s_{i} \geqslant-l} 2^{s_{i} n / q_{i}} \varphi_{i, s_{i}}\left(2^{s_{i}}\left(x-A_{i} y\right)\right) \prod_{j \neq i} 2^{-l n / q_{j}} \varphi_{j,-l}\left(2^{-l}\left(x-A_{j} y\right)\right)\right\|_{L^{p}(\mathrm{~d} y)} \leqslant c
$$

with c independent of x and l. Now we follow the proof of Theorem 3.1 in [3] with the following changes. We take

$$
d=\min _{1 \leqslant i \leqslant m}\left(\min _{|y|=1} \frac{\left|A_{i}(y)\right|}{2}, \min _{|y|=1, j \neq i} \frac{\left|A_{i}(y)-A_{j}(y)\right|}{2}\right)
$$

and

$$
D=\max _{1 \leqslant i \leqslant m,|y|=1}\left|A_{i}(y)\right|,
$$

for $x \in \mathbb{R}^{n} \backslash\{0\}$ we define $l=l(x)$ such that $2^{l} \leqslant|x| \leqslant 2^{l+1}$ and we set, for $1 \leqslant i \leqslant m$,

$$
R_{i}=R_{i}(x)=\left\{y \in \mathbb{R}^{n}:\left|y-A_{i}(x)\right| \leqslant 2^{l} d\right\},
$$

we also set

$$
R_{m+1}=\left\{y \in \mathbb{R}^{n}:|y| \leqslant 2^{l} D\right\} \cap\left(\bigcup_{1 \leqslant i \leqslant m} R_{i}\right)^{c} \quad \text { and } \quad R_{m+2}=\left(\bigcup_{1 \leqslant i \leqslant m+1} R_{i}\right)^{c} .
$$

Let $0<p \leqslant 1$. We recall that a p-atom is a measurable function a supported on a ball B of \mathbb{R}^{n} satisfying
a) $\|a\|_{\infty} \leqslant|B|^{-1 / p}$,
b) $\int y^{\beta} a(y) \mathrm{d} y=0$ for every multiindex β with $|\beta| \leqslant n\left(p^{-1}-1\right)$.

It is well known that for $0<p \leqslant 1$ the distributions of $H^{p}\left(\mathbb{R}^{n}\right)$ can be approximated by adequate linear combinations of p-atoms. (See Theorem 2, p. 107 in [7].)

Theorem 3.1. Let T be the operator defined by (2). If $0 \leqslant r<1,0<p \leqslant 1$ and $1 / q=1 / p-r$, then T is a bounded operator from $H^{p}\left(\mathbb{R}^{n}\right)$ into $L^{q}\left(\mathbb{R}^{n}\right)$.

Proof. If $0 \leqslant r<1,0<p \leqslant 1,1 / q=1 / p-r$ and $f \in H^{p}\left(\mathbb{R}^{n}\right)$ we write $f=\sum_{j \in \mathbb{N}} \lambda_{j} a_{j}$, where a_{j} is a p-atom and $\sum_{j \in \mathbb{N}}\left|\lambda_{j}\right|^{p} \leqslant c\|f\|_{H^{p}}^{p}$. So the theorem will be proved if we obtain that there exists $c>0$ such that $\|T a\|_{L^{q}} \leqslant c$ with c independent of the p-atom a, since this estimate and the inequality $\left(\sum_{j \in \mathbb{N}}\left|\lambda_{j}\right|^{q}\right)^{1 / q} \leqslant\left(\sum_{j \in \mathbb{N}}\left|\lambda_{j}\right|^{p}\right)^{1 / p}$ give $\|T f\|_{q} \leqslant c\|f\|_{H^{p}}$. We denote by $B\left(y_{0}, \delta\right)$ the closed ball centered at y_{0} with radius δ. Let a be supported on a ball $B=B\left(y_{0}, \delta\right)$, and for each $1 \leqslant i \leqslant m$ let $B_{i}^{*}=B\left(A_{i} y_{0}, 4 D \delta\right)$ with D defined as in the proof of Proposition 2. We decompose $\mathbb{R}^{n}=\bigcup_{1 \leqslant i \leqslant m} B_{i}^{*} \cup R$, where $R=\left(\bigcup_{1 \leqslant i \leqslant m} B_{i}^{*}\right)^{c}$. Proposition 2 gives that T is bounded
from $L^{p_{0}}\left(\mathbb{R}^{n}\right)$ into $L^{q_{0}}\left(\mathbb{R}^{n}\right)$ for $1 / q_{0}=1 / p_{0}-r, 1<p_{0}<1 / r$. Since $q<q_{0}$ we use the Hölder inequality with q_{0} / q and $q_{0} /\left(q_{0}-q\right)$ to obtain

$$
\begin{aligned}
& \int_{1 \leqslant i \leqslant m} B_{i}^{*} \\
&|T a(x)|^{q} \mathrm{~d} x \leqslant \sum_{1 \leqslant i \leqslant m} \int_{B_{i}^{*}}|T a(x)|^{q} \mathrm{~d} x \\
& \leqslant c \sum_{1 \leqslant i \leqslant m}\left|B_{i}^{*}\right|^{1-q / q_{0}}\|T a\|_{q_{0}}^{q} \leqslant c \delta^{n-n q / q_{0}}\|a\|_{p_{0}}^{q} \\
& \leqslant c \delta^{n-n q / q_{0}}\left(\int_{B}|a|^{p_{0}}\right)^{q / p_{0}} \leqslant c \delta^{n-n q / q_{0}} \delta^{-n q / p} \delta^{n q / p_{0}}=c .
\end{aligned}
$$

To study the integral on

$$
R=\left\{x \in \mathbb{R}^{n}:\left|x-A_{i} y_{0}\right|>4 \delta, \text { for all } 1 \leqslant i \leqslant m\right\}
$$

we suppose $n /(n+N)<p \leqslant n /(n+N-1)$ for some $N \in \mathbb{N}$. Let $k(x, y)$ be defined by (1). The moment condition b) satisfied by the p-atom a allows us to write

$$
\begin{equation*}
\int_{R}\left|\int_{B} k(x, y) a(y) \mathrm{d} y\right|^{q} \mathrm{~d} x=\int_{R}\left|\int_{B}\left(k(x, y)-q_{N}(x, y)\right) a(y) \mathrm{d} y\right|^{q} \mathrm{~d} x \tag{4}
\end{equation*}
$$

where $q_{N}(x, y)$ is the degree $N-1$ Taylor polynomial of the function $y \rightarrow k(x, y)$ expanded around y_{0}. By the standard estimate of the remainder term in the Taylor expansion, there exists ξ between y and y_{0} such that

$$
\begin{aligned}
\left|k(x, y)-q_{N}(x, y)\right| & \leqslant c\left|y-y_{0}\right|^{N} \sum_{k_{1}+\ldots+k_{n}=N}\left|\frac{\partial^{N}}{\partial y_{1}^{k_{1}} \ldots \partial y_{n}^{k_{n}}} k(x, \xi)\right| \\
& \leqslant c\left|y-y_{0}\right|^{N}\left(\prod_{i=1}^{m}\left|x-A_{i} \xi\right|^{-n / q_{i}}\right)\left(\sum_{l=1}^{m}\left|x-A_{l} \xi\right|^{-1}\right)^{N}
\end{aligned}
$$

where the last inequality follows from Lemma 1 . Since $x \in R$ and $y \in B$, it follows that $\left|x-A_{i} \xi\right| \geqslant c\left|x-A_{i} y_{0}\right|$ for $1 \leqslant i \leqslant m$. So

$$
\begin{equation*}
\left|k(x, y)-q_{N}(x, y)\right| \leqslant c\left|y-y_{0}\right|^{N}\left(\prod_{i=1}^{m}\left|x-A_{i} y_{0}\right|^{-n / q_{i}}\right)\left(\sum_{l=1}^{m}\left|x-A_{l} y_{0}\right|^{-1}\right)^{N} \tag{5}
\end{equation*}
$$

For $1 \leqslant k \leqslant m$, let

$$
R_{k}=\left\{x \in R:\left|x-A_{k} y_{0}\right| \leqslant\left|x-A_{j} y_{0}\right| \text { for all } j \neq k\right\} .
$$

We note that $R=\bigcup_{k=1}^{m} R_{k}$ and that $R_{k} \subseteq\left(B_{k}^{*}\right)^{c}$. So, from (4) and (5), we have
$\int_{R}\left|\int_{B} k(x, y) a(y) \mathrm{d} y\right|^{q} \mathrm{~d} x$
$\leqslant c \int_{R}\left(\int_{B}\left(\prod_{i=1}^{m}\left|x-A_{i} y_{0}\right|^{-n / q_{i}}\right)\left(\sum_{l=1}^{m}\left|x-A_{l} y_{0}\right|^{-1}\right)^{N}\left|y-y_{0}\right|^{N}|a(y)| \mathrm{d} y\right)^{q} \mathrm{~d} x$
$\leqslant c \sum_{1 \leqslant k \leqslant m} \int_{R_{k}} \prod_{i=1}^{m}\left|x-A_{i} y_{0}\right|^{-q n / q_{i}}\left(\sum_{l=1}^{m}\left|x-A_{l} y_{0}\right|^{-1}\right)^{q N}\left(\int_{B}\left|y-y_{0}\right|^{N}|a(y)| \mathrm{d} y\right)^{q} \mathrm{~d} x$ $\leqslant c \sum_{1 \leqslant k \leqslant m} \int_{\left(B_{k}^{*}\right)^{c}}\left(\int_{B}\left|y-y_{0}\right|^{N}|a(y)| \mathrm{d} y\right)^{q}\left|x-A_{k} y_{0}\right|^{-q n(1-r)}\left(m\left|x-A_{k} y_{0}\right|^{-1}\right)^{q N} \mathrm{~d} x$ $\leqslant c \sum_{1 \leqslant k \leqslant m} \delta^{q N-n q / p+n q} \int_{4 D \delta}^{\infty} t^{-q(n(1-r)+N)+n-1} \mathrm{~d} t \leqslant c$,
with c independent of the p-atom a, since $-q(n(1-r)+N)+n<0$.
We recall that a locally integrable function f belongs to $\operatorname{BMO}\left(\mathbb{R}^{n}\right)$ if the inequality

$$
\frac{1}{|B|} \int_{B}\left|f(x)-f_{B}\right| \mathrm{d} x \leqslant A
$$

holds for all balls $B \subset \mathbb{R}^{n}$; here $f_{B}=|B|^{-1} \int_{B} f \mathrm{~d} x$. The dual result to the previous theorem, corresponding to the case $p=1$, is the following.

Corollary 3. Let T be the operator defined by (2). Then T is bounded from $L^{1 / r}\left(\mathbb{R}^{n}\right)$ into $\operatorname{BMO}\left(\mathbb{R}^{n}\right)$ for $0 \leqslant r<1$.

Proof. Is is well known that the dual space of $H^{1}\left(\mathbb{R}^{n}\right)$ is the space $\operatorname{BMO}\left(\mathbb{R}^{n}\right)$. Let \widetilde{T} be the integral operator with kernel $\tilde{k}(x, y)=\widetilde{k_{1}}\left(x-A_{1}^{-1} y\right) \ldots \widetilde{k_{m}}\left(x-A_{m}^{-1} y\right)$, with $\widetilde{k}_{i}(x)=k_{i}\left(A_{i} x\right)$. Since for each $1 \leqslant i \leqslant m$, it can be checked that A_{i}^{-1} is invertible and $A_{i}^{-1}-A_{j}^{-1}$ is invertible if $i \neq j$, the previous theorem gives us the boundedness of \widetilde{T} from $H^{1}\left(\mathbb{R}^{n}\right)$ into $L^{1 /(1-r)}$. Now it is easy to check that T is the adjoint operator of \widetilde{T}, so the corollary follows.

4. A counterexample

In this section we show that we can not expect that operators of the form (2) be bounded from $H^{p}(\mathbb{R})$ into $H^{q}(\mathbb{R})$ with $0<p \leqslant 1 /(1+r)$ and $1 / q=1 / p-r$.

For $n=1$ and $0<r<1$ we consider the integral operator

$$
T_{r} f(x)=\int \frac{f(y) \mathrm{d} y}{|x-y|^{(1-r) / 2}|x+y|^{(1-r) / 2}}
$$

we will show that for a given 1-atom $a, \int T_{r} a(x) \mathrm{d} x \neq 0$.
We observe that $T_{r} a \in L^{1}(\mathbb{R})$ and that $\int T_{r} a(x) \mathrm{d} x=\widehat{\left(T_{r} a\right)}(0)$, where the Fourier transform of a integrable function f is given by $\widehat{f}(\xi)=\int_{\mathbb{R}} \mathrm{e}^{-\mathrm{i} x \xi} f(x) \mathrm{d} x$. Thus it is enough to show that $\widehat{\left(T_{r} a\right)}(0) \neq 0$. Let $\varphi \in S(\mathbb{R})$ be an even function such that $\varphi(0)=1$ and for $\varepsilon>0$ let $\varphi_{\varepsilon}(x)=\varphi(\varepsilon x)$. Now $\widehat{\left(T_{r} a\right)}(0)=\lim _{\varepsilon \rightarrow 0} \widehat{\left(\varphi_{\varepsilon} T_{r} a\right)}(0)$ so we will compute

$$
\left.\left.\begin{array}{rl}
\widehat{\left(\varphi_{\varepsilon} T_{r} a\right)}(0) & =\int \varphi(\varepsilon x)\left(\int\left|x^{2}-y^{2}\right|^{(r-1) / 2} a(y) \mathrm{d} y\right) \mathrm{d} x \\
& =\int a(y)\left(\int\left|x^{2}-y^{2}\right|^{(r-1) / 2} \varphi(\varepsilon x) \mathrm{d} x\right) \mathrm{d} y \\
& =\int a(y)|y|^{r}\left(\int\left|z^{2}-1\right|^{(r-1) / 2} \varphi(\varepsilon|y| z) \mathrm{d} z\right) \mathrm{d} y \\
& =\int a(y)|y|^{r}\left(\int \left(\left|z^{2}-1\right|^{(r-1)} / 2\right.\right.
\end{array}\right)(\sigma) \widehat{\left(\varphi_{\varepsilon|y|}\right)}(\sigma) \mathrm{d} \sigma\right) \mathrm{d} y .
$$

Since $-\frac{1}{2}<-\frac{1}{2} r<0$, the Fourier transform of the function $\left|z^{2}-1\right|^{(r-1) / 2}$ is

$$
\Gamma\left(\frac{r+1}{2}\right) \sqrt{\pi}\left[\left(\frac{\sigma}{2}\right)^{-r / 2} J_{r / 2}(\sigma)+\left|\frac{\sigma}{2}\right|^{-r / 2}\left(\frac{\cos (\pi r / 2) J_{-r / 2}(|\sigma|)-J_{r / 2}(|\sigma|)}{\sin (\pi r / 2)}\right)\right]
$$

where

$$
J_{p}(s)=\frac{2(s / 2)^{p}}{\Gamma\left(p+\frac{1}{2}\right) \sqrt{\pi}} \int_{0}^{1}\left(1-t^{2}\right)^{p-\frac{1}{2}} \cos (s t) \mathrm{d} t
$$

is the Bessel function of order $p>-\frac{1}{2}$ (see p. 185-188 in [2]). So

$$
\begin{aligned}
& \widehat{\left(\varphi_{\varepsilon} T_{r} a\right)}(0) \\
& =c_{r} \int a(y) \int|\varepsilon \sigma|^{-r}\left(\int_{0}^{1}\left(1-t^{2}\right)^{(r-1) / 2} \cos (\varepsilon|y||\sigma| t) \mathrm{d} t\right) \widehat{\varphi}(\sigma) \mathrm{d} \sigma \mathrm{~d} y \\
& \quad+2\left(1-\frac{1}{\sin (\pi r / 2)}\right) \int a(y)|y|^{r} \int\left(\int_{0}^{1}\left(1-t^{2}\right)^{(r-1) / 2} \cos (\varepsilon|y||\sigma| t) \mathrm{d} t\right) \widehat{\varphi}(\sigma) \mathrm{d} \sigma \mathrm{~d} y
\end{aligned}
$$

thus it is easy to check that

$$
\lim _{\varepsilon \rightarrow 0} \widehat{\left(\varphi_{\varepsilon} T_{r} a\right)}(0)=2\left(1-\frac{1}{\sin (\pi r / 2)}\right) \int_{0}^{1}\left(1-t^{2}\right)^{(r-1) / 2} \mathrm{~d} t \int a(y)|y|^{r} \mathrm{~d} y
$$

We take the 1-atom

$$
a_{\delta}(y)= \begin{cases}2 \delta & \text { for }-\frac{1}{2} \leqslant y \leqslant 0 \\ -\delta & \text { for } 0<y \leqslant 1\end{cases}
$$

with $0<\delta \leqslant \frac{1}{3}$. A computation shows that $\int a_{\delta}(y)|y|^{r} \mathrm{~d} y=\delta\left(2^{-r}-1\right) /(r+1)$, so

$$
\int T_{r} a_{\delta}(x) \mathrm{d} x=\widehat{\left(T_{r} a_{\delta}\right)}(0)=2 \delta \frac{2^{-r}-1}{r+1}\left(1-\frac{1}{\sin (\pi r / 2)}\right) \int_{0}^{1}\left(1-t^{2}\right)^{(r-1) / 2} \mathrm{~d} t \neq 0 .
$$

We note that

$$
\lim _{r \rightarrow 0} \int T_{r} a_{\delta}(x) \mathrm{d} x=2 \delta \ln (2)=\int T_{0} a_{\delta}(x) \mathrm{d} x
$$

where the last equality is computed in [5]. Also $a_{\delta} \in H^{p}(\mathbb{R})$ for $\frac{1}{2}<p \leqslant 1 /(1+r)$, and $T_{r} a_{\delta}$ does not belong to $H^{q}(\mathbb{R})$ for $1 / q=1 / p-r$ since $\int T_{r} a_{\delta} \neq 0$. For $0<p \leqslant \frac{1}{2}$ we take N any fixed integer with $N>p^{-1}-1$, then the set of all bounded, compactly supported functions for which $\int_{\mathbb{R}} x^{\alpha} f(x) \mathrm{d} x=0$ for all α with $0 \leqslant \alpha<N$, is dense in $H^{p}(\mathbb{R})$ (see 5.2 b), p. 128 in [7]). In particular, there exists $b \in H^{p}(\mathbb{R})$ such that $\left\|a_{\delta}-b\right\|_{H^{1 /(1+r)(\mathbb{R})}}<\left|\widehat{\left(T_{r} a_{\delta}\right)}(0)\right| / 2 c$. Then

$$
\begin{aligned}
\left|\int T_{r} b(x) \mathrm{d} x\right| & \geqslant\left|\int T_{r} a_{\delta}(x) \mathrm{d} x\right|-\int\left|T_{r} b(x)-T_{r} a_{\delta}(x)\right| \mathrm{d} x \\
& \geqslant\left|\widehat{\left(T_{r} a_{\delta}\right)}(0)\right|-c\left\|a_{\delta}-b\right\|_{H^{1 /(1+r)}(\mathbb{R})} \geqslant \frac{\left|\widehat{\left(T_{r} a_{\delta}\right)}(0)\right|}{2},
\end{aligned}
$$

where the second inequality follows from Theorem 3.1 with $p=1 /(1+r)$. But then T_{r} is not bounded on $H^{p}(\mathbb{R})$ into $H^{q}(\mathbb{R})$ for $1 / q=1 / p-r$, since $\int T_{r} b(x) \mathrm{d} x \neq 0$.

Acknowledgement. We express our thanks to Prof. Fulvio Ricci for his many useful suggestions.

References

[1] Y. Ding, S. Lu: Boundedness of homogeneous fractional integrals on L^{p} for $N / \alpha \leqslant p \leqslant$ ∞. Nagoya Math. J. 167 (2002), 17-33.
[2] I. M. Gelfand, G. E. Shilov: Generalized Functions, Properties and Operations. Vol. 1, Academic Press Inc., 1964.
[3] T. Godoy, M. Urciuolo: On certain integral operators of fractional type. Acta Math. Hung. 82 (1999), 99-105.
[4] F. Ricci, P. Sjogren: Two-parameter maximal functions in the Heisenberg group. Math. Z. 199 (1988), 565-575.
[5] P. Rocha, M. Urciuolo: On the $H^{p}-L^{p}$ boundedness of some integral operators. Georgian Math. J. 18 (2011), 801-808.
[6] E. M. Stein: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton N. J., 1970.
[7] E. M. Stein: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton N. J., 1993.
[8] E. M. Stein, G. Weiss: On the theory of harmonic functions of several variables I: The theory of H^{p} spaces. Acta Math. 103 (1960), 25-62.
[9] M. H. Taibleson, G. Weiss: The molecular characterization of certain Hardy spaces. Astérisque 77 (1980), 67-151.

Authors' address: P. Rocha, M. Urciuolo, Facultad de Matemática, Astronomía y Física, Ciudad Universitaria, 5000 Córdoba, Argentina, e-mail: rp@famaf.unc.edu.ar, urciuolo@famaf.unc.edu.ar.

